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Abstract. Recently, there has been growing attention on an end-to-
end deep learning-based stitching model. However, the most challenging
point in deep learning-based stitching is to obtain pairs of input images
with a narrow field of view and ground truth images with a wide field
of view captured from real-world scenes. To overcome this difficulty, we
develop a weakly-supervised learning mechanism to train the stitching
model without requiring genuine ground truth images. In addition, we
propose a stitching model that takes multiple real-world fisheye images as
inputs and creates a 360◦ output image in an equirectangular projection
format. In particular, our model consists of color consistency corrections,
warping, and blending, and is trained by perceptual and SSIM losses.
The effectiveness of the proposed algorithm is verified on two real-world
stitching datasets.
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1 Introduction

Image stitching is a task that combines multiple images obtained from differ-
ent viewpoints to generate a single panoramic image with a larger field of view
(FOV). By exploiting this advantage, image stitching technique can be used in
various applications such as street view service, virtual reality [27], video surveil-
lance [16], and Mars exploration [6]. Traditional stitching proceeds in the order
of feature point extraction, feature matching, homography estimation, warping,
and blending. For instance, Brown and Lowe [3] proposed an automatic stitching
method that finds correspondence of feature points using SIFT [35], estimates
global homography by RANSAC [11], aligns two images using estimated homog-
raphy, and combines them by multi-band blending. Since then, a lot of follow-
ing methods have been developed for creating high-quality panoramic images,
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Fig. 1: Comparison of existing stitching dataset for training. (a) The pseudo-
labeled dataset is constructed by existing stitching methods. (b) The real scene
dataset is generated by cropping with global homography. (c) Virtual scene
dataset with a simulator. (d) Our dataset for weak supervisions.

and the main research issue of them is to deal with parallax distortion caused
by depth differences. To overcome parallax distortion, spatially varying multi-
homography estimation methods [13, 33, 14, 52, 19, 26] and non-uniform mesh-
based warping methods [54, 17, 55] have been introduced. Additionally, another
challenge to consider in real-world stitching is to overcome visually unpleasant
artifacts such as structural distortion and the difference in overall tones between
input images. To seamlessly combine input images without suffering these distor-
tions, constraints on line and structure can be explicitly included in the stitching
algorithm [51, 30, 21], and color consistency correction can be applied to input
images based on a parametric color model [10, 50]. However, the aforementioned
approaches depend on the performance of the algorithm that estimates the cor-
respondence of feature points between the input images. Therefore, when the
overlapping area between input images is too small or there are many repetitive
patterns, feature matching becomes challenging, resulting in parallax distortion
and visually unpleasant artifacts, or stitching itself may fail. In other words, the
success rate of stitching depends on the performance of the matching algorithm.

Recently, the limitations of these traditional approaches have been solved by
the CNN-based feature matching technique [44] and deep homography estima-
tion methods [8, 38, 48, 24, 56]. Furthermore, researches on modeling the entire
stitching process as a single pipeline based on neural network are being intro-
duced [45, 28, 23, 39, 40, 47, 7]. Unlike feature matching and homography estima-
tion, it is difficult to construct the inputs-GT pairs for training the end-to-end
deep stitching model. To get inputs-GT pairs, Shen et al. [45] built a unique
hardware system that can capture the real-world scene with fixed viewpoints,
but it cannot contain dynamic objects due to its systemic limitation. In addi-
tion, there were several efforts [27, 28, 7] to make pseudo GT labels by applying
existing stitching methods to real-world images. However, pseudo GT labels may
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be sensitive to the methods used to create them. In [39], inputs-GT pairs were
constructed by cropping sub-images from natural images with random geometric
transformations. However, it cannot cover various depths because it is a crop-
based method. To handle multiple depth layers and moving objects, there have
been studies [23, 47] using a virtual simulator such as CARLA [9] to generate
inputs-GT pairs. However, it is difficult to use stitching models trained with syn-
thetic datasets on real-world images without the help of domain adaptation. In
summary, constructing real inputs-GT pairs that take the depth of the scene into
account for training an end-to-end stitching model is a very challenging prob-
lem. Therefore, in this paper, we present a weakly-supervised learning method
for training a deep stitching model. To this end, we use a commercial camera
to capture six fisheye images uniformly rotated at 60◦ intervals. We use half of
the captured images (0◦, 120◦, 240◦) as inputs and the other remaining images
(60◦, 180◦, 300◦) as weak supervisions. Note that all images are captured si-
multaneously, thus dynamic scenes and objects can be covered in our dataset.
Then, we introduce a novel mechanism to train an end-to-end stitching model
using our dataset. Meanwhile, we develop a deep stitching model that performs
color consistency corrections, warping, and blending. In addition, our model and
training mechanism can be applied to the existing pseudo GT-based dataset [27].
Comparisons of training datasets for the stitching model are shown in Fig. 1.
Our contributions can be summarized as follows:

– We introduce a novel weak-supervised method for training a stitching net-
work to create real-world 360◦ panoramic images.

