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In the supplementary, we provide the following materials:

– Network architecture of ColorFormer.
– Detail and more analysis of Color Memory.
– More visual results on the three benchmarks.
– Discussion about diverse colorization.

1 Network Architecture

We list the detailed architecture of our ColorFormer in Table 1, where an in-
put image size of 256 × 256 is assumed. For Stage1 to Stage4, “Concat n × n”
indicates a concatenation of n × n neighboring features in a patch. This op-
eration results in a downsampling of the feature map by a rate of n. “96-d”
denotes a linear layer with an output dimension of 96. “win. sz. 7 × 7” indicates
a multi-head self-attention module with window size of 7 × 7. “[ ]×2” means a
GLH-Transformer block consisting of a GL-MSA and a SW-MSA. For Stage5 to
Stage7, we merge features from corresponding encoder stage and upscale feature
map with PixelShuffle operations. Stage8 is our proposed Color Memory module,
which stores color priors to enhance features. Stage9 is used to refine features
and generate ab maps.

2 Detail and Analysis of CM

Implementation Detail of Memory Build. The detailed building process
is describled in Algorithm 1.

Ablation study of CM at different positions. We conduct ablation study
on inserting CM after each decoder stage. As shown in Table 2, inserting CM at
the last stage achieves better performance than at the early stages.

⋆ Equal contribution.
† Corresponding authors.
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Output Size ColorFormer

Stage1 64 × 64 × 96
Concat 4x4, 96-d, LN

[ Win.SZ. 7×7
dim 96,head 3

]× 2

Stage2 32 × 32 × 192
Concat 2x2, 192-d, LN

[ Win.SZ. 7×7
dim 192,head 6

]× 2

Stage3 16 × 16 × 384
Concat 2x2, 384-d, LN

[ Win.SZ. 7×7
dim 384,head 12

]× 6

Stage4 8 × 8 × 768
Concat 2x2, 768-d, LN

[ Win.SZ. 7×7
dim 768,head 24

]× 2

Stage5 16 ×16 ×512
PixelShuffle, scale 2

Concat feat. from Stage3

Stage6 32 ×32 ×512
PixelShuffle, scale 2

Concat feat. from Stage2

Stage7 64 ×64 ×256
PixelShuffle, scale 2

Concat feat. from Stage1

Stage8 64 ×64 ×256 Color Memory, group 4

Stage9 256 × 256 × 2

PixelShuffle, scale 4
Concat input

Residual Conv. KS. 3 × 3
Output Conv. KS. 3 × 3

Table 1: Details of ColorFormer architecture.

Position H
16

× W
16

H
8
× W

8
H
4
× W

4

FID↓ 1.97 2.04 1.71
CF↑ 37.66 37.75 39.76

Table 2: Ablation study of CM at different positions.

Qualitative comparison of CM module with different numbers of groups
We provide the qualitative comparison of CM with different numbers of groups
in Figure 1.

Analysis of Multiple Color Priors. To inspect the effect of different groups of
color priors, we adjust the weights of the fusion process using only one group. To
further analyse the fusion weights, we display the results and the corresponding
weights together. As shown in Figure 2, the multiple groups of color priors help
produce diverse colorful images. Furthermore, the corresponding weights reflect
the relationship between the single-group results and the fused-groups results.
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Algorithm 1 Process of Memory Build

Require: Colorful images set X , pre-trained model M(·), output feature map size p
Ensure: keys: S ∈ Rm×k, n groups of values: C1, C2, . . ., Cn ∈ Rm×2

1: Initialize feature list S = [], color list C = []
2: for all I such that I ∈ X do
3: s = M(I), where s ∈ Rp×p×c

4: Add si,j ∈ Rc to S, where 1 ≤ i, j ≤ p
5: Resize I to p× p and convert it into CIELAB color space
6: Extract the ab values, denoted as c ∈ Rp×p×2

7: Add ci,j to C, where 1 ≤ i, j ≤ p
8: end for
9: Perform PCA on S to reduce the dimension from c to k
10: Perform K-means clustering on S to get centers s1, s2, . . . , sm and label Y
11: S = [s1, s2, . . . , sm] ∈ Rm×k

12: Divide C into C1, C2, . . . , Cm based on Y
13: for all Ci do
14: Clustering Ci and sort the centers ci1, ci2, . . . , cin by K-means
15: end for
16: Cj = [c1j , c2j , . . . , cmj ] ∈ Rm×2, j ∈ 1, 2, . . . , n
17: return S, [C1, C2, . . ., Cn]

Input CM1 CM4 Input CM1 CM4

Fig. 1: Qualitative comparison of CM with one/four groups.

3 Visual Results

Colorfulness Outlier. We notice that ColorFormer does not achieve high Col-
orfulness (CF) [3] score on CelebA-HQ [4] datasets compared to ChromaGAN [6]
and ColTran [5]. The reason is that CF is not the higher the better for human
face colorization, therefore the scores that are too higher than Ground Truths
should be considered as outliers. We display visual results on CelebA-HQ in
Figure 3, as well as the CF scores of each image. Obviously, the results with
extremely high CF show poor visual quality and our results look more better.

More Results. Here, we display more visual results of ImageNet validation [2]
in Figure 4, and COCO-Stuff [1] in Figure 5. Since Wu et al. [7] didn’t release
the results of COCO-Stuff, we do not include their results.
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𝐶! Fusion𝐶" 𝐶# 𝐶$

0.25 0.20 0.07 0.48

0.37                     0.25                        0.08 0.28

0.32                   0.49                        0.08 0.10

0.18 0.03 0.42 0.36

Input

Fig. 2: Images with different single group of color priors. The leftmost
image is the gray input and the rightmost image is the results of our model. The
numbers below the images indicate fusion weights out from the encoder.

4 Discussion

Diverse colorization. Our method can be modified to sample the proportion
of different color prior groups (i.e., λ1, . . . , λn in Sec. 3.3), which is now deter-
mined by the encoder output weights. To demonstrate this potential, we modify
the inference model to use random sampling instead of the encoder output to
generate images, as shown in Figure 6.
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Input Zhang et al. InstColor ColTran DeOldify ChromaGAN Ours GT

0.0 46.4 28.8 43.6 38.0 85.8 51.1 42.9

0.0 65.3 33.3 31.7 40.9 102.3 50.2 34.7

0.0 36.6 27.5 90.7 48.2 37.9 57.0 48.0

0.0 65.1 34.2 119.0 38.2 64.0 71.5 65.1

Fig. 3: More visual comparisons with previous automatic colorization
methods on CelebA-HQ.

Input Zhang et al. InstColor ColTran DeOldify Wu et al. Ours GT

Fig. 4: More visual comparisons with previous automatic colorization
methods on ImageNet.
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Input Zhang et al. InstColor ColTran DeOldify ChromaGAN Ours GT

Fig. 5: More visual comparisons with previous automatic colorization
methods on COCO-Stuff.

Input Result 1 Result 2 Result 3

Fig. 6: Diverse colorization results for a single input.
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