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Fig. 1: A data-centric odyssey of human generation. With good “data en-
gineering” practices, the StyleGAN-Human model could generate high-resolution
photo-realistic human images as presented. Zoom in for the best view.

Abstract. Unconditional human image generation is an important task
in vision and graphics, enabling various applications in the creative in-
dustry. Existing studies in this field mainly focus on “network engineer-
ing” such as designing new components and objective functions. This
work takes a data-centric perspective and investigates multiple critical
aspects in “data engineering”, which we believe would complement the
current practice. To facilitate a comprehensive study, we collect and
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annotate a large-scale human image dataset with over 230K samples
capturing diverse poses and textures. Equipped with this large dataset,
we rigorously investigate three essential factors in data engineering for
StyleGAN-based human generation, namely data size, data distribution,
and data alignment. Extensive experiments reveal several valuable obser-
vations w.r.t. these aspects: 1) Large-scale data, more than 40K images,
are needed to train a high-fidelity unconditional human generation model
with a vanilla StyleGAN. 2) A balanced training set helps improve the
generation quality with rare face poses compared to the long-tailed coun-
terpart, whereas simply balancing the clothing texture distribution does
not effectively bring an improvement. 3) Human GAN models that em-
ploy body centers for alignment outperform models trained using face
centers or pelvis points as alignment anchors. In addition, a model zoo
and human editing applications are demonstrated to facilitate future re-
search in the community. Code and models are publicly available 1.

Keywords: Human Image Generation, Data-Centric, StyleGAN

1 Introduction

Generating photo-realistic images of clothed humans unconditionally can pro-
vide great support for downstream tasks such as human motion transfer [8,44],
digital human animation [42], fashion recommendation [32,40], and virtual try-
on [15,56,85]. Traditional methods create dressed humans with classical graphics
modeling and rendering processes [17,31,50,61,63,70,78,93]. Although impressive
results have been achieved, these prior works are easy to suffer from the limita-
tion of robustness and generalizability in complex environments. Recent years,
Generative Adversarial Networks (GANs) have demonstrated remarkable abili-
ties in real-world scenarios, generating diverse and realistic images by learning
from large-quantity and high-quality datasets. [24,33,36,66].

Among the GAN family, StyleGAN2 [37] stands out in generating faces and
simple objects with unprecedented image quality. A major driver behind recent
advancements [2,34,37,80,90] on such StyleGAN architectures is the prosperous
discovery of “network engineering” like designing new components [34,2,90] and
loss functions [37,80]. While these approaches show compelling results in gen-
erating diverse objects (e.g., faces of humans and animals), applying them to
the photo-realistic generation of articulated humans in natural clothing is still a
challenging and open problem.

In this work, we focus on the task of Unconditional Human Generation, with
a specific aim to train a good StyleGAN-based model for articulated humans
from a data-centric perspective. First, to support the data-centric investiga-
tion, collecting a large-scale, high-quality, and diverse dataset of human bodies
in clothing is necessary. We propose the Stylish-Humans-HQ Dataset (SHHQ),
which contains 230K clean full-body images with a resolution of 1024 × 512 at

1 Project page: https://stylegan-human.github.io/
Code and models: https://github.com/stylegan-human/StyleGAN-Human

https://stylegan-human.github.io/
https://github.com/stylegan-human/StyleGAN-Human


StyleGAN-Human 3

least and up to 2240×1920. The SHHQ dataset lays the foundation for extensive
experiments on unconditional human generation. Second, based on the proposed
SHHQ dataset, we investigate three fundamental and critical questions that were
not thoroughly discussed in prior works and attempt to provide useful insights
for future research on unconditional human generation.

