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Fig. 1. Text2LIVE performs semantic, localized edits to real-world images (b), or videos
(c). Our key idea is to generate an edit layer–RGBA image representing the target edit
when composited over the input (a). This allows us to use text to guide not only the
final composite, but also the edit layer itself (target text prompts are shown above
each image). Our edit layers are synthesized by training a generator on a single input,
without relying on user-provided masks or a pretrained generator.

Abstract. We present a method for zero-shot, text-driven editing of
natural images and videos. Given an image or a video and a text prompt,
our goal is to edit the appearance of existing objects (e.g., texture) or
augment the scene with visual effects (e.g., smoke, fire) in a semantic
manner. We train a generator on an internal dataset, extracted from
a single input, while leveraging an external pretrained CLIP model to
impose our losses. Rather than directly generating the edited output, our
key idea is to generate an edit layer (color+opacity) that is composited
over the input. This allows us to control the generation and maintain
high fidelity to the input via novel text-driven losses applied directly
to the edit layer. Our method neither relies on a pretrained generator
nor requires user-provided masks. We demonstrate localized, semantic
edits on high-resolution images and videos across a variety of objects
and scenes. Webpage: text2live.github.io

* Denotes equal contribution.

text2live.github.io
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(a) Image text-guided layered editing (b) Video text-guided layered editing 
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Fig. 2. Text2LIVE generates an edit layer, which is composited over the input. The
text prompts expressing the target layer and the final composite are shown above each
image. Our layered editing facilitates various effects including changing objects’ texture
or augmenting the scene with complex semi-transparent effects.

Keywords: text-guided image and video editing, CLIP

1 Introduction

Computational methods for manipulating the appearance and style of objects in
natural images and videos have seen tremendous progress, facilitating a variety
of editing effects to be achieved by novice users. Nevertheless, research in this
area has been mostly focused in the Style-Transfer setting where the target
appearance is given by a reference image (or domain of images), and the original
image is edited in a global manner [14]. Controlling the localization of the edits
typically involves additional input guidance such as segmentation masks. Thus,
appearance transfer has been mostly restricted to global artistic stylization or to
specific image domains or styles (e.g., faces, day-to-night, summer-to-winter). In
this work, we seek to eliminate these requirements and enable more flexible and
creative semantic appearance manipulation of real-world images and videos.

Inspired by the unprecedented power of recent Vision-Language models, we
use simple text prompts to express the target edit. This allows the user to easily
and intuitively specify the target appearance and the object/region to be edited.
Specifically, our method enables local, semantic editing that satisfies a given
target text prompt (e.g., Fig. 1 and Fig. 2). For example, given the cake image
in Fig. 1(b), and the target text “oreo cake”, our method automatically locates
the cake region and synthesizes realistic, high-quality texture that combines
naturally with the original image – the cream filling and the cookie crumbs
“paint” the cake in a semantically-aware manner.

Our framework leverages the representation learned by a Contrastive Language-
Image Pretraining (CLIP) model, which has been pretrained on 400 million text-
image examples [32]. Various recent image editing methods [2,3,9,10,30] have
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demonstrated the richness of the visual and textual space spanned by CLIP. How-
ever, editing existing objects in arbitrary, real-world images remains challenging.
Most existing methods combine a pre-trained generator (e.g., GAN/Diffusion
model) in conjunction with CLIP. With GANs, the domain of images is re-
stricted and requires inverting the input image to the GAN’s latent space — a
challenging task by itself [46]. Diffusion models [11,42] overcome these barriers
but face an inherent trade-off between satisfying the target edit and maintaining
high fidelity to the original content [2]. Furthermore, it is not straightforward
to extend these methods to videos. In this work, we take a different route and
propose to learn a generator from a single input – image or video and text
prompts.

If no external generative prior is used, how can we steer the generation to-
wards meaningful, high-quality edits? We achieve this via two key components:
(i) we propose a novel text-guided layered editing, i.e., rather than directly gen-
erating the edited image, we represent the edit via an RGBA layer (color and
opacity) that is composited over the input. This allows us to guide the content
and localization of the generated edit via a novel objective function, including
text-driven losses applied directly to the edit layer. As seen in Fig. 2, we use text
prompts to express both the final edited image and the target effect (e.g., fire)
represented by the edit layer. (ii) We train our generator on an internal dataset
of diverse image-text training examples by applying various augmentations to
the input image and text. We demonstrate that our internal learning approach
serves as a strong regularization, enabling high quality generation of complex
textures and semi-transparent effects.

