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Abstract. Generative adversarial networks (GANs) have proven suc-
cessful in image generation tasks. However, GAN training is inherently
unstable. Although many works try to stabilize it by manually modi-
fying GAN architecture, it requires much expertise. Neural architecture
search (NAS) has become an attractive solution to search GANs auto-
matically. The early NAS-GANs search only generators to reduce search
complexity but lead to a sub-optimal GAN. Some recent works try to
search both generator (G) and discriminator (D), but they suffer from
the instability of GAN training. To alleviate the instability, we propose
an efficient two-stage evolutionary algorithm-based NAS framework to
search GANs, namely EAGAN. We decouple the search of G and D
into two stages, where stage-1 searches G with a fixed D and adopts
the many-to-one training strategy, and stage-2 searches D with the opti-
mal G found in stage-1 and adopts the one-to-one training and weight-
resetting strategies to enhance the stability of GAN training. Both stages
use the non-dominated sorting method to produce Pareto-front architec-
tures under multiple objectives (e.g., model size, Inception Score (IS),
and Fréchet Inception Distance (FID)). EAGAN is applied to the un-
conditional image generation task and can efficiently finish the search
on the CIFAR-10 dataset in 1.2 GPU days. Our searched GANs achieve
competitive results (IS=8.81±0.10, FID=9.91) on the CIFAR-10 dataset
and surpass prior NAS-GANs on the STL-10 dataset (IS=10.44±0.087,
FID=22.18). Source code: https://github.com/marsggbo/EAGAN.

1 Introduction

Generative adversarial networks (GANs) [11] have obtained remarkable achieve-
ments on image generation tasks. A GAN consists of two networks (i.e., generator
(G) and discriminator (D)) that contest with each other in a zero-sum game. G
learns to generate semantic images from real data distributions, while D distin-
guishes real data from generated data. Since G and D have conflicting optimiza-
tion objectives, GAN training is unstable and prone to collapse. Therefore, many
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efforts have been made to manually enhance architectures of GANs [29,3], but
this requires much professional knowledge. Recently, neural architecture search
(NAS) has proven to be effective in automatically finding superior models in
various tasks [8,14], including GANs. The early NAS-GAN works [10,35] search
only generator with a fixed discriminator to reduce search difficulty, but this
may lead to a sub-optimal GAN. Although some recent works have searched
both G and D, they suffer from the instability of GAN training. For example,
AdversarialNAS [9], which is the first gradient-based NAS-GAN, proposes an ad-
versarial loss function to search G and D simultaneously, but the architectures
of G and D are deeply coupled, which increases search complexity and the insta-
bility of GAN training. A subsequent gradient-based NAS-GAN work [32] also
demonstrates that simultaneously searching both G and D hampers the search
of optimal GANs. DGGAN [25] alleviates instability by progressively growing G
and D but takes 580 GPU days to search on the CIFAR-10 dataset [20].

In this paper, we propose an efficient two-stage Evolutionary Architecture
search framework for Generative Adversarial Networks (EAGAN) on the un-
conditional image generation task. First, to alleviate the instability of GAN
training during the search, we decouple the search of G and D into two stages.
In stage-1, we fix the architecture of discriminator and search only generators.
All generators are paired with the same discriminator, i.e., the candidate gener-
ators and the fixed discriminator are in a many-to-one relationship. In stage-2,
the best generator of stage-1 is used to provide supervision signals for searching
discriminators. Specifically, in stage-2, we create multiple copies of the best gen-
erator architecture of stage-1, and each generator copy is paired with a different
discriminator and trained independently. Thus, the generators and candidate
discriminators of stage-2 are in a one-to-one relationship. Because we indirectly
evaluate the discriminators of stage-2 via IS (Inception Score [31]) and FID
(Fréchet Inception Distance [15]) based on generators, the one-to-one strategy
has a potential problem, i.e., if some generators have mode collapse at some time,
then subsequently searched discriminators paired with these generators will be
evaluated unfairly. To solve this problem, we propose the weight-resetting strat-
egy, where all generators inherit the weights of the best generator of the previous
search round before a new search round starts. The results in Sec. 5.3 show that
our simple yet effective weight-resetting strategy can stabilize GAN searching.
We summarize our contributions as follows.

