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Fig. 1: Given conditional inputs in multiple modalities (the left column), our approach
can synthesize images that satisfy all input conditions (the right column, (g)) or an
arbitrary subset of input conditions (the middle column, (a)–(f)) with a single model.

Abstract. Existing conditional image synthesis frameworks generate im-
ages based on user inputs in a single modality, such as text, segmentation,
or sketch. They do not allow users to simultaneously use inputs in multi-
ple modalities to control the image synthesis output. This reduces their
practicality as multimodal inputs are more expressive and complement
each other. To address this limitation, we propose the Product-of-Experts
Generative Adversarial Networks (PoE-GAN) framework, which can syn-
thesize images conditioned on multiple input modalities or any subset
of them, even the empty set. We achieve this capability with a single
trained model. PoE-GAN consists of a product-of-experts generator and
a multimodal multiscale projection discriminator. Through our carefully
designed training scheme, PoE-GAN learns to synthesize images with
high quality and diversity. Besides advancing the state of the art in mul-
timodal conditional image synthesis, PoE-GAN also outperforms the best
existing unimodal conditional image synthesis approaches when tested in
the unimodal setting. The project website is available at this link.
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1 Introduction

Conditional image synthesis allows users to use their creative inputs to control
the output of image synthesis methods. It has found applications in many content
creation tools. Over the years, a variety of input modalities have been studied,
mostly based on conditional GANs [11,19,34,27]. To this end, we have various
single modality-to-image models. When the input modality is text, we have the
text-to-image model [41,62,58,67,51,60,40]. When the input modality is a segmen-
tation mask, we have the segmentation-to-image model [19,54,36,29,45,8]. When
the input modality is a sketch, we have the sketch-to-image model [44,6,10,4].

However, different input modalities are best suited for conveying different
types of conditioning information. For example, as seen in the first column of
Fig. 1, segmentation makes it easy to define the coarse layout of semantic classes
in an image—the relative locations of sky, cloud, mountain, and water regions.
Sketch allows us to specify the structure and details within the same semantic
region, such as individual mountain ridges. On the other hand, text is well-suited
for modifying and describing objects or regions in the image, which cannot be
achieved via segmentation or sketch, e.g ., ‘frozen lake’ and ‘pink clouds’ in
Fig. 1. Despite this synergy among modalities, prior work has considered image
generation conditioned on each modality as a distinct task and studied it in
isolation. Existing models thus fail to utilize complementary information available
in different modalities. Clearly, a conditional generative model that can combine
input information from all available modalities would be of immense value.

Even though the benefits are enormous, the task of conditional image synthesis
with multiple input modalities poses several challenges. First, it is unclear how
to combine multiple modalities with different dimensions and structures in a
single framework. Second, from a practical standpoint, the generator needs to
handle missing modalities since it is cumbersome to ask users to provide every
single modality all the time. This means that the generator should work well
even when only a subset of modalities are provided. Lastly, conditional GANs are
known to be susceptible to mode collapse [19,34], wherein the generator produces
identical images when conditioned on the same inputs. This makes it difficult for
the generator to produce diverse output images that capture the full conditional
distribution when conditioned on an arbitrary set of modalities.

We present Product-of-Experts Generative Adversarial Networks (PoE-GAN),
a framework that can generate images conditioned on any subset of the input
modalities presented during training, as illustrated in Fig. 1 (a)-(g). This frame-
work provides users unprecedented control, allowing them to specify exactly what
they want using multiple complementary input modalities. When users provide no
inputs, it falls back to an unconditional GAN model [11,39,32,20,2,22,23,21]. One
key ingredient of our framework is a novel product-of-experts generator that can
effectively fuse multimodal user inputs and handle missing modalities (Sec. 3.1).
A novel hierarchical and multiscale latent representation leads to better usage of
the structure in spatial modalities, such as segmentation and sketch (Sec. 3.2).
Our model is trained with a multimodal projection discriminator (Sec. 3.4) to-
gether with contrastive losses for better input-output alignment. In addition, we
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adopt modality dropout for additional robustness to missing inputs (Sec. 3.5).
Extensive experiment results show that PoE-GAN outperforms prior work in both
multimodal and unimodal settings (Sec. 4), including state-of-the-art approaches
specifically designed for a single modality. We also show that PoE-GAN can
generate diverse images when conditioned on the same inputs.