– Our stitching model can effectively deal with parallax distortion due to depth
differences as well as inconsistent colors between input images.

– We provide a variety of ablation studies, including the results of training the
proposed model using the existing CROSS dataset [27].

2 Related Works

In this section, we review both traditional stitching methods and recent deep
learning-based stitching methods.

2.1 Traditional Stitching Methods

After Brown and Lowe [3] introduced an automatic stitching method using SIFT
feature [35], RANSAC [11], and multi-band blending, lots of follow-up studies
addressing various issues have been introduced.
Parallax distortion. To handle multiple depth layers in the scene, Gao et al.
[13] proposed a method that estimates dual homography for two separate regions:
ground plane and distant plane. Lin et al. [33] introduced a spatially varying
affine field to adaptively align pixels. Zaragoza et al. [54] proposed as-projective-
as-possible (APAP) image stitching based on moving direct linear transformation
(Moving DLT) for allowing local non-projective deviations. In [55], input images
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are aligned by estimated homography, then content-preserving warping is applied
to solve local parallax distortion. However, the existing methods have problems
such as perspective distortion when stitching multiple images. Perazzi et al. [43]
proposed a video stitching technique using multiple scenes from unstructured
camera arrays. It deals well with parallax and perspective distortions, but takes
a long time due to its large computational complexity. In addition, seam-driven
image stitching that finds the best homography based on the quality of seam-
cut was introduced in [14], while seam-guided local alignment methods were
proposed in [31]. Herrmann et al. [19] proposed a robust stitching method that
generates multiple registrations and combines them using Markov random field
(MRF) with energy terms discouraging duplication and tearing effects. Recently,
Lee and Sim [26] introduced a novel concept of warping residual to deal with
large parallax using locally optimal warping. For a similar goal, our network
includes warping operations that take global and local information into account.
Visually unpleasant distortion. In human visual perception, distortion tends
to be particularly noticeable on thin objects such as lines or curves. Xiang et al.
[51] proposed a line-guided local warping method with a global similarity con-
straint to overcome projective distortions. Liao et al. [30] presented two single-
perspective warpings consisting of parametric warping and mesh-based warping
for enhancing the naturalness of stitched images. Jia et al. [21] presented a
structure-preserving method based on line-guided warping and line-point con-
straint. Also, methods exploiting semantic information about pedestrians [12],
faces [41], human perception [29] and objects [18] were introduced for natu-
ral stitching. In addition, color and tone differences between input images are
noticeable distortions. Especially in the near of the seam lines, the distortion
becomes more prominent. Doutre and Nasiopoulos [10] proposed a method that
corrects differences in color between images using simple linear regression. A
more advanced color consistency correction method using convex quadratic pro-
gramming for the stitching problem is proposed in [50]. To satisfy human visual
perception, we utilize perceptual loss [25] in the training step and include color
correction operation in our stitching model.

