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In Sec. A of this supplementary material, we describe datasets used in our
experiments and how we obtain the annotation of conditional modalities. Sec. B de-
scribes implementation details including network architectures, hyperparameters,
hardware requirement, and training/inference time. Sec. C presents additional
experimental results. Sec. D and Sec. E discusses the potential negative societal
impact and the limitation of the proposed approach respectively.

A Datasets

We evaluate the proposed PoE-GAN approach for multimodal conditional image
synthesis on three datasets, including MM-CelebA-HQ [24], MS-COCO [11], and
a proprietary dataset of landscape images using four modalities including text,
segmentation, sketch, and style reference. The style is extracted from ground truth
images and the other modalities are obtained from either human annotation or
pseudo-labeling methods. We describe details about each dataset in the following.

MM-CelebA-HQ contains 30,000 images of celebrity faces with a resolution
of 1024×1024, which are created from the original CelebA dataset [12] using a
procedure that improves image quality and resolution by Karras et al . [5]. Each
image is annotated with text, segmentation, and sketch. While the segmentation
maps are annotated by humans [9], the text descriptions are automatically
generated from the ground truth attribute labels by Xia et al . [24]. On the
other hand, sketch maps are generated by Chen et al . [4] using the Photoshop
edge extractor and sketch simplification [18]. We use the pretrained CLIP [16]
text encoder to encode the text before feeding them to the generator. We
use the standard train-test split [17,24]. There are 24,000 and 6,000 images in
the training set and the test set, respectively. We use images in the original
resolution (1024×1024) in our main experiment and use images downsampled to
256×256 in ablation studies.

MS-COCO contains 123,287 images of complex indoor/outdoor scenes, con-
taining various common objects. We use the segmentation maps provided in
COCO-Stuff [1] as the ground truth segmentation maps for the images. In MS-
COCO, each image has up to 5 text descriptions. We use the pretrained CLIP
text encoder to extract a feature vector per description. We additionally annotate
each image with a sketch map produced by running HED [25] edge detector
followed by a sketch simplification process [18]. We use the 2017 split, which
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leads to 118,287 training images and 5,000 test images. We use images resized to
256×256 in our main experiment and to 64×64 in ablation studies.

Landscape is a proprietary dataset containing around 10 million landscape
images of resolution higher than 1024×1024. It does not come with any manual
annotation and we use DeepLab-v2 [3] to produce pseudo segmentation annotation
and HED [25] with sketch simplification [18] to produce pseudo sketch annotation.
For the text annotation, we use the CLIP image embedding as the pseudo text
embedding to train our model. We randomly choose 50,000 images as the test set
and use the rest of the images as the training set. Images are randomly cropped
to 1024×1024 during training.

B Implementation details

Our implementation is based on Pytorch [15]. We use the Adam optimizer [8] with
β1 = 0 and β2 = 0.99 and the same constant learning rate for both the generator
and the discriminator. The final model weight is given by an exponential moving
average of the generator’s weights during the course of training. To stabilize GAN
training, we employ leaky ReLU [13] with slope 0.2, R1 gradient penalty [14]
with weight 1 and lazy regularization [7] applied every 16 iterations, equalized
learning rate [7], anti-aliased resampling [28], and clip the gradient norms at
10. We also limit the range of the Gaussian log variance in product-of-experts
layers to (−θ, θ) by applying the activation function θ tanh( .

θ ). We use θ = 1
for the prior expert and θ = 10 for experts predicted from input modalities. We
use mixed-precision training in all of our experiments and clamp the output of
every convolutional/fully-connected layer to ±256 [6]. We use a dropout rate
of 0.5 when performing modality dropout. The contrastive loss temperature is
initialized at 0.3 and learnable during training. We use the relu5 1 feature in
VGG-19 to compute the image contrastive loss.

Inspired by NVAE [21], we rebalance the KL terms of different resolutions.
The rebalancing weight ωk in Eq. (9) of the main paper is proportional to the
unbalanced KL term and inversely proportional to the resolution:

ωk ∝ 1

wkhk
Ep(yi)[Ep(z<k|yi)[DKL(p(z

k|z<k, yi)||p(zk|z<k))]] , (1)

with the constraint that 1
N

∑N
k=1 ω

k = 1. The rebalancing weights encourage
having the amount of information encoded in each latent variable. We use a
running average of the rebalancing weights with a decay factor of 0.99.