1. We greatly reduce the instability of GAN training by decoupling the search
of generator and discriminator into two stages, where stage-1 and stage-2
adopt the many-to-one and one-to-one training strategy, respectively.

2. We propose the weight-resetting strategy, which is simple yet effective to
avoid mode collapse when searching discriminators in stage-2 and ensure
fair evaluations of different discriminators.

3. EAGAN is efficient and takes 1.2 GPU days on the CIFAR-10 dataset to
finish searching GANs. EAGAN achieves competitive results on the CIFAR-
10 dataset and outperforms the prior NAS-GANs on the STL-10 dataset [4].
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2 Related Work

2.1 Generative Adversarial Network (GAN)

Generative Adversarial Networks (GANs) are first proposed in [11] and have been
widely used in the various generation and synthesis tasks. A GAN comprises a
generator (G) that generates plausible new data and a discriminator (D) that
distinguishes the generator’s fake data from real data. Suppose D and G are
parameterized by θ and ϕ, respectively, their loss functions are defined as

LD(ϕ, θ) = −Ex∼pdata(x)[logDθ(x)]− Ez∼p(z)[log(1−Dθ(Gϕ(z)))] (1)

LG(ϕ, θ) = Ez∼p(z)[log(1−Dθ(Gϕ(z)))] (2)

where pdata is the real data distribution and pz is a prior distribution. In other
words, G and D play a min-max game with value function V , formulated below

min
G

max
D

V (G,D) =Ex∼pdata
[logD(x)] + Ez∼pz

[log(1−D(G(z)))] (3)

The mix-max optimization incurs that GAN training suffers from multiple in-
stability issues, such as mode collapse and gradient vanishing. To alleviate these
problems, many efforts have been made [2] from the perspective of loss func-
tions [1,36,16], normalization and constraint [12,26], conditional techniques [27,18],
and validation methods [31,15]. Besides, architecture enhancements have been
proven effective to improve GANs performance in many works [29,3,17].

2.2 Neural Architecture Search (NAS)

NAS aims at automatic architecture design and has achieved remarkable results
in various fields [8,14]. It can be formulated as a bilevel optimization problem as
below

α∗ = argminα Lval (α|w∗)
s.t. w∗ = argminw Ltrain (w|α) (4)

where Ltrain and Lval indicate the training and validation loss; w and α indicate
the weight and architecture of neural network. This process aims to select the
architecture α∗ performing best on the validation set, conditioned on the opti-
mal network weights w on the training set. There are mainly four approaches
in NAS: 1) Reinforcement learning (RL) [39,28] based methods train an RNN
controller to generate neural networks; 2) Gradient-based methods [24] apply
softmax function to relax the discrete search space, allowing differential opti-
mization of architectures; 3) Surrogate model-based optimization (SMBO) [23]
builds a surrogate model of the objective function to predict the searched model’s
performance, which can substantially improve search efficiency; 4) Evolutionary
algorithm (EA) based methods [30,38] maintain and evolve a large population
of neural architectures to produce the Pareto-front architectures.
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Method Type search D? Multi-objective? Evaluation Metric(s)

AGAN [35]
RL

× × IS
AutoGAN [10] × × IS
E2GAN [33] ×

√
IS+FID†

DEGAS [7]
Gradient

× × Loss
AdversarialNAS [9]

√
× Loss

AlphaGAN [32]
√

× Loss

EGAN [34]

EA

×
√

Loss
EAS-GAN [22] x x Loss
COEGAN [5]

√
× FID (G); Loss (D)

EAGAN
√ √

Pareto-front(IS,FID,#size)‡

Table 1. Comparison of our EAGAN and the existing NAS-GAN methods. The third
column indicates whether the method supports searching discriminators. † indicates a
linear combination of metrics. ‡ indicates the Pareto-front of multiple metrics.