To extract the questions that are indeed important for the community of Un-
conditional Human Generation, we make an extensive survey on recent literature
in the field of general unconditional generation [20,5,24,51,33,6,36]. Based on the
survey, three questions that are investigated actively can be concluded as below.
Question-1: What is the relationship between the data size and the generation
quality? Several previous works [6,34,81,98,27] pointed out that the quantity of
training data is the primary factor to determine the strategy for improving image
quality in face and other object generation tasks. In this study, we want to exam-
ine the minimum quantity of training data required to generate human images of
high quality without any extensive “network engineering” effort. Question-2:
What is the relationship between the data distribution and the generation qual-
ity? This question has received extensive attention [14,22,52,71,92] and leads to
a research topic dealing with data imbalance [46]. In this study, we aim to exploit
data imbalance problem in the human generation task. Question-3: What is
the relationship between the scheme of data alignment and the generation qual-
ity? Different alignment schemes applied to uncurated faces [36,38] and non-rigid
objects [6,13,72] show success in enhancing training performance. In this study,
we seek a better data alignment strategy for human generation.

Based on the proposed SHHQ dataset and observations from our experiments,
we establish a Model Zoo with three widely-adopted unconditional generation
models, i.e., StyleGAN [36], StyleGAN2 [37], and alias-free StyleGAN [35], in
both resolution of 1024× 512 and 512× 256. Although hundreds of StyleGAN-
based studies exist for face generation/editing tasks, a high-quality and public
model zoo for human generation/editing with StyleGAN family is still missing.
We believe the provided model zoo has great potentials in many human-centric
tasks, e.g., human editing, neural rendering, and virtual try-on.

We further construct a human editing benchmark by adapting previous edit-
ing methods based on facial models to human body models (i.e., PTI [68] for
image inversion, InterFaceGAN [75], StyleSpace [90], and SeFa [76] for image
manipulation). The impressive results in editing human clothes and attributes
demonstrate the potential of the given model zoo in downstream tasks. In ad-
dition, a concurrent work, InsetGAN [16], is evaluated with our baseline model,
further showing the potential usage of our pre-trained generative models.

Here is the summary of the main contributions of this paper: 1) We collect
a large-scale, high-quality, and diverse dataset, Stylish-Humans-HQ (SHHQ),
containing 230K human full-body images for unconditional human generation
task. 2) We investigate three crucial questions that have aroused broad interest
in the community and discuss our observation through comprehensive analysis.
3) We build a model zoo for unconditional human generation to facilitate future
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research. An editing benchmark is also established to demonstrate the potential
of the proposed model zoo.

2 Related Work

2.1 Dataset For Human Generation

Large-scale and high-quality clothed human-centric training datasets are the crit-
ical fuel for the training of StyleGAN models. A qualified dataset should conform
to the following aspects: 1) Image quality : high-resolution images with rich tex-
tures offer more raw detailed semantic information to the model. 2) Data volume:
the size of dataset should be sufficient to avoid generative overfitting [4,97]. 3)
Data coverage: the dataset should cover multiple attribute dimensions to guar-
antee diversity of the model, for instance, gender, clothing type, clothing texture,
and human pose. 4) Data content : since this report only focuses on the gener-
ation of single full-body human, occlusion caused by other people or objects is
not considered here, whereas self-occlusion is taken into account. That is, each
image should contain only one complete human body.

Publicly available datasets built particularly for full human-body generation
are rare, but there are several practices [48,49,77,30] cooperating with Deep-
Fashion [45] and Market1501 [99]. DeepFashion dataset [45,30] with well-labeled
attributes and diverse garment categories is satisfactory for image classification
and attribute prediction, but not adequate for unconditional human generation
since it emphasizes fashion items rather than human bodies. Thus the number
of close-up shots of clothing is much higher than that of full-body images. Mar-
ket1501 dataset [99] fails for human generation tasks due to its low resolution
(128×64). There are some human-related datasets in other domains rather than
GAN-based applications: datasets related to human parsing [19,43] are limited
by scalability and diversity; common datasets for virtual try-on tasks either con-
tain only the upper body [25] or are not public [96]. A detailed comparison of the
above datasets in terms of data scale, average resolution, attributes labeling, and
proportion of full-body images across the whole dataset is listed in Table 1. In
general, there is no high-quality and large-scale full human-body dataset publicly
available for the generative purpose.