B.1 Decoder

We introduced our decoder design in Sec. 3.1 of the main paper. Here, we provide
additional details. In Global PoE-Net (Fig. 4a of the main paper), each MLP
consists of 4 fully-connected layers with a hidden dimension 4 times smaller than
the input dimension. Both z0 and w are 512-dimensional. The output MLP has
two layers with a hidden dimension of 512.



Multimodal Conditional Image Synthesis with Product-of-Experts GANs 3

Snow mountains 
near a frozen
lake with pink

clouds in the sky.

CLIP (Pretrained)

MLP

(a) Text

Conv

Conv

Conv

Down

Down

Embed

Embed

Embed

(b) Segmentation

Conv

Conv

Conv

Down

Down

Embed

Embed

Embed

(c) Sketch

ResBlock

ResBlock

ResBlock

Concat

(d) Style

Fig. 1: Architecture of encoders. We use a pretrained CLIP [16] and an MLP to encoder
text, a convolutional network with input skip connections to encode segmentation/sketch
maps, and a residual network to encoder style images.

Table 1: Number of parameter of compared models on MM-CelebA-HQ (1024×1024)

StyleGAN2 SPADE-Seg pSp-Seg SPADE-Sketch pSp-Sketch TediGAN PoE-GAN

30M 96M 298M 95M 298M 565M 33M

Table 2: Number of parameters of compared models on MS-COCO 2017 (256×256)

StyleGAN2 DF-GAN DM-GAN+CL SPADE-Seg VQGAN OASIS SPADE-Sketch PoE-GAN

25M 12M 32M 280M 798M 94M 95M 142M

In Local PoE-Net (Fig. 4b of the main paper), each CNN similarly contains 4
convolutional layers with the number of filters 4 times smaller than the input
channel size. The first and last convolutions have 1×1 kernels, and the convolutions
in the middle have a kernel size of 3. The dimension of w is 512. The dimensions
of zk’s are described in Sec. B.4.

B.2 Encoders

Fig. 1 shows the architecture of encoders used in our generator to encode each
modality. The text encoder (Fig. 1a) is a 4-layer MLP with dimension 512
that processes the CLIP embedding of a caption. The segmentation and sketch
encoders are CNNs with skip connections from the input, which are illustrated
in Fig. 1b and Fig. 1c. The segmentation or sketch map is downsampled multiple
times. The embeddings of the downsampled map are added to the intermediate
outputs of the corresponding convolutional layers. The intermediate outputs
of convolutional layers are provided to the decoder via skip connections. The
style encoder for encoding the style image is a residual network with instance
normalization [20]. As shown in Fig. 1d, we obtain the style code by concatenating
the mean and standard deviation of the output of every residual block.
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Table 3: Hyper-parameters on different datasets

Hyper-parameters
MM-

CelebAHQ
MM-

CelebAHQ
MS-COCO MS-COCO Landscape

(1K × 1K) (256 × 256) (256 × 256) (64 × 64) (1K × 1K)

Learning rate 0.003 0.003 0.004 0.004 0.004

Batch size 64 64 256 128 768

Text KL weight 0.01 0.1 0.01 0.1 0.05

Segmentation KL weight 0.01 0.1 0.01 0.1 0.1

Sketch KL weight 0.1 1 0.1 1 1

Style KL weight 0.0005 0.005 0.001 0.01 0.01

Image contrastive loss weight 0.3 0.3 3 3 3

Text contrastive loss weight 0.3 0.3 0.3 0.3 0.3

Base # channels for Dec/Dis 16 64 128 256 32

Maximum # channels for Dec/Dis 512 512 1024 512 1024

Base # channels for Latent 2 16 16 64 2

Maximum # channels for Latent 32 64 64 64 32

Table 4: Hardware and training/inference speed on different datasets. We train all
models using NVIDIA Tesla V100 GPUs, except for the Landscape model which is
trained using NVIDIA Ampere A100 GPUs with 80 GB of memory. The inference time
is evaluated on a workstation with a single NVIDIA TITAN RTX GPU