2 Related Work

Image Synthesis. Our network architecture design is inspired by previous work
in unconditional image synthesis. Our decoder employs some techniques proposed
in StyleGAN [22] such as global modulation. Our latent space is constructed
in a way similar to hierarchical variational auto-encoders (VAEs) [48,30,52,7].
While hierarchical VAEs encode the image itself to the latent space, our network
encodes conditional information from different modalities into a unified latent
space. Our discriminator design is inspired by the projection discriminator [33]
and multiscale discriminators [54,29], which we extend to our multimodal setting.

Multimodal Image Synthesis. Prior work [50,53,56,46,49,25] has explored
learning the joint distribution of multiple modalities using VAEs [24,42]. Some of
them [53,56,25] use a product-of-experts inference network to approximate the
posterior distribution. This is conceptually similar to how our generator combines
information from multiple modalities. While their goal is to estimate the complete
joint distribution, we focus on learning the image distribution conditioned on
other modalities. Besides, our framework is based on GANs rather than VAEs
and we perform experiments on high-resolution and large-scale datasets, unlike
the above work. Recently, Xia et al . [57] propose a GAN-based multimodal
image synthesis method named TediGAN. Their method relies on a pretrained
unconditional generator. However, such a generator is difficult to train on a
complex dataset such as MS-COCO [26]. Concurrently, Zhang et al . [65] propose
a multimodal image synthesis method based on VQGAN. The way they combine
different modalities is similar to our baseline using concatenation and modality
dropout (Sec. 4.2). We will show that our product-of-experts generator design
significantly improves upon this baseline. Another parallel work by Gafniet al . [9]
propose a VQGAN model that is conditioned on both text and segmentation.
They assume both modalities are always present at inference time and cannot
deal with missing modalities.

3 Product-of-experts GANs

Given a dataset of images x paired withM different input modalities (y1, y2, ..., yM ),
our goal is to train a single generative model that learns to capture the image dis-
tribution conditioned on an arbitrary subset of possible modalities p(x|Y),∀Y ⊆
{y1, y2, ..., yM}. In this paper, we consider four different modalities including text,
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semantic segmentation, sketch, and style reference. Note that our framework is
general and can easily incorporate additional modalities.

Learning image distributions conditioned on any subset of M modalities is
challenging because it requires a single generator to simultaneously model 2M

distributions. Of particular note, the generator needs to capture the unconditional
image distribution p(x) when Y is an empty set, and the unimodal conditional
distributions p(x|yi),∀i ∈ {1, 2, ...,M}, such as the image distribution conditioned
on text alone. These settings have been popular and widely studied in isolation,
and we aim to bring them all under a unified framework.

3.1 Product-of-experts modeling

Our generator consists of a decoder G that deterministically maps a latent
code z to an output image x, and a set of encoders that estimate the latent
distribution p(z|Y) conditioned on a set of modalities Y. The conditional im-
age distribution p(x|Y) is implicitly defined as x = G(z), z ∼ p(z|Y). A naive
approach would require us to train 2M different encoder networks, one for
each possible combination of modalities. This is highly parameter-inefficient
and does not scale to a large number of modalities. Fortunately, if we as-
sume all modalities (y1, ..., yM ) are conditionally independent given the image

(x or equivalently z), i.e., p(y1, ..., yM |z) = ∏M
i=1 p(yi|z)1, we can prove that the

distribution p(z|Y) is proportional to a product of distributions:

p(z|Y) =
p(Y|z)p(z)

p(Y)
=

p(z)

p(Y)

∏
yi∈Y

p(yi|z) =
p(z)

p(Y)

∏
yi∈Y

p(z|yi)p(yi)
p(z)

=

∏
yi∈Y p(z|yi)
(p(z))|Y|−1

·
∏

yi∈Y p(yi)

p(Y)
∝

∏
yi∈Y p(z|yi)
(p(z))|Y|−1

= p(z)
∏
yi∈Y

q̃(z|yi) , (1)

where q̃(z|yi) ≡ p(z|yi)
p(z) . Dividing it by the normalization constant, we have

p(z|Y) ∝ p(z)
∏
yi∈Y

q(z|yi), q(z|yi) =
q̃(z|yi)∫
q̃(z|yi)dz

, (2)

where q(z|yi) is a latent distribution only dependent on a single modality yi and
p(z) is the unconditional prior distribution. As a result, we can reduce the number
of encoders from 2M to M , with each encoder estimating the distribution q(z|yi)
from a single modality2. This idea of combining several distributions (“experts”)
by multiplying them has been previously referred to as product-of-experts [16].

Figs. 2a and 2b show that the product of distributions is intuitively analogous
to the intersection of sets. The product distribution only has a high density in

1 The conditional independence assumption is sound in our setting since an image alone
contains sufficient information to infer a modality independent of other modalities.
For example, given an image, we do not need its caption to infer its segmentation.