2.2 StyleGAN

In recent years, the research focus has gradually shifted to generating high-
fidelity and high-resolution images through Generative Adversarial Networks [6,33].
The StyleGAN generator [36] was introduced and became the state-of-the-art
network of unconditional image generation. Compared to previous GAN-based
architectures [5,24,55], SytleGAN injects a separate attribute factor (i.e., style)
into the generator to influence the appearance of generated images. Then Style-
GAN2 [37] redesigns the normalization, multi-scale scheme, and regularization
method to rectify the artifacts in StyleGAN images. The latest update to Style-
GAN [35] reveals the non-ideal case of detailed textures sticking to fixed pixel
locations and proposes an alias-free network.
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Table 1: Comparison of SHHQ with other publicly available datasets.

Dataset Total Image #
Mean

Resolution
Labeled

Attributes
Full-Body
Ratio

ATR [43] 7, 700 400× 600 ✓ 76%
Mark1et1501 [99] 32, 668 128× 64 ✓ 100%
DeepFashion [45] 146, 680 1101× 750 ✓ 6.8%
LIP [19] 50, 462 196× 345 ✓ 37%
VITON [25] 16, 253 256× 192 ✗ 0%

SHHQ 231,176 1024× 512 ✓ 100%

2.3 Image Editing

Benefiting from StyleGAN, one of the significant downstream applications is im-
age editing [60,75,90,1,95]. A standard image editing pipeline usually involves
inversion from a real image to the latent space and manipulating the embed-
ded latent code. Existing works for image inversion can be categorized into
optimization-based [2,79], encoder-based [82,86], and hybrid methods [68], which
exploit encoders to embed images into latent space and then refine with optimiza-
tion. As for image manipulation, studies explore the capability of attribute disen-
tanglement in the latent space in supervised [75,29,90] or unsupervised [26,76,83]
manners. In specific, Jiang et al. [29] proposes to use fine-grained annotations
to find non-linear manipulation directions in the latent space, while SeFa [76]
searchs for semantic directions without supervision. StyleSpace [90] defines the
style space S and proves that it is more disentangled than W and W+ space.

3 Stylish-Humans-HQ Dataset

To investigate the key factors in unconditional human generation task from
a data-centric perspective, we propose a large-scale, high-quality, and diverse
dataset, Stylish-Humans-HQ (SHHQ). In this section, we first present the data
collection and preprocessing (Section 3.1), in which we construct the SHHQ
dataset. Then, we analyze the data statistic (Section 3.2) to demonstrate the
superiority of SHHQ compared to other datasets from a statistical perspective.

3.1 Data Collection and Preprocessing

Over 500K raw data were collected legally in two ways: 1) From the Internet. We
crawled images, with CC-BY-2.0 licenses available, mainly from Flickr, Unsplash,
Pixabay and Pexels, by searching keywords related to humans. 2) From data
providers. We purchased images from individual photographers, model agencies,
and other providers’ databases. Images were reviewed by our institute’s legal
team before the purchase, to ensure the permission of usage in research. We pre-
process the data with six factors taken into consideration (e.g., resolution [45],
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(a) (b) (c) (d) (e)

Fig. 2: Data preprocessing. The following types of images will be removed
during our data preprocessing pipeline. (a) Low resolution. (b) Not placed in
the center. (c) Missing body parts. (d) Extreme posture. (e) Multi-person.