MM-
CelebAHQ

MM-
CelebAHQ

MS-COCO MS-COCO Landscape

(1K × 1K) (256 × 256) (256 × 256) (64 × 64) (1K × 1K)

Number of GPUs 16 8 32 8 256

Training time 71h 35h 85h 76h 101h

Inference time (per image) 0.07s 0.04s 0.06s 0.02s 0.12s

B.3 Discriminator

As shown in Fig. 5c of the main paper, our discriminator encodes the image and
the other modalities into multiscale feature maps and computes the MPD loss at
each scale. We use a residual network to encode the image. For encoding other
modalities, we use the same architecture as described in the previous section
(Sec. B.2 and Fig. 1). However, the parameters are not shared with those encoders
used in the generator. For encoders (the style encoder or the text encoder) that
only outputs a single feature vector, we spatially replicate the feature vector to
different resolutions.

B.4 Hyper-parameters

Tab. 3 shows the hyper-parameters used on all the benchmark datasets, includ-
ing learning rate, batch size, loss weights, and channel size. The decoder and
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Table 5: Comparison of text-to-image synthesis on MM-CelebA-HQ (256×256). ↑: the
higher the better, ↓: the lower the better
Method AttnGAN [26] ControlGAN [10] DF-GAN [19] DM-GAN [30] TediGAN [24] M6-UFC [29] Ours

FID ↓ 125.98 116.32 137.60 131.05 106.37 66.72 13.71
LPIPS ↑ 0.512 0.522 0.581 0.544 0.456 0.448 0.583

discriminator have the same channel size, which is always 4 times larger than
the channel size of the modality encoders. We hence omit the channel size of
modality encoders from the table. The layer operating at the highest resolution
always has the smallest number of channels (denoted as “base # channels for
DecDis”). The number of channels doubles while the resolution halves until it
reaches a maximum number (denoted as “maximum # channels for DecDis”).
The ”Base # of channels for Latent” refers to the channel size of the feature
map zNi to the decoder extracted from the spatial modalities (segmentation and
sketch) in the highest resolution (the largest value of k is N). We also note that
the channel number of µk

i or σk
i equals that of zki . As explained in Sec. B.2, we

double the channel size as we halve the spatial resolution. The channel number
for zki doubles until it reaches the ”Maximum # of channels for Latent,” the
channel number for z0i .

B.5 Hardware and speed

We report the computation infrastructure used in our experiments Tab. 4. We
also report the training and inference speed of our model for different datasets in
the table.

C Additional results

We provide additional experimental results in this section, including more com-
parison with baselines and more analysis on the proposed approach. Please check
the accompanying video for additional results on the landscape dataset.

C.1 Model size comparison

In Tab. 1 and Tab. 2, we compare the number of parameters used in PoE-GAN
and in our baselines. We show that PoE-GAN does not use significantly more
parameters — actually it uses fewer parameters than some of the single-modal
baselines, although PoE-GAN is trained for a much more challenging task. This
shows that our improvement does not come from using a larger model.

C.2 Comparison on MM-CelebA-HQ (256×256)

In Tab. 5, We compare PoE-GAN trained on the 256×256 MM-CelebA-HQ
dataset with the text-to-image baselines reported in TediGAN [24] and M6-
UFC [29]. Our model achieves a significantly lower FID than previous methods.
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C.3 Additional comparison with TediGAN

We provide a more detailed comparison between PoE-GAN and TediGAN, the
only existing multimodal image synthesis method that can produce high-resolution
images. TediGAN mainly contains four steps: 1) encodes different modalities
into the latent space of StyleGAN, 2) mixes the latent code according to a
hand-designed rule, 3) generates the image from the latent code using StyleGAN,
and 4) iteratively refines the image. It has several disadvantages compared with
our PoE-GAN:

1. TediGAN relies on a pretrained unconditional generator, and its image quality
is upper bounded by that unconditional model. This is not ideal because
unconditional models usually produce images of lower quality than conditional
ones. On the other hand, PoE-GAN learns conditional and unconditional
generation simultaneously, and its FID improves when more conditions are
provided, as shown in Tab. 1 of the main paper.