2.2 Deep Learning-based Stitching Methods

To train a deep stitching model, it is necessary to construct pairs of input images
with a narrow FOV and a GT image with a wide FOV. Shen et al. [45] built the
hardware system with a flat mirror to create the dataset and trained a stitching
model using the constructed dataset. Since it is not practical to use a specialized
camera, there have been several studies that make inputs-GT pair as follows.
Dataset with pseudo GT. Li et al. [27] captured 4 fisheye images taken by
lenses rotated at 90◦ intervals. Then, two images facing opposite directions are
used as inputs, and the stitched image using the other two images is used as
a pseudo GT image. To create the stitched images, a method with the highest
mean opinion score (MOS) among existing stitching methods is used for each
image. Using this dataset, Li et al. [28] introduced an attentive deep stitching
approach consisting of two modules for deformation and resolution. Similarly,
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Dai et al. [7] generated pseudo GT images using existing stitching methods and
used them to train an edge-guided composition network. An example of pseudo
GT is illustrated in Fig. 1-(a). However, pseudo GT labels are sensitive to the
methods used to generate them.
Dataset with only global homography. Nie et al. [39] presented a deep
learning-based view-free stitching model consisting of global homography estima-
tion, structure stitching, and content revision. For the training, they constructed
inputs-GT pairs using natural images such as the COCO dataset [32] as shown
in Fig. 1-(b). Specifically, given an image, two sub-images having overlapping
regions are extracted, then geometric transformation is applied to one of them.
Thus, these two sub-images have different perspectives, and their geometric re-
lationship can be modeled by a global homography. These two sub-images are
used as inputs to the stitching model while an image containing both sub-images
is used as GT. However, the problem with their dataset is that depth is not con-
sidered when generating two input images. It means that a single depth layer is
assumed, which is unrealistic in the real-world scenario. As a result, there is a
limitation to stitching images containing scenes with multiple depth layers. Fur-
thermore, parallax distortion caused by depth differences that may occur in the
real-world environment cannot be dealt with. Recently, Nie et al. [40] proposed
an unsupervised learning method for a view-free stitching model composed of
coarse alignment and image reconstruction. However, the unsupervised coarse
alignment module is performed by a global homography. Thus, parallax distor-
tion induced by depth difference still causes visual artifacts, even though the
image reconstruction module enhances the quality of the output image.
Dataset using virtual simulator. There have been several studies that train
a stitching model by using inputs-GT pairs generated from a virtual simulator
such as CARLA [9]. Since it is possible to control camera configuration and the
scene in the virtual space, depth information can be included in the relationship
between inputs as shown in Fig. 1-(c). Thus, with these virtual datasets, parallax
distortion due to depth differences can be covered. Using the virtual dataset,
Lai et al. [23] proposed a pushbroom stitching network that estimates flow
maps in fixed view, and Song et al. [47] developed an end-to-end virtual image
stitching network via multi-homography estimation. However, these stitching
models trained with virtual dataset has limitations in applying them to real-
world images, and additional techniques such as domain adaptation may be
required. In summary, it is hard to obtain real-world datasets that take the
depth information of the scenes into account. In this paper, we use real-world
images captured at different viewpoints themselves as inputs to the stitching
model. In this case, there are no GT images with a wide FOV, thus we propose
a new mechanism for training the stitching model.

3 Approach

In this section, we first describe the procedure of generating training data using
real-world fisheye images. Then, we define the problem setup for creating a 360◦
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panoramic image and introduce an architecture of the proposed stitching model
to solve the defined problems. Finally, loss functions for training the proposed
stitching model are explained.

3.1 Dataset Preparation

To construct the training data for learning the real-world stitching model, we
use a commercial VR camera called Kandao Obsidian R [1] to acquire fisheye
images. It can capture six fisheye images simultaneously using six lenses rotated
at 60◦ intervals. We use three fisheye images rotated by 0◦, 120◦, 240◦ as inputs
to our stitching model while the remaining three images rotated by 60◦, 180◦,
300◦ are utilized as weak supervisions. As shown in Fig. 1-(d), overlapping areas
between the input images correspond to the central regions of the images for
weak supervisions. Therefore, when training a stitching model using three input
images, the remaining three images can be used as weak supervisions. Input
images are used as themselves whereas pre-processing is applied on images for
weak supervisions. Two types of pre-processing are performed on images for
weak supervisions as follows.

Geometric calibration.We represent the GT 360◦ panoramic image in equirect-
angular projection (ERP) format. Since there are no genuine GT images in our
setup, it is required to register images for weak supervisions as much as possible
in the GT format in advance. Therefore, we transform images for weak super-
visions into ERP coordinates. To this end, we perform geometric calibration
for fisheye cameras to compute intrinsic and extrinsic parameters by utilizing
NVIDIA VRWorks 360 Video SDK [42]. As shown in Fig. 1-(d), three fisheye
images for weak supervisions are well projected on ERP coordinates.

Color consistency correction. Multi-view images captured in a real-world
environment may have different color tones. To utilize three images for weak
supervisions as GT, the color tones of them should be matched consistently.
Therefore, we correct the color consistency of three images for weak supervisions
in advance. We use the polynomial curve mapping function to convert the color
values of two images (called query image) to the those of remaining one image
(called reference image) as

x̄ = ax2 + bx+ c, (1)