body position [36], body-part occlusion, human pose [45,36], multi-person, and
background), which are critical for the quality of a human dataset. After the
data preprocessing, we obtain a clean dataset of 231, 176 images with high qual-
ity; see Figure 5 (a) for examples. We filter the images according to following
aspects. 1) Resolution: We discard images lower than 1024 × 512 resolution
(Figure 2 (a)). 2) Body Position: The position of the body varies widely in
different images, i.e., Figure 2 (b). We design a procedure in which each person
is appropriately cropped based on human segmentation [12], padded and resized
to the same scale, and then placed in the image such that the body center is
aligned. The body center is defined as the average coordinate of the entire body
using segmentation. 3) Body-Part Occlusion: This work aims at generating
full-body human images, images with any missing body parts are removed (e.g.,
the half-body portrait shown in Figure 2 (c)). We remove images with extreme
poses (e.g., lying postures, handstand in Figure 2 (d)) to ensure learnability
of the data distribution. We exploit human pose estimation [7] to detect those
extreme poses. 4) Multi-Person Images: Some images contain multiple per-
sons, such as Figure 2 (e). The goal of this work is to generate single full-body
person, so we keep unoccluded single-person full-body images, and remove those
with occluded people. 5) Background: Some images contain complicated back-
grounds, requiring additional representation ability. To focus on the generation
of the human body itself and eliminate the influence of various backgrounds, we
use a segmentation mask [12] to modify the image background to pure white.
The edges of the mask are then smoothed by Gaussian blur.

3.2 Data Statistics

Table 1 presents the comparison between SHHQ and other public datasets from
the following three aspects: 1) Dataset Scale: As shown in the table, our pro-
posed SHHQ is currently the largest dataset in scale compared to others. Among
them, the data volume of SHHQ is 1.6 times that of DeepFashion [45] dataset
and is much larger than that of others. Resolution. Images from ATR [43],
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Fig. 3: Attribute distribution. Comparison of different attributes between
the pruned DeepFashion and SHHQ dataset: Texture/length of the upper/lower
clothing, gender, and ethnicity. (More attributes comparison in supplementary.)

Market1501 [99], LIP [19], and VITON [25] are lower in resolution, which is in-
sufficient for our generation task, while the proposed SHHQ and DeepFashion
provide high-definition images up to 2240×1920. 2) Labels: All datasets beside
VITON provide various labeled attributes. Specifically, DeepFashion [45,30] and
SHHQ label the clothing types and textures, which is useful for human genera-
tion/editing tasks. 3) Full-Body Ratio: This number denotes the proportion
of full-body images in the dataset. Although DeepFashion [45] offers over 146K
images with decent resolution, only 6.8% of them are full-body images, while
SHHQ achieves a 100% full-body ratio. The visual comparison among these
datasets and the proposed SHHQ dataset is shown in supplementary.

In sum, SHHQ covers the largest number of human images with high-resolution,
labeled clothing attributes, and 100% full-body ratio. It again confirms that
SHHQ is more suitable for full-body human generation than other public datasets.

Of all the datasets compared above, DeepFashion [45] is the most relevant
to our human generation task. In Figure 3, we further present the comparison
of different attributes between filtered DeepFashion [45] (full-body only) and
SHHQ in a more detailed view. The bar chart depicts the distributions along
six dimensions: upper cloth texture, lower cloth texture, upper cloth length,
lower cloth length, gender, and ethnicity. In particular, the number of females is
approximately 4 times the number of males in filtered DeepFashion [45] , while
our dataset features a more balanced female-to-male ratio of 1.49. With the help
of DeepFace API [74], it is shown that SHHQ is more diverse in terms of ethnicity.
Advantages are also shown in the other five attributes. In terms of garment-
related attributes, images with specific labels in filtered DeepFashion [45] are
too scarce to be used as a training set. The Stylish-Humans-HQ dataset boosts
the number of each category by an average of 24.4 times.
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4 Systematic Investigation

We conduct extensive experiments to study three factors concerning the quality
of generated images: 1) data size (Section 4.1), 2) data distribution (Section 4.2),
and 3) data alignment (Section 4.3). Our investigations are all built on the Style-
GAN2 architecture and codebase. More implementation details and experimental
results can be found in supplementary.