2.3 NAS for GANs

Due to the great success of NAS in searching neural networks, many works have
also applied NAS to search GANs, summarized in Table. 1. AGAN [35] and Au-
toGAN [10] are among the first RL-based NAS methods to search GANs, but
they only use IS as the reward to guide the search. E2GAN [33] is rewarded by a
linear combination of IS and FID. However, to avoid the notorious instability of
GAN training, these early NAS-GAN methods only search generator (G) with a
fixed discriminator (D) architecture, resulting in a sub-optimal GAN. Adversar-
ialNAS [9] proposes to search G and D simultaneously in a differentiable way.
However, it results in highly coupled architectures of G and D. The ablation
study in [32] has demonstrated that simultaneously searching G and D would
potentially increase the negative impact of inferior discriminators and hinder
finding the optimal GANs. Liu et al. [25] propose to progressively grow the ar-
chitectures of G and D in an alternating fashion, but this is only a remedy to
alleviate the issue of architecture coupling and causes huge computational costs
(580 GPU days on the CIFAR-10 [20] dataset). COEGAN [5] is very relevant to
our work, which also uses an evolutionary algorithm to search G and D in two
separate groups of architectures (called populations), but the two populations’
architectures are coupled during the search. To reduce the search difficulty, CO-
EGAN only explores a simple search space and experiments on a small dataset
(MNIST [21]). The final results show that COEGAN fails to outperform the
previous human-designed GANs. In summary, since coupling G and D is not
conducive to searching for the optimal GAN, we decouple them into two stages.

3 Preliminary

3.1 Weight-sharing based Neural Architecture Search

The early NAS methods first retrain the searched models from scratch and then
evaluate their performance [39,30], which obtains accurate evaluation but con-
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sumes huge resources, e.g., [30] took 3,150 GPU days to search. To improve search
efficiency, the weight-sharing strategy [28] was proposed to allow all subnets to
share weights within a super network, so they can be evaluated without retrain-
ing by inheriting the weights from SuperNet. In our work, we also adopt the
weight-sharing method to search generators and discriminators from SuperNet-
G NG and SuperNet-D ND, respectively. To simplify the notations, we use N
to refer to both NG and ND. Denote the loss of the i-th subnet Ni as Li, and
the weights of N as W . The gradients of SuperNet loss L with respect to W is

∇WL =
1

N

N∑
i=1

∇Wi
Li =

1

N

N∑
i=1

∂Li

∂Wi
(5)

where Wi is the weights of Ni, and N is the total number of subnets. However, it
is not practical to accumulate all subnets’ gradients in each batch. An alternative
way is to use mini-batch subnets to update weights W . In our experiments, we
find that randomly sampling one subnet (i.e., N = 1) per batch can also work.

3.2 Search Space

To ensure a fair comparison, we use the same search space as in [9] since it also
searches both generators and discriminators. The search space is given in Fig. 1.

FC Up Cell Up Cell Up Cell Down Cell Down Cell Down Cellx

SuperNet-G SuperNet-D

z FC

Up-sampling operations
Nearest Neighbor
Interpolation
Bilinear Interpolation
Transposed Conv3x3

Normal operations
Conv1x1 (dilation=1)
Conv3x3 (dilation=1)
Conv5x5 (dilation=1)

None
Skip-connection
Conv3x3 (dilation=2)
Conv5x5 (dilation=2)

Down-sampling operations
Average pooling
Max pooling
Conv3x3 (dilation=1)
Conv5x5 (dilation=1) 

Conv3x3 (dilation=2)
Conv5x5 (dilation=2)
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Fig. 1. Overview of search space. EG0 and EG1 are up-sampling operations, ED5 and
ED6 are down-sampling operations, and the other edges are normal operations.

SuperNet-GNG comprises a fully-connected (FC) layer and three Up-Cells.
Each cell contains five ordered nodes (0-4), where node 0 is the output of the
previous cell. There are multiple candidate operations between two nodes, each
represented by an edge, and only one operation will be activated (solid edge).
The edges EG0 and EG1 indicate up-sampling operations. The rest edges (EG2
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to EG6) are normal operations, where “None” indicates no connection between
two nodes. We encode each edge by a one-hot sequence. For example, [0,1,0]
for edge EG0 indicates that the bilinear interpolation operation is activated.
SuperNet-D ND comprises three Down-Cells and an FC layer. The Down-
Cell is the inverted structure of the Up-Cell. The edges ED0 to ED4 are normal
operations, and ED5 and ED6 are down-sampling operations. Thus, searching the
architecture of G and D is transformed into searching a set of one-hot sequences.

4 Methods

EAGAN comprises two stages, each having two steps: weights training and archi-
tecture evolution. The many-to-one and one-to-one training strategies tailored
for two stages are detailed in Sec. 4.1 and Sec. 4.2, respectively. Sec. 4.3 describes
the steps for evolving architectures, which is the same in both stages.