where x is the original pixel value in query images, x̄ is the corrected pixel value,
and a, b, and c are learnable parameters of the polynomial model, respectively.
We estimate a, b, and c as follows. First, we find correspondences between query
and reference images using SuperGlue [44], then extract patches centered at
matched points from both images. Then, we minimize mean squared error (MSE)
between corrected patches from query images by (1) and extracted patches from
the reference images. Then, we obtain three images with consistent color tones
in ERP format by using (1) with the learned a, b, and c. These three images are
used for weak supervisions to train our stitching model.
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Fig. 2: The entire pipeline of our stitching model. Our model takes N inputs
and produces global warping maps, pre- and post-color correction maps, local
adjustment maps, and weight maps. After extracting an encoding map (red) and
a decoding map (blue), a final warping map Un is created by adding a global
warping map and a local adjustment map, and then the input is warped with Un.
All warped images are weighted by weight maps and merged into a panorama.
Color correction is applied once before warping and once after weighted summa-
tion using color correction maps.

3.2 Problem Definition

In this paper, we aim to create a 360◦ panoramic image by stitching N adjacent
images taken with fisheye lenses rotated at different angles. Our stitching model
S(·) takes N fisheye images In as inputs and generates a pre-color correction
map Cpre

n , a global warping map Gn, a local warping adjustment map Ln, and
a weight map Wn for each input image. It also produces a post-color correction
map Cpost for an input pair of N images. It is defined as

S(I1, ..., IN ; θ) → (Cpre
n , Gn, Ln,Wn, C

post), (2)

where θ and n are learnable parameters of S(·) and the index of input images,
respectively. In our experiment, N is 3, the vertical FOV of each fisheye image is
185◦, and the lens for each input is rotated 60◦ from each other. The panoramic
image is created by applying all estimates from the stitching model in (2) to the
input fisheye images.
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3.3 Architecture

Our stitching model S(·) is composed of an encoder E(·), a regressor R(·), and
a decoder D(·) as illustrated in Fig. 2. The role and details of each component
are described as follows.
Encoder. In our stitching model, there are N encoders to extract visual features
fn of each input fisheye image as

fn = E(In; θe), (3)

where In is one of the input fisheye images and θe is the learnable parameters of
the encoder. Our encoder consists of a series of convolutional layers, batch nor-
malization layers, and ELU activations [5]. Learnable parameters of each encoder
are shared. Visual features extracted from each input image are concatenated
along the channel axis and used as input for a regressor and a decoder.
Regressor. The purpose of the regressor is to find affine transformation matrices
that can warp the pixel values of each input image to the pixel coordinates of
the output image globally. The regressor takes the visual features fn as input
and generates affine matrices An as follows.

An = R(fn; θr), (4)

where θr is the learnable parameters of the regressor. Using the estimated affine
matrices, a global warping map Gn for each input image is created. The global
warping map contains x- and y-direction information on where the pixels of the
input image are moved to the coordinates of the output pixels. Global warping
can be viewed as global registration by a single homography.
Decoder. Except for the global warping map Gn, the remaining components
in (2) needed to make the final output are generated by the decoder as

D(fn; θd) → (Cpre
n , Ln,Wn, C

post), (5)

where θd is the learnable parameters of the decoder. Specifically, the decoder
consists of a shared decoder and four private decoders for each output compo-
nent. The shared decoder takes the visual features obtained from the encoder as
inputs and generates shared features. Shared features are passed as input to each
private decoder to create each output component. A shared decoder consists of
a series of convolutional blocks and upsampling layers, and each private decoder
consists of several convolutional blocks.
Output generation processes. First, the color of the N input images with
different color tones is corrected by using the estimated pre-color correction map
Cpre

n . Inspired by Zero-DCE [15], we convert the color intensity values of input
images by a monotonic quadratic curve as follows:

În = In + Cpre
n In(1− In). (6)

The color-corrected images În will have color tones harmonized with each other.
Then, each color-corrected input fisheye image is warped to the output pixel
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Fig. 3: The specific application area of loss functions. Note that SSIM loss is
valid only in the white area.

grid. Our output image is in 360◦ ERP format. Warping is performed by a global
warping map Gn and a local warping adjustment map Ln for each input image.
Since the entire depth layer of the scene cannot be covered with only a single
global warping map, the local warping adjustment map is used to supplement it
as follows.

Un = Gn + αLn, (7)

where α is a balancing factor and set to 0.3 in our experiment. Using the final
warping map Un, color-corrected fisheye images În are warped as

Īn = warp(În, Un), (8)

where warp(·) is a pixel mapping function. After that, all warped images are
weighted and merged to create a panoramic image P as follow:

P =

N∑
n=1

ĪnWn, (9)

where Wn is a per-pixel weight map for fusing warped images. Finally, a post-
color correction map Cpost is applied to generate the final panoramic image O
as

O = P + CpostP (1− P ). (10)

Detailed formulations of the architecture are in the supplementary material.