We further take our framework to the realm of text-guided video editing. Real-
world videos consist of complex objects and camera motion, providing abundant
information about the scene. Yet, consistent video editing is difficult and can-
not be achieved näıvely. We thus propose to decompose the video into a set of
2D atlases using [16]. Each atlas is a unified 2D image representing either a
foreground object or the background throughout the video. This representation
simplifies video editing: edits applied to a 2D atlas are consistently mapped back
to the video automatically. Here, we extend our framework to perform edits in
the atlas space while harnessing the rich information readily available in videos.

In summary, we present the following contributions:

– An end-to-end text-guided framework for performing localized, semantic ed-
its of existing objects in real-world images.

– A novel layered editing approach and objective function that automatically
guides the content and localization of the generated edit.

– We demonstrate the effectiveness of internal learning for training a generator
on a single input in a zero-shot manner.

– An extension to video which harnesses the richness of information across
time, and can perform consistent text-guided editing.

– We demonstrate various edits, ranging from changing objects’ texture to
generating complex semi-transparent effects, all achieved fully automatically
across a wide-range of objects and scenes.
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2 Related Work

Text-guided image manipulation and synthesis. There has been remark-
able progress since the use of conditional GANs in both text-guided image
generation [35,47,48,49], and editing [7,20,27]. ManiGAN [20] proposed a text-
conditioned GAN for editing an object’s appearance while preserving the image
content. However, such multi-modal GAN-based methods are restricted to spe-
cific image domains and limited in the expressiveness of the text (e.g., trained
on COCO [22]). DALL-E [33] addresses this by learning a joint image-text dis-
tribution over a massive dataset. While achieving remarkable text-to-image gen-
eration, DALL-E is not designed for editing existing images. GLIDE [28] takes
this approach further, supporting both text-to-image generation and inpainting.

Instead of directly training a text-to-image model, a recent surge of meth-
ods leverage a pretrained generator, and use CLIP [32] for text-guided gener-
ation [3,10,23,30]. StyleCLIP [30] and StyleGAN-NADA [10] use a pretrained
StyleGAN2 [15] for image manipulation, by either controlling the GAN’s latent
code [30], or by fine-tuning the StyleGAN’s output domain [10]. However, editing
a real input image using these methods requires first tackling the GAN-inversion
challenge [36,44]. Furthermore, these methods can edit images from a few specific
domains, and edit images in a global fashion. In contrast, we consider a different
problem setting – localized edits that can be applied to real-world images span-
ning a variety of object and scene categories. A recent exploratory and artistic
trend in the online AI community has demonstrated impressive text-guided im-
age generation by steering the generation process of a pretrained VQ-GAN [8],
or diffusion models [11,42] using CLIP. [17] takes this approach a step forward
by optimizing the diffusion process itself. However, since the generation is glob-
ally controlled by the diffusion process, this method is not designed to support
localized edits that are applied only to selected objects.

To enable region-based editing, user-provided masks are used to control the
diffusion process for image inpainting [2]. In contrast, our goal is not to generate
new objects but rather to manipulate the appearance of existing ones, while
preserving the original content. Furthermore, our method is fully automatic and
performs the edits directly from the text, without user edit masks.

Several works [9,12,19,26] take a test-time optimization approach and lever-
age CLIP without using a pre-trained generator. For example, CLIPDraw [9] ren-
ders a drawing that matches a target text by directly optimizing a set of vector
strokes. To prevent adversarial solutions, various augmentations are applied to
the output image, all of which are required to align with the target text in CLIP
embedding space. CLIPStyler [19] takes a similar approach for global stylization.
Our goal is to perform localized edits, which are applied only to specific objects.
Furthermore, CLIPStyler optimizes a CNN that observes only the source image.
In contrast, our generator is trained on an internal dataset, extracted from the
input image and text. We draw inspiration from previous works that show the
effectiveness of internal learning in the context of generation [38,40,45].