2 With a slight abuse of notation, we will use q(z|yi) (and similarly p(z|Y)) to denote
both the “true” distribution and the estimated distribution produced by our network.
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Fig. 2: The product of distributions (a) is analogous to the intersection of sets (b).

regions where all distributions have a relatively high density. Also, the product
distribution is always narrower (of lower entropy) than the individual distributions,
just like the intersection of sets is always smaller than the individual set. While
each set poses a hard constraint, each individual distribution in a product
represents a soft constraint, which is more amenable to neural network learning.
In the multimodal conditional image synthesis setting, the model samples images
from the prior p(z) when no modalities are given. Each additional modality yi
specifies a set of images that satisfy a certain constraint and we model that by
multiplying the prior with an additional distribution q(z|yi).

3.2 Multiscale and hierarchical latent space

Some of the modalities we consider (e.g ., sketch, segmentation) are two-dimensional
and naturally contain information at multiple scales. Therefore, we devise a
hierarchical latent space with latent variables at different resolutions. This al-
lows us to directly pass information from each resolution of the encoder to
the corresponding resolution of the latent space, so that the high-resolution
control signals can be better preserved. Mathematically, our latent code is
partitioned into groups z = (z0, z1, ..., zN ) where z0 ∈ Rc0 is a feature vec-
tor and zk ∈ Rck×rk×rk , 1 ≤ k ≤ N are feature maps of increasing resolu-
tions (rk+1 = 2rk, r1 = 4, rN is the image resolution). We can therefore decompose

the prior p(z) into
∏N

k=0 p(z
k|z<k) and the experts q(z|yi) into

∏N
k=0 q(z

k|z<k, yi),
where z<k denotes (z0, z1, ..., zk−1). Following Eq. (2), we assume the conditional
latent distribution at each resolution is a product-of-experts given by

p(zk|z<k,Y) ∝ p(zk|z<k)
∏
yi∈Y

q(zk|z<k, yi) , (3)

where p(zk|z<k) = N
(
µk
0 , σ

k
0

)
and q(zk|z<k, yi) = N

(
µk
i , σ

k
i

)
are independent

Gaussian distributions with mean and standard deviation parameterized by a
neural network.3 It can be shown [55] that the product of Gaussian experts is

3 Except for p(z0), which is simply a standard Gaussian distribution.



6 X. Huang et al.

Global PoE-Net

 
DecoderSegmentation 

Encoder
Sketch 

Encoder
Text 

Encoder
Style 

Encoder

Snow mountains
near a frozen lake
with pink clouds in

the sky.

Fig. 3: An overview of our generator. The architecture of Global PoE-Net and decoder
are detailed in Fig. 4a and Fig. 4b respectively. The architecture of modality encoders
are described in Supplementary Material B.
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(b) A residual block in our decoder.

Fig. 4: (a) Global PoE-Net. We sample a latent feature vector z0 using product-of-
experts (Eq. (4) in Sec. 3.2), which is then processed by an MLP to output a feature
vector w. (b) A residual block in our decoder. Local PoE-Net samples a latent feature
map zk using product-of-experts. Here ⊕ denotes concatenation. LG-AdaIN uses w and
zk to modulate the feature activations in the residual branch.

also a Gaussian p(zk|z<k,Y) = N (µk, σk), with

µk =

µk
0

(σk
0 )

2 +
∑

i
µk
i

(σk
i )

2

1
(σk

0 )
2 +

∑
i

1
(σk

i )
2

, σk =
1

1
(σk

0 )
2 +

∑
i

1
(σk

i )
2

. (4)

3.3 Generator architecture

Figure 3 shows an overview of our generator architecture. We encode each
modality into a feature vector which is then aggregated in Global PoE-Net. We
use convolutional networks with input skip connections to encode segmentation
and sketch maps, a residual network to encode style images, and CLIP [38] to
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encode text. Details of all modality encoders are given in Supplementary Material
B. The decoder generates the image using the output of Global PoE-Net and
skip connections from the segmentation and sketch encoders.