3.4 Training

Learnable parameters of our stitching model S(·) are trained using the images
for weak supervisions generated by the method described in Section 3.1. Since
genuine GT images do not exist in our settings, we use perceptual loss [25]
instead of pixel-wise loss as follows:

Lp(θ) =

N∑
n=1

5∑
i=3

L1(ϕi(Ōn), ϕi(MnO)), (11)
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where L1(·) and ϕi(·) are functions of L1 distance and feature extractor at i-th
maxpooling layer of VGG16 [46], respectively. Ōn represents the image for weak
supervisions and Mn is the mask representing the valid pixels of Ōn. Note that
Mn is the union of the red and white areas in the bottom row of Fig. 3. Also,
for the consistency in color tone and contrast of the input images, we use SSIM
loss as follows:

LSSIM (θ) =

N∑
n=1

[(1− SSIM(M̂Ōn, M̂O))], (12)

where SSIM (·) is a function of the structural similarity [49], and M̂ is a mask
representing non-overlapping regions between the images for weak supervisions.
By using this loss function, our model can harmonize the color tone in the
overlapping regions between inputs. Note that M̂ is only white areas in the
bottom row of Fig. 3. Overall loss for training our stitching model is defined as

L(θ) = (1− λ)Lp(θ) + λLSSIM (θ), (13)

where λ represents the balancing factor between two losses. We set λ to 0.4 in
our experiments.

4 Experiments

4.1 Implementation Details

For the experiments, we use our dataset as well as the CROSS dataset [27].
For our dataset, we use 47,063 sets of images for the training and 1,400 for the
test. Each training set includes three input fisheye images, three ERP images for
weak supervisions, and three masks. For the CROSS, we divide the dataset into
1,146 for the training and 128 for the test. Each set of the CROSS includes two
fisheye inputs, and a GT that is pseudo-labeled by SamsungGear. SamsungGear’s
MOS obtain the highest in most data, thus we choose it as our pseudo-labeling
method. For both datasets, all images have a resolution of 1024× 512, and data
augmentations such as brightness and tone adjustments are randomly applied
during the training. Our model was trained by Adam Optimizer [22] with a
learning rate of 0.0004. The number of epochs for our dataset and the CROSS
is set to 20 and 1200, respectively. Our method is implemented using Pytorch
1.8.1 with CUDA 11.1 on Ubuntu 18.04.

4.2 Comparisons

Results on our dataset. Since there are no genuine GT images in our datasets,
we utilize a perceptual distance Pd using VGG16 as an evaluation metric. The
perceptual distance is computed by using making in the same way as in the
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Fig. 4: Qualitative comparisons on our dataset. Please refer to the supplementary
material for the rest of the test examples.

training step, but there is a difference that unlike in training, the distance is
calculated using all five feature maps from five max pooling layers as follows:

Pd =

N∑
n=1

5∑
i=1

L1(ϕi(Ōn), ϕi(MnO)), (14)

As a result, Pd can evaluate low-level features such as edges. Since our model is
trained in the same way, this evaluation can be unfair. Therefore, to compen-
sate for this, we also utilize SIQE [36], LPIPS [57], and FID [20] as quantitative
evaluation metrics. As for the competition methods, APAP [54], LLC [21], and
Kandao Studio [1] are selected for which the softwares are publicly available. We
use ERP format input images for the APAP and the LLC because they were not
developed for fisheye inputs. Qualitative comparisons are shown in Fig. 4. Our
method produces the most natural, high-quality 360◦ panoramic images without
structural distortions and color inconsistency. In Table 1, there are quantitative
comparisons with the existing methods. As ablation studies, we also compare
our model without a post-color correction map. In addition, we measure the
average running time per image for all methods. Note that the running time of
the kandao studio includes time for saving a 1920× 960 image because there are
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Table 1: Quantitative result of our 1,400 test dataset. bold: best. Note that
Ours† is our model without the post-color correction map.