4.1 Stage-1: Searching Generator

Many-to-One GAN Training. As shown in Fig. 2 (left), in stage-1, we search
generators (G) with a fixed discriminator (D) that has 0.91M parameters and
the same architecture as that of [9]. We adopt the many(G)-to-one(D) training
strategy. Specifically, the fixed discriminator D̄ is denoted by architecture and
weights variables, i.e., D̄ ∼ (β̄, wD̄). During each round, we produce P candidate
generators to form the population-G AG, where all candidate generators share
the weights WG of SuperNet-G, and each candidate Gi is parameterized with
architecture and weights variables, i.e., Gi ∼ (αi, wGi

), where wGi
= WG(αi).

We then pair each candidate generator with the fixed discriminator D̄ to form
P GANs, i.e., {(G1, D̄), ..., (GP , D̄)}. Stage-1 can be formalized as below

α∗ = argmin
αi

{Vval

(
αi | w∗

Gi
, w∗

D̄, β̄
)
, i ∈ {1, ..., P}} (6)

s.t. w∗
Gi

= argmin
wGi

Ez∼p(z)

[
log

(
1− D̄ (Gi(z))

)]
(7)

w∗
D̄ = argmax

wD̄

P∑
i=1

Ex∼pdata (x)[log D̄(x)] + Ez∼p(z)[log(1−D(Gi(z)))]

(8)

where the inner (Eq. (7)∼(8)) is to optimize weights of P GANs on the training
set via the many-to-one strategy, and the outer (Eq. (6)) is to obtain the optimal
architecture of G according to the value function on the validation set (i.e., Vval).
The inner and outer optimizations are solved by iterative procedures, outlined in
Alg. 1. These P GANs share the same discriminator and are trained for multiple
epochs for each round. To get a fair comparison between generators, for each
training batch, we uniformly draw a generator from P candidate generators and
train it with the fixed discriminator (lines 4 to 10 in Alg. 1). The many-to-one
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Stage-2: search D using the best G*

Copy the
best G*

G*

Stage-1: search G using the fixed 

Crossover

Mutation

SuperNet-G

G1

GP

...

many-to-one training

Evolution

G*

G*

one-to-one training

G*

D1

DP

SuperNet-D

...

weight-
resetting

D*

G*

G*

G*

copy best
G weights

 pareto-fronts

evaluation

FID

Evolution

Selection

Crossover

Mutation

evaluation
G*

  1  
IS

Selection

Fig. 2. Two-stage pipeline of EAGAN.

training mechanism can bring two benefits. First, the fixed discriminator D̄ is
trained with various generators, which can be viewed as an ensemble method to
some extent, avoiding that D̄ is over-fitted and much stronger than generators.
Second, different generators are trained with the same discriminator, so we can
fairly compare the performance of these generators to find the optimal one.
Besides, a generator with mode collapse will not interfere with other generators
because the selection step will eliminate it from the population (see Sec. 4.3).

4.2 Stage-2: Searching Discriminator

After stage-1, we obtain an optimal generator G∗ with architecture α∗. In stage-
2, we use it to guide searching discriminators (D). There are two major challenges
in searching D: the lack of evaluation metrics for discriminators and the instabil-
ity of GAN training. Next, we describe our approaches to these two challenges.

One-to-One GAN Training. Unlike generators, discriminators are diffi-
cult to be assessed directly. For example, the accuracy of discriminators does not
reflect the overall performance of GANs, as high accuracy may indicate that gen-
erators are too weak to fool discriminators, and low accuracy may indicate that
generator has mode collapse, with no way to analyze the real cause. Some works
[9,32,5] use the reconstructed loss (e.g., Eq. (1)) to monitor discriminator, but
the loss is not a reliable monitor metric as GAN training is a dynamic equilib-
rium process. An alternative solution is to indirectly assess the discriminator via
IS and FID metrics calculated based on a generator, so we cannot simply imitate
the training strategy of stage-1 (e.g., many(D)-to-one(G)) in stage-2; otherwise,
all discriminators are paired with the same generator and not comparable. To
this end, we propose the one-to-one training strategy. Specifically, we create P
copies of G∗, each paired with a candidate discriminator from population-D AD.
Thus, we obtain P GANs, i.e., {(Gi, Di), i ∈ {1, ..., P}}, where Gi ∼ (α∗, wGi