Other works use CLIP to synthesize [12] or edit [26] a single 3D represen-
tation (NeRF or mesh). The unified 3D representation is optimized through a
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Composite over greenscreen

Composite over input
=“fire over a green screen”

 Input image and text

“ship on fire”
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“a photo of ship on fire”

“ship on fire!”
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Fig. 3. Image pipeline. Our method consists of a generator trained on a single input
image and target text prompts. Left: an internal image-text dataset of diverse training
examples is created by augmenting both image and text (see Sec. 3.1). Right: Our
generator takes as input an image and outputs an edit RGBA layer (color+opacity),
which is composited over the input to form the final edited image. The generator is
trained by minimizing several loss terms that are defined in CLIP space, and include:
Lcomp, applied to the composite, and Lscreen, applied to the edit layer (when composited
over a green background). We apply additional augmentations before CLIP (Sec. 3.1)

differentiable renderer: CLIP loss is applied across different 2D rendered view-
points. Inspired by this approach, we use a similar concept to edit videos. In our
case, the “renderer” is a layered neural atlas representation of the video [16].

Consistent Video Editing. Existing approaches for consistent video edit-
ing can be roughly divided into (i) propagation-based, which use keyframes
[13,43] or optical flow [37] to propagate edits throughout the video, and (ii)
video layering-based, in which a video is decomposed into layers that are then
edited [16,21,24,25,34]. Lu et al. [24,25] estimate omnimattes – RGBA layers
depicting a target object and its associated scene effects. Omnimattes facilitate
various video effects (e.g., object removal). However, the layers are computed
independently for each frame, hence cannot support consistent edit propagation
across time. Kasten et al. [16] address this challenge by decomposing a video
into unified 2D atlas layers (foreground/background). Edits applied to the 2D
atlases are automatically mapped back to the video, achieving temporal consis-
tency with minimal effort. Here, we treat the neural layered atlas model as a
video renderer, leveraging it for text-guided video editing.

3 Text-Guided Layered Image and Video Editing

We focus on semantic, localized edits expressed by simple text prompts. Such
edits include changing objects’ texture or semantically augmenting the scene
with complex semi-transparent effects (e.g., smoke, fire). To this end, we harness
the potential of learning a generator from a single input image or video while
leveraging CLIP, which is kept fixed and used to establish our losses [32]. Our
task is ill-posed – numerous possible edits can satisfy the target text according
to CLIP, some of which are noisy or undesired [9,23]. Thus, controlling edits’
localization and preserving the original content are essential for achieving high-
quality editing. We tackle these challenges via the following key components:

1. Layered editing. Our generator outputs an RGBA layer that is composited
over the input image. This allows us to control the content and spatial extent
of the edit via dedicated losses applied directly to the edit layer.
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2. Explicit content preservation and localization losses. We devise new losses
using the internal spatial features in CLIP space to preserve the original
content, and to guide the localization of the edits.

3. Internal generative prior. We construct an internal dataset of examples
by applying augmentations to the input image/video and text. These aug-
mented examples are used to train our generator, whose task is to perform
text-guided editing on a larger and more diverse set of examples.

3.1 Text to Image Edit Layer

As illustrated in Fig. 3, our framework consists of a generator Gθ that takes as
input a source image Is and synthesizes an edit layer, E = {C,α}, which consists
of a color image C and an opacity map α. The final edited image Io is given by
compositing the edit layer over Is:

Io = α · C + (1− α) · Is (1)

Our main goal is to generate E such that the final composite Io would comply
with a target text prompt T . In addition, generating an RGBA layer allows us
to use text to further guide the generated content and its localization. To this
end, we consider a couple of auxiliary text prompts: Tscreen which expresses the
target edit layer, when composited over a green background, and TROI which
specifies a region-of-interest in the source image, and is used to initialize the
localization of the edit. For example, in the Bear edit in Fig. 2, T =“fire out of
the bear’s mouth”, Tscreen =“fire over a green screen”, and TROI =“mouth”. We
next describe in detail how these are used in our objective function.