Metric APAP [54] LLC [21] Kandao [1] Ours†(CPU/GPU) Ours (CPU/GPU)

Time Spent (s) 8.5887 16.5126 0.8275 1.3010/0.0347 1.3870/0.0363
Pd (↓) 6.498 6.625 5.308 2.773 2.731

LPIPS (Alex) (↓) 0.647 0.722 0.266 0.122 0.118
LPIPS (VGG16) (↓) 0.652 0.690 0.408 0.178 0.175

SIQE [36] (↑) 22.644 20.602 29.399 39.528 37.714
FID [20] (↓) 585.6 608.1 224.0 132.4 140.8

Fig. 5: Qualitative results on CROSS dataset. Top: our method well preserves
structural patterns compared to existing stitching models. Bottom: our method
produces more color-consistent results than other existing methods.

no open-source codes. As reported in Table 1, our method performs better and
much faster than the existing methods. However, the results were not signifi-
cantly different according to a post-color correction map. Also, as expected, the
proposed method using GPU acceleration is much faster than other algorithms,
including the commercial kandao studio.

Results on the CROSS. To validate the versatility of the proposed method,
we evaluate the proposed method on the CROSS dataset, which contains pseudo
GT 360◦ panoramic images as supervisions. As shown in Fig. 5, our method pro-
duces more visually pleasing results compared to the existing stitching methods.
In particular, our results demonstrate robustness to structural distortion and vi-
gnetting artifacts. To measure PSNR, SSIM, and Pd, we use the pseudo-labeled
GT images, because the SamsungGear method obtains the highest MOS in [27].
Note that Mn = 1 in all pixels because masking is not required. As reported
in Table 2, the proposed model outperforms the existing methods.
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Table 2: Quantitative comparisons on CROSS dataset [27]. bold: best.

Metric OpenSource [2] EP [34] IP [4] ManMethod SVP [37] WeiMethod [53] Ours

PSNR (↑) 16.417 15.908 15.177 18.943 16.110 18.730 22.440
SSIM (↑) 0.589 0.565 0.546 0.611 0.562 0.595 0.736
Pd (↓) 3.31 3.55 3.79 3.12 3.69 3.23 2.53

Fig. 6: Ablation studies of our model. The w/o color correction and the pre-
color correction model have the unpleasant boundaries. The post-color correction
model is suffered from fading.

4.3 Ablation Studies

Effects of color correction. We conduct experiments depending on whether
the pre-color correction map Cpre

n and the post-color correction map Cpost are
used. As shown in Fig. 6, the color tone around boundary lines is inconsistent
when only pre-color correction is applied. In addition, results of only using post-
color correction suffer from fading effects as shown in the second row of Fig. 6.
Overall, the dual-color correction model using both pre-color correction and
post-color correction produces the most comfortable results.

Effects of loss. Since the images for weak supervisions have parallax between
themselves, it may not be appropriate to use a common pixel-wise regression
loss. Considering this point, we adopt the perceptual loss as in (11). Therefore,
as ablation studies, we train our model with a pixel-wise L1 loss instead of (11).
As shown in Fig. 7, models trained using L1 loss are vulnerable to parallax
distortion, which causes noticeable distortion.

Table 3: Self-comparisons according to the number of warpings K on our full
test dataset (14 sets). The number of epochs is set to 10. bold: best.

Metrics K=1 K=2 K=3 K=4 K=5

Pd (↓) 4.001 3.936 3.944 3.904 3.962
SIQE (↑) 22.89 21.16 15.28 17.89 18.29
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Fig. 7: Effects of loss. Utilizing L1 loss instead of Lp (left). Ours (right).

Effects of the number of warpings. Inspired by [47], we modified our model
to perform multipleK warpings. However, as shown in Table 3, multiple warpings
do not have a significant effect on the quantitative results. We guess that it is
because our model uses different input and output coordinates from the stitching
model in [47]. Note that cylindrical coordinates are used in [47] while our model
is operated on fisheye input and ERP output. Based on the above results, we
use the simplest model with K = 1 for all experiments.

5 Limitations and Future Works

Even though our model can be trained without genuine GTs, our research does
not take view-free inputs into account. We believe that subsequent studies based
on this paper can be extended to studies on view-free stitching. Another promis-
ing future work is video stitching to cover dynamic scenes. Although the proposed
method is developed for a static scene, it can be extended to video, and we be-
lieve that temporal artifacts such as waving effects can be solved by temporal
consistency loss as in [23].

6 Conclusion

In this paper, we present a weakly supervised method for training the real-world
stitching model. Our model takes multiple fisheye images as inputs and gener-
ates a 360◦ panorama image. For training, we generate images of weak supervi-
sions and utilize them for perceptual and SSIM losses. We verify the proposed
method on our stitching dataset as well as the CROSS dataset. Through the
various experiments, we demonstrate superior stitching performance over exist-
ing methods. In particular, it is more robust to structural artifacts and color
inconsistency problems compared to existing methods.
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