)
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and Di ∼ (βi, wDi
). Each GAN is independently trained as a regular GAN via

Eq. (1)∼(3). Therefore, stage-2 can be formalized as follows

β∗ = argmin
βi

{Vval

(
βi | w∗

Gi
, w∗

Di
, α∗) , i ∈ {1, ..., P}} (9)

s.t. w∗
Gi
, w∗

Di
= min

Gi

max
Di

Ex∼pdata (x)[logDi(x)] + Ez∼p(z)[log(1−Di(Gi(z)))]

(10)

Weight-resetting. The second challenge of stage-2 is that the one-to-one
training strategy does not fully guarantee a fair comparison between different
discriminators. Since P generators are trained independently, each generator
will have different weights after a round of one-to-one training, presented with
different colors (see Fig. 2 (right)). If some generators have mode collapse due
to combination with unsuitable discriminators, then subsequent discriminators
paired with these generators will obtain unfair and biased estimation. To allevi-
ate this problem, we propose the weight-resetting strategy, which is to first copy
the weights of best generator in the current round, and then initialize all genera-
tors in the next round with the copied weights. In the first round, all generators
are initialized with the weights of G∗ found in stage-1. In summary, the one-to-
one training strategy allows each discriminator to be paired with an independent
generator, and the weight-resetting strategy ensures a fair comparison between
different discriminators and alleviates the instability of GAN training.

4.3 Architecture Evolution

As shown in Fig. 2, after weights training, stage-1 and stage-2 perform the same
steps to evolve generators and discriminators, respectively. To simplify notations,
we use N , Ni, and A to denote the SuperNet, the i-th subnet, and population,
of candidate generators (stage-1) and discriminators (stage-2), respectively.

Selection. This step is equivalent to Eq. (6) of stage-1 and Eq. (9) of stage-2.
In our work, we use IS [31] and FID [15] metrics to evaluate the performance
of individual (i.e., subnet). FID is inversely correlated with IS, so we adopt the
non-dominated sorting strategy [6] as the value function to produce the Pareto-
front individuals during each round. An individual Ni is said to be dominated
by another individual Nj when Eq. (11) satisfies.

Fk (Ni) ≥ Fk (Nj) ∀k ∈ {1, . . . ,K}
Fk (Ni) > Fk (Nj) ∃k ∈ {1, . . . ,K} (11)

where Fk indicates the objective (e.g., FID, and 1
IS

6). We split the population
with P individuals into a number of disjoint subsets (or ranks) Ω = {Ω0, Ω1, ...}
by comparing the number of times each individual being dominated by other
individuals, where the length of Ω and each subset may be different for each
search round. After non-dominated sorting, individuals in the same subset are

6 The higher the IS value, the better the GAN performance.
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Algorithm 1 EAGAN.

Input: SuperNet-G NG, SuperNet-D ND, population-G AG, population-D AD, pop-
ulation size P = |AG| = |AD|, multi-objective set F , total search rounds R,
each round contains E epochs of training.

Output: G∗ and D∗

1 D̄ ∼ (β̄, wD̄)← Initialize a discriminator with weights wD̄ and fixed architecture β̄;

2 A(0)
G = {G(0)

1 , ..., G
(0)
P } ← Warm-up(NG, D̄);

3 {(G(0)
i , D̄}), i ∈ {1, ..., P}} ← Initialize P GANs that share the same discriminator;

4 for r=0:R− 1 do
5 for e=0:E − 1 do
6 for batch x = {x1, ..., xm} in training set do
7 Sample noise data z = {z1, ..., zm};
8 Uniformly sample G

(r)
i from A(r)

G , i ∈ {1, ..., P};
9 Update weights of D̄ via Eq. (8);

10 Update weights of G
(r)
i via Eq. (7);

11 end

12 end

13 A(r)
G ← Select Pareto-front generators under F based on validation set;

14 A(r)
G ← Crossover&Mutation(A(r)

G );

15 end
16 G∗ ∼ (α∗, wG∗)← the best generator with architecture α∗ and weights wG∗ ;