Objective function. Our novel objective function incorporates three main
loss terms, all defined in CLIP’s feature space: (i) Lcomp, which is the driving
loss and encourages Io to conform with T , (ii) Lscreen, which serves as a direct
supervision on the edit layer, and (iii) Lstructure, a structure preservation loss
w.r.t. Is. Additionally, a regularization term Lreg is used for controlling the
extent of the edit by encouraging sparse alpha matte α. Formally,

LText2LIVE = Lcomp + λgLscreen + λsLstructure + λrLreg, (2)

where λg, λs, and λr control the relative weights between the terms, and are fixed
throughout all our experiments (see Supplementary Materials on our website –
SM).

Composition loss. Lcomp reflects our primary objective of generating an image
that matches the target text prompt and is given by a combination of a cosine
distance loss and a directional loss [30]:

Lcomp = Lcos (Io, T ) + Ldir(Is, Io, TROI, T ), (3)

where Lcos = Dcos (Eim(Io), Etxt(T )) is the cosine distance between the CLIP
embeddings for Io and T . Here, Eim, Etxt denote CLIP’s image and text encoders,
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respectively. The second term controls the direction of edit in CLIP space [10,30]
and is given by: Ldir = Dcos(Eim(Io)−Eim(Is), Etxt(T )− Etxt(TROI)).

Similar to most CLIP-based editing methods, we first augment each image
to get several different views and calculate the CLIP losses w.r.t. each of them
separately, as in [2]. This holds for all our CLIP-based losses. See SM for details.

Screen loss. The term Lscreen serves as a direct text supervision on the edit
layer E . We draw inspiration from chroma keying [4]–a well-known technique by
which a solid background (often green) is replaced by an image in a post-process.
Chroma keying is extensively used in image and video post-production, and there
is high prevalence of online images depicting various visual elements over a green
background. We thus composite the edit layer over a green background Igreen and
encourage it to match the template Tscreen :=“ { } over a green screen”, (Fig. 3):

Lscreen = Lcos (Iscreen, Tscreen) (4)

where Iscreen = α · C + (1− α) · Igreen.
A nice property of this loss is that it allows intuitive supervision on a desired

effect. For example, when generating semi-transparent effects, e.g., Bear in Fig. 2,
we can use this loss to focus on the fire regardless of the image content by using
Tscreen =“fire over a green screen”. Unless specified otherwise, we plug in T to
our screen text template in all our experiments. Similar to the composition loss,
we first apply augmentations on the images before feeding to CLIP.

Structure loss. We want to allow substantial texture and appearance changes
while preserving the objects’ original spatial layout, shape, and perceived seman-
tics. While various perceptual content losses have been proposed in the context of
style transfer, most of them use features extracted from a pretrained VGG [41].
Instead, we define our loss in CLIP feature space. This allows us to impose ad-
ditional constraints to the resulting internal CLIP representation of Io. Inspired
by classical and recent works [18,39,45], we adopt the self-similarity measure.
Specifically, we feed an image into CLIP’s ViT and extract its K spatial tokens
from the deepest layer. The self-similarity matrix, denoted by S(I) ∈ RK×K , is
used as structure representation. Each matrix element S(I)ij is defined by:

S(I)ij = 1−Dcos

(
ti(I), tj(I)

)
(5)

where ti(I) ∈ R768 is the ith token of image I.
The term Lstructure is defined as the Frobenius norm distance between the

self-similarity matrices of Is, and Io:

Lstructure = ∥S(Is)− S(Io)∥F (6)

Sparsity regularization. To control the spatial extent of the edit, we encour-
age the output opacity map to be sparse. Following [24,25], we define the sparsity
loss as a combination of L1- and L0-approximation regularization terms:

Lreg = γ ∥α∥1 + Ψ0(α) (7)

where Ψ0(x) ≡ 2Sigmoid(5x) − 1 is a smooth L0 approximation that penalizes
non zero elements. We fix γ in all our experiments.
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Input Video (b) Generator(a) Neural Layered Atlases (pre-trained)
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(e) Composited Frames

. .
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(d) Frame Edit Layer

(c) Atlas Edit Layer
(color+opacity)Foreground

Atlas
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Atlas

Billinear
Sampling

via

“rusty”

Fig. 4. Video pipeline. (a) a pretrained and fixed neural layered atlas model [16] is
used as a “video renderer”, which consists of: a set of 2D atlases, mapping functions
from pixels to the atlases (and per-pixel fg/bg opacity values). Our framework takes
in an atlas IA and a target text prompt (e.g., “rusty car”), and trains a generator (b)
to output an atlas edit layer EA (c). The edited atlas (d) is rendered to frames using
the pre-trained mapping network M, and then (e) composited over the original video.