4.1 Data Size

Motivation. Data size is an essential factor that determines the quality of
generated images. Previous literature takes different strategies to improve the
generation performance according to different dataset sizes: regularization tech-
niques [6] are employed to train a large dataset, while augmentation [34,81,98]
and conditional feature transferring [52,88] are proposed to tackle the limited
data. Here, we design sets of experiments to examine the relationship between
training data size and the image quality of generated humans.
Experimental Settings. To determine the relationship between data size and
image quality for the unconditional human GAN, we construct 6 sub-datasets
and denoted these subsets as S0 (10K), S1 (20K), S2 (40K), S3 (80K), S4
(160K) and S5 (230K). Here, S0 is the pruned DeepFashion dataset. We per-
form the training on two resolution settings for each set: 1024×512 and 512×256.
Considering the case of limited data, we also conduct additional training exper-
iments with adaptive discriminator augmentation (ADA) [34] for small datasets
S0, S1, and S2. Fréchet Inception Distance (FID) and Inception Score (IS) are
the indicators for evaluating the model performance.
Results. As shown in Figure 4 (a), the FID scores (solid lines) decrease as the
size of the training dataset increases for both resolution settings. The declin-
ing trend is gradually flattening and tends to converge. S0 generates the least
satisfactory results, with FID of 7.80 and 7.23 for low- and high-resolution, re-
spectively, while S1 achieves corresponding improvements of 42% and 40% on
FID with only an additional 10K training images. When the training size reaches
40K for both resolutions, the FID curves start to converge to a certain extent.
The dotted lines indicate the results of ADA experiments with subsets S0 - S2.
The employed data augmentation strategy helps to reduce FID when training
data is less than 40K. More quantitative results (FID/IS) are in supplementary.
Discussion. The experiments confirm that ADA can improve the generation
quality for datasets smaller than 40K images, in terms of FID and IS. However,
ADA still cannot fully compensate for the impact of insufficient data. Besides,
when the amount of data is less than 40K, the relationship between image quality
and data size is close to linear. As the amount of data increases to 40K and more,
the improvement in the image quality slows down and is less significant.

4.2 Data Distribution

Motivation. The nature of GAN makes the model inherits the distribution of
the training dataset and introduces generation bias due to dataset imbalance [46].



StyleGAN-Human 9

0

5

10

15

20

25

30

35

40

45

0

5000

10000

15000

20000

25000

30000

35000

4.67 10.31 20.61 30.92 46.38 66.99
(b) Face Experiment

Long-tail Uniform
Long-tail_FID Uniform_FID

0

1

2

3

4

5

6

7

8

9

0

50000

100000

150000

200000

250000

S0 S1 S2 S3 S4 S5

Tr
ai

ni
ng

 Im
ag

e 
#

(a) Data Volume Experiment

Data Volume
FID_512x256
FID_1024x512
FID_512x256_ADA
FID_1024x512_ADA

0

20

40

60

80

100

120

0

5000

10000

15000

20000

25000

30000

35000

Plain Patterned Striped Floral Plaid

FID

(c) Texture Experiment

Long-tail Uniform
Long-tail_FID Uniform_FID

Fig. 4: Experiment results. (a) FIDs for experiments S0 - S5 in 1024×512 and
512 × 256 resolutions. Dotted lines shows the FIDs of the models trained with
ADA. (b) Bin-wise FIDs of long-tailed and uniform distribution in terms of facial
yaw angle along with the number of training images. (c) Bin-wise texture FIDs
of long-tailed/uniform distribution along with the number of training images.

This bias severely affects the performance of GAN models. To address this is-
sue, studies for unfairness mitigation [14,22,52,71,92] have attracted substantial
research interest. In this work, we explore the question of data distribution in
human generation and conduct experiments to verify whether a uniform data
distribution can improve the performance of a human generation model.

