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A A brief overview over the LRP-algorithm used

Layer-wise relevance propagation (LRP) [2] is a modified-gradient type algorithm
for backward passes in neural networks and other models. LRP is based on the
idea of replacing the partial derivatives, which are usually flowing back along the
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edges of a graph, by terms derived from Taylor decompositions for single layers4

of the network. While the ϵ-LRP-rule is similar to gradient-times-input, other
rules such as the β-rule5 result in explanations which exhibit visually low noise
and are robust to gradient shattering effects6 common in deep neural networks
due to its normalization properties. Consider a neuron y with inputs xi, weights
wi, and a relevance score being already computed for its output being Ry. The
relevance score Ry is the analogue for the total derivative dz

dy in conventional
backpropagation started at output logits, however computed using LRP. Then
the relevance score for the input xi according to the β = 0-rule is given as

Ri = Ry
(wixi)+∑
k(wkxk)+

(1)

where (·)+ is the positive part.This measures the proportion of the positive part
of the weighted input (wixi)+ for the input neuron i relative to the positive
weighted inputs from all inputs used to compute the value of neuron y. There-
fore it redistributes relevance from an output to the inputs proportional to this
fraction and proportional to the relevance Ry of the output neuron. We used
the β = 0-rule for all convolution layers and the ϵ-rule for the top-most fully
connected layer. Before applying LRP, we fuse batchnorm layers into convolu-
tion layers and reset the batchnorm layers. The backpropagation in the resetted
batchnorm layers uses the identity. Technically the base LRP algorithm is im-
plemented in PyTorch as custom static autograd functions. This results for con-
volution layers in relevance scores having a shape of (1, C,H,W ) in the gradient
field.

LRP scores computed in the input space of neural networks have been shown
to perform well on metrics regarding the ordering of input space regions accord-
ing to the computed explanation scores and the correlation of this ordering to
changes in model output logits7 8 9 when modifying the highest scoring regions.

B LRP-max pseudocode

In this section, we include the pseudo-code for obtaining LRP-max pixel-wise
explanations. In particular, we study the LRP-max responses for T-FF in this

4 Montavon et al.,: Explaining NonLinear Classification Decisions with Deep Taylor
Decomposition. In Pattern Recognition (2017)

5 Montavon et al.,: Layer-Wise Relevance Propagation: An Overview. Book chapter
in Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (2019)

6 Balduzzi et al.,: The Shattered Gradients Problem: If resnets are the answer, then
what is the question?. In ICML (2017)

7 Samek et al.,: Evaluating the Visualization of What a Deep Neural Network Has
Learned. IEEE Transactions on Neural Networks and Learning Systems (2017)

8 Pörner et al.,: Evaluating neural network explanation methods using hybrid docu-
ments and morphosyntactic agreement. In ACL (2018)

9 Arras et al.,: Evaluating Recurrent Neural Network Explanations. In ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (2019)
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work. The pseudo-code is shown in Algorithm 1. We remark that LRP-max is a
procedure to automatically extract image regions for every T-FF.

Algorithm 1: Obtain LRP-max pixel-wise explanations ( For a single
feature map, for a single sample )

Input:
forensics detector M ,
counterfeit image x where x:size() = (3; xheight; xwidth),
forensic feature map l; c where l; c indicate layer and channel index
respectively.
Output:
Êlc(x) where E indicates the LRP-max pixel-wise explanations for sample x
corresponding to forensic feature map at layer index l and channel index c.
Do note that Êlc(x):size() is (xheight; xwidth).
Every forensic feature map can be characterized by a unique set of l; c.

1 zlc(x)← LRP − F ORW ARD(Mlc(xi)) ; /*(h, w) relevance scores*/

2 h∗; w∗ ← argmax(zlc(x)) ; /*find index of max relevance*/

3 zmax
lc (x)← zlc(x)[h

∗; w∗] ; /*LRP-max response neuron*/

4 Elc(x)← LRP −BACKW ARD(zmax
lc (x)) ; /*explain LRP-max neuron*/

5 Êlc(x)←
∑3

k=0(Elc(x)(k; xheight; xwidth) ; /*spatial LRP-max*/

6 return Êlc(x)

C Computational Complexity of FF-RS / LRP-max

Both FF-RS and LRP-max require an additional forward and backward pass
during computation. We emphasize that our proposed FF-RS and LRP-max
are not used during training of universal detectors, but are only used for our
analytical study. Therefore, we remark that there is no substantial amount of
additional computational overhead.

D Non Color-conditional T-FF

There are a few T-FF that are not color-conditional. In this section, we show non
color-conditional T-FF. We show LRP-max response image regions for ResNet-
50 and EfficientNet-B0 in Fig. D.1 and D.3 respectively. We further show the
maximum spatial activation distributions before and after color ablation for
ResNet-50 and EfficientNet-B0 in Fig. D.2 and D.4 respectively. As one can ob-
serve using LRP-max response image regions, these non color-conditional T-FF
contain frequency / texture artifacts. The maximum spatial activation distribu-
tions clearly show that these non color-conditional T-FF produce identical /
similar distributions before and after color ablation.
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ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

Fig. D.1. T-FF that are not color-conditional in ResNet-50 Universal detector: We
show the LRP-max response regions for 5non color-conditional T-FF for ProGAN [26]
and all 6 unseen GANs [29,28,6,66,11,44]. Each row represents anon color-conditional
T-FF. We emphasize that T-FF are discovered using our proposedforensic feature
relevance statistic (FF-RS) . This detector is trained with ProGAN [26] counterfeits [61]
and cross-model forensic transfer is evaluated on other unseen GANs. All counterfeits
are obtained from the ForenSynths dataset [61]. Visual inspection of LRP-max regions
of non color-conditional T-FF shows frequency / texture artifacts. i.e.: rapid changes
in pixel intensities. This shows that the universal detector also uses frequency / texture
artifacts for cross-model transfer although color is a critical T-FF as � 85% of T-FF
are color-conditional. We emphasize that our proposed method is capable of identifying
other T-FF (i.e.: frequency / texture artifacts).

ProGAN [26] StyleGAN2 [29] StyleGAN [28] BigGAN [6] CycleGAN [66] StarGAN [11] GauGAN [44]

Fig. D.2. Non Color-conditional T-FF in ResNet-50: Each row represents anon color-
conditional T-FF (exact same T-FF as shown in Fig. D.1), and we show the maximum
spatial activation distributions for ProGAN [26], StyleGAN2 [29], StyleGAN [28], Big-
GAN [6], CycleGAN [66], StarGAN [11] and GauGAN [44] counterfeits before (Base-
line) and after color ablation (Grayscale). We remark that for each counterfeit in the
ForenSynths dataset [61], we apply global max pooling to the speci�c T-FF to obtain a
maximum spatial activation value (scalar). We can clearly observe that these T-FF are
producing identical / similar spatial activations (max) for the same set of counterfeits
after removing color information which demonstrates that these T-FF do not respond
to color information. This clearly indicates that these T-FF are not color-conditional
(Con�rmed by our Mood's median test).
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