Bootstrapping. To achieve accurate localized effects without user-provided
edit mask, we apply a text-driven relevancy loss to initialize our opacity map.
Specifically, we use Chefer et al. [5] to automatically estimate a relevancy map1

R(Is) ∈ [0, 1]224×224 which roughly highlights the image regions that are most
relevant to a given text TROI. We use R(Is) to initialize α by minimizing:

Linit = MSE (R(Is), α) (8)

Note that the relevancy maps are noisy, and only provide a rough estimation
for the region of interest (Fig. 8(c)). Thus, we anneal this loss during training
(see implementation details in SM). By training on diverse internal examples
along with the rest of our losses, our framework dramatically refines this rough
initialization, and produces accurate and clean opacity (Fig. 8(d)).

Training data. Our generator is trained from scratch for each input (Is, T )
using an internal dataset of diverse image-text training examples {(Iis, T i)}Ni=1

that are derived from the input (Fig. 3 left). Specifically, each training exam-
ple (Iis, T

i) is created by randomly applying a set of augmentations to Is and T .
Image augmentations include global crops, color jittering, and flip; text augmen-
tations are sampled from predefined text templates (e.g., “a photo of { }”); see
details in SM. The vast space of all augmentation combinations provides a rich
and diverse dataset for training. The task is now to learn one mapping function
Gθ for the entire dataset, posing a strong regularization. Specifically, for each
individual example, Gθ has to generate a plausible edit layer E i from Iis such that
the composited image is well described by T i. We demonstrate the effectiveness
of our internal learning approach compared to test-time optimization in Sec. 4.

3.2 Text to Video Edit Layer

A natural question is whether our image framework can be applied to videos.
The key additional challenge is achieving a temporally consistent result. Näıvely

1 [5] works with 224× 224 images, so we resize Is and α before applying loss (8).
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applying our image framework on each frame independently yields unsatisfactory
jittery results (see Sec. 4). To enforce temporal consistency, we utilize the Neural
Layered Atlases (NLA) method [16], as illustrated in Fig. 4(a). We next provide
a brief review of NLA and discuss in detail our extension to videos.

Preliminary: Neural Layered Atlases. NLA provides a unified 2D param-
eterization of a video: the video is decomposed into a set of 2D atlases, each
can be treated as a 2D image, representing either one foreground object or the
background throughout the entire video. An example of foreground and back-
ground atlases are shown in Fig. 4. For each video location p = (x, y, t), NLA
computes a corresponding 2D location (UV) in each atlas, and a foreground
opacity value. This allows to reconstruct the original video from the set atlases.
NLA comprises of several Multi-Layered Perceptrons (MLPs), representing the
atlases, the mappings from pixels to atlases and their opacity. More specifically,
each video location p is first fed into two mapping networks, Mb and Mf :

Mb(p) = (up
b , v

p
b ), Mf (p) = (up

f , v
p
f ) (9)

where (up
∗, v

p
∗) are the 2D coordinates in the background/foreground atlas space.

Each video location is also fed to an MLP that predicts its foreground opacity.
The predicted UV coordinates are then fed into an atlas network A that outputs
RGB colors in each location. Thus, the original RGB value of p can be recon-
structed by mapping p to the atlases, extracting the corresponding atlas colors,
and blending them according to the predicted opacity. See [16] for full details.

Importantly, NLA enables consistent video editing: the continuous atlas (fore-
ground/background) is first discretized to a fixed resolution image (e.g., 1000×1000
px). The user can edit the discretized atlas using image editing tools (e.g., Pho-
toshop). The atlas edit is then mapped back to the video, and blended with the
frames using the predicted UV mappings and foreground opacity. Here, we are
interested in generating atlas edits in a fully automatic manner, solely via text.