17 A(0)
D = {D(0)

1 , ..., D
(0)
P } ← Warm-up(G∗,ND);

18 {(Gi, D
(0)
i ), i ∈ {1, ..., P}} ← Initialize P GANs, where Gi is a copy of G∗;

19 for r=0:R− 1 do
20 for e=0:E − 1 do
21 for batch x = {x1, ..., xm} in training set do
22 Sample noise data z = {z1, ..., zm};
23 Uniformly sample a GAN (Gi, D

(r)
i ) from P GANs;

24 Update weights of Gi and D
(r)
i via Eq. (10);

25 end

26 end

27 A(r)
D ← Select Pareto-front discriminators under F based on validation set;

28 A(r)
D ← Crossover&Mutation(A(r)

D );
29 wG∗ ← the generator weights of the best GAN;
30 wG1 = ... = wGP = wG∗ ← Weight-resetting;

31 end
32 D∗ ∼ (β∗, wD∗)← the best discriminator with architecture β∗ and weights wD∗ ;

regarded as equally important and better than those in a larger rank. For exam-
ple, the individuals in the subset Ω0 outperform all other subsets of individuals.
Finally, we sequentially select P

2 individuals from lower to higher ranks.

Crossover&Mutation. As detailed in Sec. 3.2, the architecture of each
subnet is encoded by a set of one-hot sequences, where the one-hot sequence
indicates an edge and the position of 1 indicates the candidate operation acti-
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vated on that edge. Thus, the basic unit of crossover and mutation is the one-hot
sequence. We set P

2 Pareto-front individuals obtained from the selection step as
parents. Then, we repeatedly perform crossover and mutation on these parents
with probabilities of 0.3 and 0.5, respectively, until we generate P

2 new indi-
viduals. For crossover, we randomly choose two parents and exchange a single
one-hot sequence (i.e., an edge). For mutation, we also randomly choose the
one-hot sequence of an edge and change the position of 1 on it.

5 Experiments

5.1 Implementation Settings

Datasets. Following the previous NAS-GANs [10,9,34], we search on the CIFAR-
10 [20] and evaluate on both CIFAR-10 and STL-10 [4] datasets. CIFAR-10 has
50,000 training images and 10,000 test images with 32×32 resolutions. STL-10
has 100,500 images with 96×96 resolutions, but we resize them to 48×48.

Warm-up Stage. We set up a warm-up stage before the start of stage-1
and stage-2 to ensure a fair competition for all candidate subnets. Specifically,
all candidate operations in search space are activated uniformly and trained
equally. The warm-up stage has 50 epochs. After that, we randomly sample P
subnets to form the first round of population.

Two-stage Search. For both stage-1 and stage-2, we use the hinge loss [26]
and Adam optimizer [19] with an initial learning rate of 0.0002. The total number
of search rounds is 18, each containing 10 epochs. The noise data is sampled from
the Gaussian distribution. A population of P = 32 individuals is trained and
evolved during each round. The batch sizes for generator and discriminator are
40 and 80, respectively. Besides, we adopt a low-fidelity evaluation strategy, i.e.,
the number of images used to calculate FID and IS is reduced to 5,000, which
greatly reduces the evaluation time and keeps the performance of the searched
architectures. Stage-1 and stage-2 take 0.8 and 0.4 GPU days, respectively.

Fully-train Stage. After the two-stage search, we fully train the best-
performing GAN (G∗, D∗) from scratch. For the CIFAR-10 dataset, the batch
size and learning rate are the same as the search stage, but the total number of
training epochs is 600. For the STL-10 dataset, the batch size and the learning
rate are 128 and 0.0003 for the generator, and 64 and 0.0002 for the discrimi-
nator, respectively. Following the previous NAS-GAN works [9,10], we generate
50,000 images to calculate IS and FID metrics.