2. TediGAN uses a handcrafted rule to combine the latent code from different
modalities. Specifically, the StyleGAN latent space contains 14 layers of latent
vectors. TediGAN uses the top-layer latent vectors from one modality and
the bottom-layer latent vectors from another modality when combining two
modalities. This combination rule cannot be generalized to other generator
architectures and other modalities. In contrast, we use product-of-experts
with learned parameters to combine different modalities which is more general.

3. Sampling from TediGAN is very slow due to its instance-level optimization.
It takes 51.2 seconds to generate a 1024×1024 image with TediGAN, while
PoE-GAN only needs 0.07 seconds.

C.4 Training PoE-GAN with a single modality

Although PoE-GAN is designed for the multimodal conditional image synthesis
task, it can be trained in a single modality setting. That is, we can train a
pure segmentation-to-image model, a pure sketch-to-image model, or a pure
text-to-image model using the same PoE-GAN model. Here, we compare a PoE-
GAN model trained using multiple modalities with the same PoE-GAN model
but trained using one single modality. We compare their performance when
applied to convert the user input in a single modality to the output image. This
experiment helps understand the penalty the model pays for the multimodal
synthesis capability.

As shown in Tab. 6 and Tab. 7, the model trained for a specific modality
always slightly outperforms the joint model when conditioned on that modality.
This indicates that the increased task complexity of an additional modality
outweighs the benefits of additional annotations from that modality. This result
also shows that the improvement of PoE-GAN over state-of-the-art unimodal
image synthesis methods comes from our architecture and training scheme rather
than additional annotations.
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Table 6: Comparison on MM-CelebA-HQ (256×256) using FID. We compare our PoE-
GAN trained using all modalities with PoE-GAN trained using a single modality. Note
that PoE-GAN trained using a single modality can also be used for unconditional
synthesis and we also report the achieved FID in the table

Uncond Text Seg Sketch All

Ours (Uncond) 13.0 — — — —

Ours (Text) 13.8 13.4 — — —

Ours (Seg) 14.2 — 10.9 — —

Ours (Sketch) 14.2 — — 9.5 —

Ours (All) 14.9 13.7 12.9 9.9 8.5

Table 7: Comparison on MS-COCO 2017 (64×64) using FID. We compare our PoE-GAN
trained using all modalities with PoE-GAN trained using a single modality. Note that
PoE-GAN trained using a single modality can also be used for unconditional synthesis
and we also report the achieved FID in the table

Uncond Text Seg Sketch All

Ours (Uncond) 23.3 — — — —

Ours (Text) 24.0 21.1 — — —

Ours (Seg) 25.5 — 16.3 — —

Ours (Sketch) 24.7 — — 24.7 —

Ours (All) 26.6 22.2 17.1 30.2 17.1

C.5 Additional qualitative examples

In Figs. 3 to 7, we show that PoE-GAN can generate diverse images when
conditioned on two different input modalities. We show additional qualitative
comparison of text-to-image synthesis and segmentation-to-image synthesis on
MS-COCO in Figs. 8 and 9 respectively. Figs. 10 to 12 show uncurated samples
generated unconditionally on MM-CelebA-HQ, MS-COCO, and Landscape.

Huge ocean waves
clash into rocks.

A beach with black
sand and palm trees.

Fig. 2: Examples generated by PoE-GAN when conditioned on contradictory segmenta-
tion and text inputs. The text input is simply ignored.
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D Potential negative societal impacts

Image synthesis networks can help people express themselves and artists create
digital content, but they can undeniably also be misused for visual misinforma-
tion [23]. Enabling users to synthesize images using multiple modalities makes it
even easier to create a desired fake image. We encourage research that helps detect
or prevent these potential negative misuses. We will provide implementations and
training data to help forensics researchers detect fake images [22,2] and develop
effective schemes for watermarking networks and training data [27]. While image
synthesis methods can help people express themselves and artists create digital
content for movies and games, undeniably, they can be maliciously used for visual
misinformation [23]. Our method allows users to synthesize images using multiple
modalities, which makes it even easier to create the ideal fake image. We are
aware of its potential negative impacts and are taking preventive steps, including
providing reference implementations for deep fake detection research [22] and
developing effective watermarking schemes [27].