In Global PoE-Net (Fig. 4a), we predict a Gaussian q(z0|yi) = N
(
µ0
i , σ

0
i

)
from the feature vector of each modality using an MLP. We then compute the
product of Gaussians including the prior p(z0) = N (µ0

0, σ
0
0) = N (0, I) and sample

z0 from the product distribution. An MLP further convert z0 to the vector w.
The decoder mainly consists of a stack of residual blocks4 [14], each of which is

shown in Fig. 4b. Local PoE-Net samples the latent feature map zk at the current
resolution from the product of p(zk|z<k) = N

(
µk
0 , σ

k
0

)
and q(zk|z<k, yi) =

N
(
µk
i , σ

k
i

)
,∀yi ∈ Y, where

(
µk
0 , σ

k
0

)
is computed from the output of the last

layer and
(
µk
i , σ

k
i

)
is computed by concatenating the output of the last layer and

the skip connection from the corresponding modality. Note that only modalities
that have skip connections (segmentation and sketch, i.e. i = 1, 4) contribute to
the computation. Other modalities (text and style reference) only provide global
information but not local details. The latent feature map zk produced by Local
PoE-Net and the feature vector w produced by Global PoE-Net are fed to our
local-global adaptive instance normalization (LG-AdaIN) layer,

LG-AdaIN(hk, zk, w) = γw

(
γzk

hk − µ(hk)

σ(hk)
+ βzk

)
+ βw , (5)

where hk is a feature map in the residual branch after convolution, µ(hk) and
σ(hk) are channel-wise mean and standard deviation. βw, γw are feature vectors
computed from w, while βzk , γzk are feature maps computed from zk. The
LG-AdaIN layer can be viewed as a combination of AdaIN [17] and SPADE [36]
that takes both a global feature vector and a spatially-varying feature map to
modulate the activations.

3.4 Multiscale multimodal projection discriminator

Our discriminator receives the image x and a set of conditions Y as inputs and
produces a score D(x,Y) = sigmoid(f(x,Y)) indicating the realness of x given
Y . Under the GAN objective [11], the optimal solution of f is

f∗(x,Y) = log
q(x)

p(x)︸ ︷︷ ︸
unconditional term

+
∑
yi∈Y

log
q(yi|x)
p(yi|x)︸ ︷︷ ︸

conditional term

, (6)

if we assume conditional independence of different modalities given x. The
projection discriminator (PD) [33] proposes to use the inner product to estimate
the conditional term. This implementation restricts the conditional term to
be relatively simple, which imposes a good inductive bias that leads to strong
empirical results. We propose a multimodal projection discriminator (MPD) that

4 Except for the first layer that convolves a constant feature map and the last layer
that convolves the previous output to synthesize the output.
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Fig. 5: Comparison between the standard projection discriminator and our proposed
multiscale multimodal projection discriminator.

generalizes PD to our multimodal setting. As shown in Fig. 5a, the original PD
first encodes both the image and the conditional input into a shared latent space.
It then uses a linear layer to estimate the unconditional term from the image
embedding and uses the inner product between the image embedding and the
conditional embedding to estimate the conditional term. The unconditional term
and the conditional term are summed to obtain the final discriminator logits. In
our multimodal scenario, we simply encode each observed modality and add its
inner product with the image embedding to the final loss (Fig. 5b)

f(x,Y) = Linear(Dx(x)) +
∑
yi∈Y

DT
yi
(yi)Dx(x) . (7)

For spatial modalities such as segmentation and sketch, it is more effective
to enforce their alignment with the image in multiple scales [29]. As shown in
Fig. 5c, we encode the image and spatial modalities into feature maps of different
resolutions and compute the MPD loss at each resolution. We compute a loss
value at each location and resolution, and obtain the final loss by averaging first
across locations then across resolutions. The resulting discriminator is named
as the multiscale multimodal projection discriminator (MMPD) and detailed in
Supplementary Material B.

3.5 Losses and training procedure

Latent regularization. Under the PoE assumption (Eq. (2)), the marginalized
conditional latent distribution should match the unconditional prior:∫

p(z|yi)p(yi)dyi = p(z|∅) = p(z) . (8)

To this end, we minimize the Kullback-Leibler (KL) divergence from the prior
distribution p(z) to the conditional latent distribution p(z|yi) at every resolution

LKL =
∑
yi∈Y

ωi

∑
k

ωkEp(z<k|yi)

[
DKL(p(z

k|z<k, yi)||p(zk|z<k))
]
, (9)
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Fig. 6: Visual comparison of segmentation-to-image synthesis on MS-COCO 2017.

Text Ground truth DF-GAN DM-GAN+CL Ours
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Fig. 7: Visual comparison of text-to-image synthesis on MS-COCO 2017.

where ωk is a resolution-dependent rebalancing weight and ωi is a modality-specific
loss weight. We describe both weights in detail in Supplementary Material B.