Text to Atlas Edit Layer. Our video framework leverages NLA as a “video
renderer”, as illustrated in Fig. 4. Specifically, given a pretrained and fixed NLA
model for a video, our goal is to generate a 2D atlas edit layer, either for the
background or foreground, such that when mapped back to the video, each of
the rendered frames would comply with the target text.

Similar to the image framework, we train a generator Gθ that takes a 2D
discretized atlas IA and generates an atlas edit layer EA = {CA, αA}. The pre-
trained UV mapping M is used to bilinearly sample EA to map it to each frame:

Et = Sampler(EA,S) (10)

S = {M(p) | p = (·, ·, t)} is the set of UV coordinates corresponding to frame t.
The edited video is obtained by blending Et with the frames, following [16].

Training. A straightforward approach to train Gθ is to treat IA as an im-
age and plug it into our image framework (Sec. 3.1). This will ensure temporal
consistency, yet it has two main drawbacks: (i) the atlas often non-uniformly



10 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

 (a) Input image  (b) Editing results (RGBA edit layer composited over the input image)

“wooden” “golden” “stained glass” “crochet”

“brioche” “red velvet” “ice”“melted cheese”

“snow” “volcano” “ocean”“sahara”

Fig. 5. Text2LIVE image results. Across rows: different images, across columns: differ-
ent target edits. All results are produced fully automatically w/o any input masks.

distorts the original structures (see Fig. 4), which may lead to low-quality edits,
(ii) solely using the atlas while ignoring the video frames, disregards the abun-
dant, diverse information available in the video such as different viewpoints or
non-rigid object deformations, which can serve as “natural augmentations” to
our generator. We overcome these drawbacks by mapping the atlas edit back to
the video and applying our losses on the resulting edited frames with the same
objective as in Eq. 2; we construct an internal dataset from the atlas.

More specifically, a training example is constructed by first extracting a crop
from IA. To ensure we sample informative atlas regions, we randomly crop a
video segment in both space and time, and then map it to a corresponding
atlas crop IAc using M (see SM for technical details). We then apply additional
augmentations to IAc and feed it into the generator, resulting in an edit layer
EAc = Gθ(IAc). We then map EAc and IAc back to the video, resulting in frame
edit layer Et, and a reconstructed foreground/background crop It. This is done
by bilinearly sampling EAc and IAc using Eq. (10), with S as the set of UV
coordinates corresponding to the frame crop. Finally, we apply LText2LIVE from
Eq. 2, where Is= It and E = Et.
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“stained glass gira�e”“dog with leopard texture”

Libby Lucia GiraffeBlack-swan

“cyberpunk neon car” + “countryside at nighttime”

Fig. 6. Text2LIVE video results. A representative frame from the original and edited
videos are shown for each example, along with the target text prompt. In car-turn, both
foreground and background atlases are edited sequentially (see Sec. 4). The original
and edited atlases are shown on the right. Full video results are included in the SM.

4 Results

We tested our method across various real-world, high-resolution images and
videos. The image set contains 35 images collected from the web, spanning vari-
ous object categories, including animals, food, landscapes, and more. The video
set contains 7 videos from DAVIS [31]. We applied our method for various edits,
ranging from text prompts that describe the texture/materials of specific objects
to edits that express complex scene effects (e.g., smoke, fire, clouds). Sample re-
sults can be seen in Fig. 1, Fig. 2, and Fig. 5 for images, and Fig. 6 for videos (see
SM for more). As seen, our method successfully generates photorealistic textures
that are “painted” over the target objects in a semantically aware manner. Ed-
its are accurately localized, even under partial occlusions, multiple objects (last
and third row of Fig. 5) and complex scene composition (the dog in Fig. 2). Our
method successfully augments the scene with complex semi-transparent effects
without changing irrelevant content (see Fig. 1).