5.2 Results and Analysis

Search only Generator (EAGAN-G).Our searched generatorG∗ is shown in
Fig. 3. Note that the generators for the CIFAR-10 (GC with 7.14M parameters)
and STL-10 (GS with 11.55M parameters) datasets have the same architecture
but different input channels, so their sizes are different. We can see that 1) bi-
linear operation is preferred for up-sampling, which is also observed in previous
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NAS-GANs [9,33]; 2) there are 6 “None” operations and 3 “skip-connect” op-
erations among 15 total normal operations, and the normal convolution with
kernel size 3 × 3 is preferred, which is probably because the low-resolution im-
ages do not need complicated convolutions to generate. The results in Table. 2
show that, compared with AdversarialNAS [9], our EAGAN can find a better
generator with similar time overhead, given the same search space and fixed dis-
criminator. Specifically, our discovered generator achieves a highly competitive
FID (10.14) and IS (8.76±0.09) on the CIFAR-10 dataset. In terms of IS, there
is a certain gap between NAS-GANs and BigGAN [3] because BigGAN addition-
ally introduces category information as input into the generator’s architecture,
while NAS-GANs only receive noise data as input. Besides, our generator GS

achieves remarkable results (IS 10.02±0.11, FID=23.34) on the STL-10 dataset,
showing an excellent transferability.
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Fig. 3. The architecture of the searched generator (GC = GS = G∗).

Search both Generator and Discriminator (EAGAN-GD1). In stage-
2, we use the best generator G∗ found in stage-1 to help search a set of Pareto-
front discriminators, from which we select the optimal discriminators for the
CIFAR-10 (DC with 0.91M parameters) and STL-10 (DS with 1.58M param-
eters) datasets, respectively, shown in Fig. 4. We can see a subtle difference
(marked in red) between them, i.e., DS prefers convolutions with a larger kernel
size (5× 5), while DC selects skip-connection and a smaller convolution. A pos-
sible reason is that the resolution of STL-10 (48×48) is larger than CIFAR-10
(32×32), so it needs a larger kernel size to obtain larger receptive fields.

After two-stage search, we retrain two GANs (i.e., (GC , DC) and (GC , DS))
on the CIFAR-10 and STL-10 datasets, respectively, and report their results in
Table. 2. We can see that none of existing NAS-GANs can guarantee to find
excellent GANs in both search scenarios: (a) searching only generators; and (b)
searching both generators and discriminators. For example, AdverearialNAS [9]
performs poorly (IS=7.86±0.08, FID=24.04) in scenario (a), and AlphaGAN [32]
suffers from instability in scenario (b), as its performance drops significantly from
(IS=8.89±0.09, FID=10.35) in scenario (a) to (IS=8.70±0.11, FID=15.56) in
scenario (b). However, our EAGAN performs well in both search scenarios, and
the discriminators searched in stage-2 can further improve the performance of the
optimal generator discovered in stage-1. Specifically, we achieve a competitive
IS value (8.81±0.10) and the best FID (9.91) on the CIFAR-10 dataset. Besides,
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Method
Search
Method

GPU
Days

CIFAR-10 STL-10
IS↑ FID↓ IS↑ FID↓

DCGANs [29]

Manual –

6.64±0.14 37.7 – –
WGAN-GP [12] 7.86±0.07 29.3 – –

Progressive GAN [17] 8.80±0.05 18.33 – –
SN-GAN [26] 8.22±0.05 21.7 9.16±0.12 40.1
ProbGAN [13] 7.75 24.60 8.87±0.09 46.74

Improv MMD GAN[36] 8.29 16.21 9.34 37.63
BigGAN [3] 9.22 14.73 - -

AGAN [35]

RL

1200 8.29±0.09 30.5 9.23±0.08 52.7
AutoGAN [10] 2 8.55±0.10 12.42 9.16±0.12 31.01
E2GAN [33] 0.3 8.51±0.13 11.26 9.51±0.09 25.35

DEGAS [7]

Gradient

1.167 8.37±0.08 12.01 9.71±0.11 28.76
AlphaGAN [32] 0.13 8.98±0.09 10.35 10.12±0.13 22.43
AlphaGAN [32]† - 8.70±0.11 15.56 - -

AdversarialNAS [9] 1 7.86±0.08 24.04 8.52±0.05 38.85
AdversarialNAS [9]† 1 8.74±0.07 10.87 9.63±0.19 26.98

DGGAN [25] Heuristic 580 8.64±0.06 12.10 - -

EGAN [34]
EA

1.25 6.9±0.09 - - -
EAS-GAN [22] 1 7.45±0.08 33.2 - 38.84

EAGAN-G

EA

0.8 8.76±0.09 10.14 10.02±0.11 23.34
EAGAN-GD1† 0.8+0.4 8.81±0.10 9.91 10.44±0.08 22.18
EAGAN-GD2† 0.75+0.37 8.63±0.09 12.84 9.76±0.06 26.52
EAGAN-GD3† 1.55+0.73 8.69±0.10 10.53 10.14±0.11 24.22