Experimental Settings. This study decomposes the distribution of the hu-
man body into Face Orientation and Clothing Texture, since face fidelity has a
significant impact on visual perception and clothing occupies a large portion of
the full-body image. The general features of human faces are relatively symmet-
rical; thus, we fold yaw distribution vertically along 0◦ and get the long-tailed
distribution. For the face and clothing experiments, we collect an equal number
of long-tailed and uniformly distributed datasets from SHHQ for face rotation
angle and upper-body clothing texture, respectively.

Results. To evaluate the image quality in terms of different distributions, the
cropped faces and clothing regions are used to calculate FID, and FID is calcu-
lated separately for each bin. Result can be found in Figure 4 (b) and (c).

1) Face Orientation: As for the long-tailed experiment (blue curve in Figure 4
(b)), the FID progressively grows as the face yaw angle increases and remains
high when the facial rotation angle is too large. By contrast, the upward trend
for the face FID in the uniform experiment (red) is more gradual. In addition,
the amount of the training data of the first two bins in the uniform set is greatly
reduced compared to the long-tail experiment, but the damage to FID is slight.

2) Clothing Texture: From Figure 4 (c), except for the first bin (“plain”
pattern), the FID curve climbs steadily as the amount of training data for the
long-tailed experiment decreases, and the FID curve for the uniform experiment
also shows a near-uniform pattern. In particular, FID of the last bin for the
uniform experiment is lower than that in the long-tailed setting. We infer that
the training samples for “plaid” clothing texture in the long-tailed experiment
are too few to be learned by the model. As for the “plain” bin results, the long-
tailed distribution has a lower FID score in this bin. The reason may lie in that
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(b) Face-Aligned (c) Pelvis-Aligned (d) Mid-Body-Aligned(a) Preprocessed Training Data

Fig. 5: Example of preprocessed data and different alignment schemes.
Part (a) shows processed training data with the consideration of resolution, body
position, body-part occlusion, human pose, multi-person and background. (b) -
(d) display random samples with three different alignment strategies.

the number of plain textures in the long-tailed distribution is considerably higher
than that in the uniform distribution. Also, it can be observed that the training
patches in this bin are mainly textureless color blocks where such patterns may
be easier to capture by models.
Discussion. Based on the above analysis, we conclude that the uniform distribu-
tion of face rotation angles can effectively reduce the FID of rare training faces
while maintaining acceptable image quality for the dominant faces. However,
simply balancing the distribution of texture patterns does not always reduce
the corresponding FID effectively. This phenomenon raises an interesting ques-
tion that can be further explored: is the relation between image quality and
data distribution also entangled with other factors, e.g., image pattern and data
size? Additionally, due to the nature of GAN-based structures, a GAN model
memorizes the entire dataset, and usually, the discriminator tends to overfit
those poorly sampled images at the tail of the distribution. Consequently, the
long-tailed situation accumulated as “tail” images is barely generated. From
this perspective, it also can be seen that the uniform distribution preserves the
diversity of faces/textures and partially alleviates this problem.

4.3 Data Alignment

Motivation. Recently, researchers have drawn attention to spatial bias in gen-
eration tasks. Several works [36,38] align face images with keypoints for face
generation, and other studies propose different alignment schemes to preprocess
non-rigid objects [47,6,13,72,28]. In this paper, we study the relationship between
the spatial deviation of the entire human and the generated image quality.
Experimental Settings. We randomly sample a set of 50K images from the
SHHQ dataset and align every image separately using three different alignment
strategies: aligning the image based on the face center, pelvis, and the midpoint
of the whole body, as shown in Figure 5.