4.1 Comparison to Prior Work

To the best of our knowledge, there is no existing method tailored for our task:
text-driven semantic, localized editing of existing objects in real-world images
and videos. We illustrate the key differences between our method and several
prominent text-driven image editing methods. We consider those that can be
applied to a similar setting to ours: editing real-world images without restriction



12 O. Bar-Tal, D. Ofri-Amar , R. Fridman et al.

(a) Edit mask (overlay) (d) CLIPStyler(c) Blended-Diffusion (f) VQ-GAN + CLIP(b) GLIDE (e) Diffusion + CLIP

Fig. 7. Comparison to baselines. Different text-guided image editing methods are ap-
plied on several images: cake image using “oreo cake” (Fig. 1); and birds using “golden
birds” (Fig. 5). Manually created masks (a) are provided to the inpainting methods
(b-c); the other methods are mask-free. Our results are shown in Fig. 1, and Fig. 5.

 (a) Input image  (c) Relevancy map (b) w/o bootstrapping  (e) w/ bootstrapping (d) Our output matte

 (a) Input image  (c) w/o structure  (b) w/o sparsity  (e) w/o screen  (e) full objective (e) w/o internal dataset

Fig. 8. Top: We illustrate the effect of our relevancy-based bootstrapping for (a) using
“red hat” as the target edit. (b) w/o bootstrapping our edited image suffers from color
bleeding. Our alpha-matte is initialized to capture the hat (TROI =“hat”) using the raw
relevancy map, which only provides a very rough supervision (c); during training, our
method dramatically refines the matting (d). Bottom: We ablate each of our loss terms
and the effect of internal learning (“mango” to “golden mango”). See Sec. 4.3.

to specific domains. Inpainting methods: Blended-Diffusion [2] and GLIDE [28],
require user-provided editing mask. CLIPStyler, which performs image styliza-
tion; Diffusion+CLIP [1], and VQ-GAN+CLIP [6]: both combine CLIP with
either a pretrained VQ-GAN or a Diffusion model. See SM for qualitative com-
parison to StyleGAN text-guided editing methods [30,10].

Fig. 7 shows representative results (more in SM). As seen, none of these
methods are designed for our task. The inpainting methods (b-c), even when
supplied with tight edit masks, generate new content in the masked region rather
than changing the texture of the existing one. CLIPStyler (d) modifies the image
in a global artistic manner rather than performing local semantic editing (e.g., the
background in both examples changed entirely, regardless of the image content).
Diffusion+CLIP [1] (e) can often synthesize high-quality images, but with either
low fidelity to the target text or the input image content (see more in SM). VQ-
GAN+CLIP [6] (f) fails to maintain fidelity to the input image and produces non-
realistic images. Our method automatically locates the cake region and generates
high-quality texture that naturally combines with the original content.
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Image baselines Video baselines

CLIPStyler VQ-GAN+CLIP Diffusion+CLIP Atlas baseline Frames baseline

0.85 ± 0.12 0.86 ± 0.14 0.82 ± 0.11 0.73 ± 0.14 0.74 ± 0.15

Table 1. AMT surveys evaluation (see Sec. 4). We report the percentage of judgments
in our favor (mean, std). Our method outperforms all baselines.

4.2 Quantitative evaluation

Comparison to image baselines. We conduct an extensive human perceptual
evaluation on Amazon Mechanical Turk (AMT). We adopt the Two-alternative
Forced Choice (2AFC) protocol suggested in [18,29]. Participants are shown a ref-
erence image and a target editing prompt, along with two alternatives: ours and
a baseline. We consider from the above baselines those not requiring user masks.
Participants were asked: “Which image better shows objects in the reference im-
age edited according to the text”. We collected 12,450 user judgments using 82
image-text pairs across several prominent text-guided image editing methods.
Table 1 reports the percentage of votes in our favor. Our method outperforms
all baselines by a large margin, including those using a strong generative prior.

Comparison to video baselines. We quantify the effectiveness of our key design
choices for our video framework by comparing our video method against (i) Atlas
Baseline: feeding the discretized 2D Atlas to our single-image method (Sec. 3.1),
and using the same inference pipeline illustrated in Fig. 4 to map the edited atlas
back to frames. (ii) Frames Baseline: treating all video frames as part of a single
internal dataset, used to train our generator; at inference, we apply the trained
generator independently to each frame.