E Limitation

We find that the PoE-GAN model does not work well when conditioned on
contradictory multimodality inputs. For example, when the segmentation and
text are contradictory to each other, the text input is usually ignored, as shown
in Fig. 2. In the product-of-experts formulation, an expert with a larger variance
will have a smaller influence on the product distribution, and we indeed find the
variance of the text expert is usually larger than that of the segmentation expert,
which explains the behavior of our model.

In addition, as discussed in Sec. C.4, the PoE-GAN model still pays the
penalty in terms of a higher FID score as achieving the multimodal conditional
image synthesis capability. This indicates room for improvement in the fusing of
multiple modalities, and we leave this for future work
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Condition #1 Condition #2 Samples

This person is
wearing hat,

lipstick. She has
big lips, and
wavy hair.

This smiling
man has bushy
eyebrows, and
bags under eyes.

The person has
goatee,

mustache, and
sideburns.

Fig. 3: Examples of multimodal conditional image synthesis on MM-CelebA-HQ. We
show three random samples from PoE-GAN conditioned on two modalities.
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Condition #1 Condition #2 Samples
Large mustard

yellow
commercial

airplane parked
in the airport.

A rain covered
terrain after a
night of rain.

Fig. 4: Examples of multimodal conditional image synthesis on MS-COCO. We show
three random samples from PoE-GAN conditioned on two modalities (from top to
bottom: text + segmentation, text + sketch, and segmentation + sketch).

Condition #1
Condition #2

(Style) Samples

A person on a
surf board

riding a wave.

A person on a
surf board

riding a wave.

Fig. 5: Examples of multimodal conditional image synthesis on MS-COCO. We show
three random samples from PoE-GAN conditioned on two modalities, one being
text/segmentation/sketch and another being style reference.
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Condition #1 Condition #2 Samples

Trees near a
lake in an

autumn rainy
day.

Huge ocean
waves crash into
rocks in a day
with colorful

clouds.

Waterfall and
river between
mountains.

A white sand
beach near cyan

ocean.

Fig. 6: Examples of multimodal conditional image synthesis on Landscape. We show
three random samples from PoE-GAN conditioned on two modalities (from top to
bottom: text + segmentation, text + sketch, and segmentation + sketch).
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Condition #1
Condition #2

(Style) Samples

A lake
surrounded by
mountains.

A lake
surrounded by
mountains.

Fig. 7: Examples of multimodal conditional image synthesis on Landscape. We show
three random samples from PoE-GAN conditioned on two modalities, one being
text/segmentation/sketch and another being style reference.
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Text Ground truth DF-GAN DM-GAN + CL PoE-GAN (Ours)

A kitchen with a
counter and a

table with chairs.

A view of
mountains from
the window of a

jet airplane.

A blueberry cake
is on a plate and
is topped with

butter.

Three men each
holding something
and posing for a

picture.

A plate holds a
good size portion
of a cooked, mixed
dish that includes
broccoli and pasta.

A red blue and
yellow train and
some people on a

platform.

A man blowing
out candles on a
birthday cake.

A desk set up as a
workstation with a

laptop.

Fig. 8: Additional visual comparison of text-to-image synthesis on MS-COCO 2017.
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Segmentation Ground truth SPADE OASIS PoE-GAN (Ours)

Fig. 9: Additional visual comparison of segmentation-to-image synthesis on MS-COCO
2017.
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Fig. 10: Uncurated unconditional results on the 1024×1024 MM-CelebA-HQ dataset.

Fig. 11: Uncurated unconditional results on the 256×256 MS-COCO dataset.



16 X. Huang et al.

Fig. 12: Uncurated unconditional results on the 1024×1024 landscape dataset.
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