Table 2. Results on the CIFAR-10 and STL-10 datasets. † indicates searching both
generators (G) and discriminators (D).
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Fig. 4. The searched discriminators on CIFAR-10 (top) and STL-10 (bottom).

our EAGAN achieves remarkable performance (IS=10.44±0.08, FID=22.18) on
the STL-10 dataset, which outperforms the existing NAS-searched GANs. In
Fig. 5, we present 50 images randomly generated by generators trained on the
CIFAR-10 and the STL-10 datasets without cherry-picking, respectively. The
generated images are of rich diversity and high quality.
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(a) CIFAR-10 (b) STL-10

Fig. 5. The generated images by EAGAN in random without cherry-picking.

5.3 Ablation Study

Search G or D first? EAGAN searches G first and then searches D. What
about search D first? Our experiments show that searching D first in stage-1
will make the searched D much stronger than candidate G in stage-2, which in
turn causes the gradients of G to vanish. Thus, we should search G first.

Initialize different D in stage-1. Our above experiment (i.e., EAGAN-
GD1) uses the discriminator of [9] in stage-1. We further implement two exper-
iments to explore the effect of initializing different D in stage-1. EAGAN-GD2
uses a simple network with 0.92M parameters, comprising five normal convolu-
tions and a linear layer, as the initial D in stage-1. EAGAN-GD3 is to repeat
the two-stage search several times, i.e., the optimal D of the previous stage-2
is set as the initial D of the next stage-1. From Table. 2, we can see that both
EAGAN-GD2 and EAGAN-GD3 achieve competitive results on the CIFAR-10
and STL-10 datasets, indicating that EAGAN does not require strong prior
knowledge to design the initial state of D and that searching once is sufficient
to find good models, balancing search overhead and model performance.

Decoupled vs. Coupled. To validate the effectiveness of our decoupled
search method, we perform a coupled search experiment as the baseline, i.e., the
architectures of G and D are evolved simultaneously for each search round. Fig. 6
presents the learning curves of the baseline and our EAGAN, which shows that
coupled search is unstable as it fluctuates throughout the search. In contrast, the
overall performance of our decoupled search is better and significantly improved,
especially in stage-2 of searching discriminators. Besides, the decoupled search
also fluctuates in stage-1 due to the competition among candidate generators
incurred by the weight-sharing strategy, and how to address the negative impact
of weight-sharing is still an open problem [37].

Weight-resetting Strategy.We conduct another experiment on the CIFAR-
10 dataset, which differs from our EAGAN only in that the weights of P gen-
erators in stage-2 are continuously and independently trained without weight-
resetting (WR) strategy. Fig. 7 presents the learning curves with and without
the WR strategy in stage-2, which shows that our proposed WR strategy can
effectively enhance the stability of GAN training and obtain better IS and FID
scores in stage-2 of searching discriminators.
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Fig. 6. Learning curves when generators and discriminators are coupled/decoupled.
The dashed line indicates the boundary between the two decoupled stages of EAGAN.
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Fig. 7. Learning curves with and without (W/O) the weight-resetting (WR) strategy
in stage-2.

6 Conclusion & Future Work

This paper proposes an efficient two-stage evolutionary algorithm-based NAS
framework to search GANs, namely EAGAN. We demonstrate that decoupling
the search of the generator and discriminator into two stages can significantly
improve the stability of searching GANs via the GAN training strategies (many-
to-one and one-to-one) tailored for both stages and the weight-resetting strategy.
EAGAN is very efficient and takes 1.2 GPU days to finish the search on CIFAR-
10. Our searched GANs achieve competitive performance (IS and FID) on the
CIFAR-10 dataset and outperform previous NAS-GANs on the STL-10 dataset.

We believe our work deserves more in-depth study and may benefit other po-
tential fields. For example, our decoupled paradigm and tailored training strate-
gies are well suited for large-scale parallel search when architectures require
adversarial training. Further, we shall investigate reducing the interference of
weight-sharing in search and explore high-resolution generative tasks.
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