Following are the reasons for selecting these three positions as alignment
centers. 1) For the face center, we hypothesize that faces contain rich semantic
information that is valuable for learning and may account for a heavy proportion
in human generation. 2) For the pelvis, studies related to human pose estima-
tion [53,62,84,57] conventionally predict the body joint coordinates relative to
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the pelvis. Thus we employ the pelvis as the alignment anchor. 3) For the body’s
midpoint, the leg-to-body ratio (the proportion of upper and lower body length)
may vary among different people; therefore, we try to find the mean coordinates
of the full body with the help of the segmentation mask.
Results. Human images are complex and easily affected by various extrinsic
factors such as body poses and camera viewpoints. The FID scores for the face-
aligned, pelvis-aligned, and mid-body-aligned experiments are 3.5, 2.8, and 2.4,
respectively. Figure 5 further interprets this perspective as the human bodies in
(b) and (c) are tilted, and the overall image quality is degraded. The example
shown in Figure 5 (c) also presents the inconsistent human positions caused by
different leg-to-body ratios.
Discussion. Both FID scores and visualizations suggest that the human genera-
tive models gain more stable spatial semantic information through the mid-body
alignment method than face- and pelvis-centered methods. We believe this ob-
servation could benefit later studies on human generation.

4.4 Experimental Insights

Now the questions can be answered based on the above investigations:
For Question-1 (Data Size): A large dataset with more than 40K images helps
to train a high-fidelity unconditional human generation model, for both 512×256
and 1024× 512 resolution.
For Question-2 (Data Distribution): The uniform distribution of face rotation
angles helps reduce the FID of rare faces while maintaining a reasonable quality
of dominant faces. But simply balancing the clothing texture distribution does
not effectively improve the generation quality.
For Question-3 (Data Alignment): Aligning the human by the center of the full
body presents a quality improvement over aligning the human by face or pelvis
centers.

5 Model Zoo and Editing Benchmark

5.1 Model Zoo

In the field of face generation, a pre-trained StyleGAN [36] model has shown
remarkable potential and success in various downstream tasks, including edit-
ing [2,90], neural rendering [23], and super-resolution [11,54]. Nevertheless, a
publicly available pre-trained model is still lacking for the human generation
task. To fill this gap, we train our baseline model on SHHQ using the Style-
GAN2 [37] model, which provides the best FID of 1.57. As seen in Figures 1,
our model has the ability to generate full-body images with diverse poses and
clothing textures under satisfactory image quality. To adapt various applica-
tion scenarios, we build a model zoo consisting of trained models from different
StyleGAN architectures [36,37,35] in both resolution (1024×512 and 512×256).

Furthermore, the style mixing results of the baseline model show the inter-
pretability of the corresponding latent space. As seen in the Figure 6, source
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Fig. 6: Style-mixing results. The reference and source images are randomly
sampled from the provided baseline model. The rest of the images are generated
by style-mixing: borrowing low/mid/high layers in the reference images’ latent
codes and combining them with the rest layers of latent code in source images.

and reference images are sampled from the baseline model, and the rest images
are the style-mixing results. We see that copying low layers from reference im-
ages to source images brings changes in geometry features (pose) while other
features such as skin, garments, and identities in source images are preserved.
When replicating middle styles, the source person’s clothing type and identical
appearance are replaced by reference. Finally, we observe that fine styles from
high-resolution layers control the clothing color. These results suggest that the
provided model’s geometry and appearance information are well disentangled.

5.2 Editing Benchmark

StyleGAN has presented remarkable editing capabilities over faces. We extend it
to the full-scale human by using off-the-shelf inversion and editing methods, in
which we validate the potential of our proposed model zoo. We also re-implement
the concurrent human generation method, InsetGAN [16], to further demon-
strate another practical usage.
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InterfaceGAN StyleSpace SeFa InterFaceGAN StyleSpace SeFa
Source (Real) Change Lower LengthPTI Inversion Change Upper Length

Fig. 7: Image editing and InsetGAN results. Top row presents editing re-
sults on an real image (left) after PTI inversion. The length of sleeve and pants
are edited using different techniques. Bottom Row shows the InsetGAN results
of different human bodies generated from the given baseline model and two faces
generated from the FFHQ [37] model.