We conduct a human perceptual evaluation in which we provide participants
a target editing prompt and two video alternatives: ours and a baseline. Partici-
pants were asked “Choose the video that has better quality and better represents
the text”. We collected 2,400 user judgments over 19 video-text combinations. Ta-
ble 1 reports the percentage of votes in our favor. We first note that the Frames
baseline produces temporally inconsistent edits. The Atlas baseline produces
temporally consistent results yet struggles to generate high-quality textures and
often produces blurry results. These observations support our hypotheses men-
tioned in Sec. 3.2 (see SM for visual comparisons).

4.3 Ablation Study

Figure 8 (top) illustrates the effect of our relevancy-based bootstrapping (Sec. 3.1).
As seen, it allows us to achieve accurate object mattes, which significantly im-
proves the rough, inaccurate relevancy maps.

We ablate the loss terms in our objective by qualitatively comparing our re-
sults obtained with our full objective (Eq. 2) and with a specific loss removed
(Fig. 8). Without Lreg, the output matte does not accurately capture the mango,
resulting in a global color shift around it. Without Lstructure, the model outputs an
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“moon” “a bright full moon”Input Image “chess cake” “birthday cake”Input Image

Fig. 9. Limitations. CLIP often exhibits biases towards certain visual elements. Our
method is designed to edit existing objects, thus new objects may not be visually
pleasing. Yet, the desired edit can often be achieved by using more specific text (left).

image with the desired appearance but fails to preserve the mango shape. With-
out Lscreen, the object segmentation is noisy (color bleeding from the mango),
and the texture quality is degraded. Lastly, we consider a test-time optimization
baseline by not using our internal dataset but rather feeding Gθ the same input
at each training step. As seen, this baseline results in lower-quality edits.

4.4 Limitations

We noticed that for some edits, CLIP exhibits a very strong bias towards a
specific solution. For example, as seen in Fig. 9, given an image of a cake, the text
“birthday cake” is highly associated with candles. Our method is not designed
to significantly deviate from the original layout and to create new objects, thus
generates unrealistic candles. Nevertheless, in many cases the desired edit can be
achieved by using more specific text. For example, the text “moon” guides the
generation toward a crescent. Instead, “a bright full moon” steers the generation
toward a full moon (Fig. 9 left). Finally, as noted by prior works (e.g., [26]), we
also noticed that slightly different text prompts describing similar concepts may
lead to slightly different flavors of edits.

Our video framework relies on the pretrained NLA model. Thus, we are
restricted to examples where NLA works well, as artifacts in the atlas represen-
tation can propagate to our edited video. An exciting avenue of future research
may include fine-tuning the NLA representation jointly with our model.

5 Conclusion

We considered a new problem setting in the context of zero-shot text-guided
editing: semantic, localized editing of real-world images and videos. Addressing
this task requires careful control of several aspects of the editing: localization,
preservation of the original content, and visual quality. We proposed to generate
text-driven edit layers that allow us to tackle these challenges, without using
a pretrained generator in the loop. We further demonstrated how to adopt our
framework, with minimal changes, for consistent text-guided video editing. We
believe that the key principles exhibited in the paper hold promise for leveraging
large-scale multi-modal networks in tandem with an internal learning approach.
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Tulyakov, S., Sýkora, D.: Interactive video stylization using few-shot patch-based
training. ACM Transactions on Graphics (2020)

44. Tov, O., Alaluf, Y., Nitzan, Y., Patashnik, O., Cohen-Or, D.: Designing an encoder
for stylegan image manipulation. ACM Transactions on Graphics (TOG) (2021)

45. Tumanyan, N., Bar-Tal, O., Bagon, S., Dekel, T.: Splicing vit features for semantic
appearance transfer. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2022)

46. Xia, W., Zhang, Y., Yang, Y., Xue, J.H., Zhou, B., Yang, M.H.: Gan inversion: A
survey. arXiv preprint arXiv:2101.05278 (2021)

47. Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., He, X.: Attngan:
Fine-grained text to image generation with attentional generative adversarial net-
works. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2018)

48. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: Stack-
gan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. In: Proceedings of the IEEE International Conference on Computer Vi-
sion (ICCV) (2017)

49. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: Stack-
gan++: Realistic image synthesis with stacked generative adversarial networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2019)


	Text2LIVE: Text-Driven Layered Image and Video Editing