First, we leverage several SOTA StyleGAN-based facial editing techniques,
such as InterFaceGAN [75], StyleSpace [90], and SeFa [76], with multiple editing
directions: garment length for tops and bottoms, and global pose orientation. To
examine the ability of editing real images with the provided model, we trained
the e4e encoder[82] on SHHQ to obtain the inverted latent code as initial pivot.
PTI [68] is then used to fine-tune the generator for each specific image.

As illustrated in Figure 7, PTI presents the ability to invert real full-body
human images. For attributes manipulation, StyleSpace [90] expresses better
disentanglement compared to InterFaceGAN [75] and SeFa [76], as only the
attribute-targeted region has been changed. However, as for the regions to be
edited, the results of InterFaceGAN [75] are more natural and photo-realistic. It
turns out that the latent space of the human body is more complicated than other
domains such as faces, objects, and scenes, and more attention should be paid to
disentangle human attributes. More editing results are shown in supplementary.

We re-implement InsetGAN [16] by iteratively optimizing the latent codes
for random faces and bodies generated by the FFHQ [37] and our model, respec-
tively. In the bottom row of Figure 7, we show the fused full-body images with
different male and female faces. The optimization procedure blends diverse faces
and bodies in a graceful manner. Both the adopted editing methods and the
multi-GAN optimization method demonstrate the effectiveness and convenience
of our provided model zoo and verify its potential in human-centric tasks.
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6 Future Work

In this study, we take a preliminary step towards the exploration of the hu-
man generation/editing tasks. We believe many future works can be further
explored based on the SHHQ dataset and the provided model zoo. In the fol-
lowing, we discuss three interesting directions, i.e., Human Generation/Editing,
Neural Rendering, and Multi-modal Generation.
Human Generation / Editing. Studies in human generation [16,96], human
editing [3,21,69], virtual try-on [41,15,56,85], and motion transfer [8,44] heavily
rely on large datasets to train or use existing pre-trained models as the first step
of transfer learning. Furthermore, editing benchmarks show that disentangled
editing of the human body remains challenging for existing methods [75,90]. In
this context, the released model zoo could expedite such research progress. Ad-
ditionally, we further analyze failure cases generated by the provided model and
discuss corresponding potential efforts that could be made to human generation
tasks in supplementary.
Neural Rendering. Another future research direction is to improve 3D con-
sistency and mitigate artifacts in full-body human generation through neural
rendering [73,58,9,10,23,59]. Similar to work such as EG3D [9], StyleNeRF [23],
and StyleSDF [59], we encourage researchers to use our human models to facili-
tate human generation with multi-view consistency.
Multi-modal Generation. Cross-modal representation is an emerging research
trend, such as CLIP [65] and ImageBERT [64]. Hundreds of studies are made on
text-driven image generation and manipulation [29,30,94,67,64,60,87,91,39], e.g.,
DALLE [67] and AttnGAN [94]. In the meantime, several studies show interest in
probing the transfer learning benefits of large-scale pre-trained models [65,89,18].
Most of these works focus on faces and objects, whereas research fields related
to full-scale humans could be explored more, e.g., text-driven human attributes
manipulation, with the help of the provided full-body human models.

7 Conclusion

This work mainly probes how to train unconditional human-based GAN models
to generate photo-realistic images from a data-centric perspective. By leverag-
ing the 230K SHHQ dataset, we analyze three fundamental yet critical issues
that the community cares most about: data size, data distribution, and data
alignment. While experimenting with StyleGAN and large-scale data, we obtain
several empirical insights. Apart from these, we create a model zoo, consisting of
six human-GAN models, and the effectiveness of the model zoo is demonstrated
by employing several state-of-the-art face editing methods.
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