The KL loss also reduces conditional mode collapse since it encourages
the conditional latent distribution to be close to the prior and therefore have
high entropy. From the perspective of information bottleneck [1], the KL loss
encourages each modality to only provide the minimum information necessary to
specify the conditional image distribution.

Contrastive losses. The contrastive loss has been widely adopted in represen-
tation learning [5,13] and more recently in image synthesis [35,61,28,12]. Given
a batch of paired vectors (u,v) = {(ui, vi), i = 1, 2, ..., N}, the symmetric cross-
entropy loss [64,38] maximizes the similarity of the vectors in a pair while keeping
non-paired vectors apart

Lce(u,v) = − 1

2N

N∑
i=1

log
exp(cos(ui, vi)/τ)∑N
j=1 exp(cos(ui, vj)/τ)

− 1

2N

N∑
i=1

log
exp(cos(ui, vi)/τ)∑N
j=1 exp(cos(uj , vi)/τ)

, (10)

where τ is a temperature hyper-parameter. We use two kinds of pairs to construct
two loss terms: the image contrastive loss and the conditional contrastive loss.
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The image contrastive loss maximizes the similarity between a real image x
and a fake image x̃ synthesized given the corresponding conditional inputs:

Lcx = Lce(Evgg(x), Evgg(x̃)) , (11)

where Evgg is a pretrained VGG [47] encoder. This loss serves a similar purpose
to the widely used perceptual loss but has been found to perform better [35,61].

The conditional contrastive loss aims to better align images with the corre-
sponding conditions. Specifically, the discriminator is trained to maximize the
similarity between its embedding of a real image x and the conditional input yi.

LD
cy =

M∑
i=1

Lce(Dx(x), Dyi(yi)) , (12)

where Dx and Dyi are two modules in the discriminator that extract features
from x and yi, respectively, as shown in Eq. (7) and Fig. 5b. The generator is
trained with the same loss, but using the generated image x̃ instead of the real
image to compute the discriminator embedding,

LG
cy =

M∑
i=1

Lce(Dx(x̃), Dyi
(yi)) . (13)

In practice, we only use the conditional contrastive loss for text since it consumes
too much GPU memory to use the conditional contrastive loss for the other
modalities, especially when the image resolution and batch size are large. A
similar image-text contrastive loss is used in XMC-GAN [61], where they use a
non-symmetric cross-entropy loss that only includes the first term in Eq. (10).

Full training objective. In summary, the generator loss LG and the discrimi-
nator loss LD can be written as

LG = LG
GAN + LKL + λ1Lcx + λ2LG

cy, LD = LD
GAN + λ2LD

cy + λ3LGP , (14)

where LG
GAN and LD

GAN are non-saturated GAN losses [11], LGP is the R1 gradient
penalty loss [31], and λ1, λ2, λ3 are weights associated with the loss terms.

Modality dropout. By design, our generator, discriminator, and loss terms are
able to handle missing modalities. We also find that randomly dropping out some
input modalities before each training iteration further improves the robustness
of the generator towards missing modalities at test time.

4 Experiments

We evaluate the proposed approach on several datasets, including MM-CelebA-
HQ [57], MS-COCO 2017 [26] with COCO-Stuff annotations [3], and a proprietary
dataset of landscape images. Images are labeled with all input modalities obtained
from either manual annotation or pseudo-labeling methods. More details about
datasets and the pseudo-labeling procedure are in Supplementary Material A.
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Table 1: FID Comparison on MM-CelebA-HQ (1024×1024). We evaluate models con-
ditioned on different modalities (from left to right: no conditions, text, segmentation,
sketch, and all three modalities). The best scores are highlighted in bold

Uncond Text Seg Sketch All
StyleGAN2 [23] 11.7 — — — —
SPADE-Seg [36] — — 48.6 — —
pSp-Seg [43] — — 44.1 — —
SPADE-Sketch [36] — — — 33.0 —
pSp-Sketch [43] — — — 45.8 —

TediGAN [57] — 38.4 45.1 45.1 45.1
PoE-GAN (Ours) 10.5 10.1 9.9 9.9 8.3

Table 2: Comparison on MS-COCO 2017 (256×256) using FID. We evaluate models
conditioned on different modalities (from left to right: no conditions, text, segmentation,
sketch, and all three modalities). The best scores are highlighted in bold

Uncond Text Seg Sketch All
StyleGAN2 [23] 43.6 — — — —
DF-GAN [51] — 45.2 — — —
DM-GAN + CL [60] — 29.9 — — —
SPADE-Seg [36] — — 22.1 — —
VQGAN [8] — — 21.6 — —
OASIS [45] — — 19.2 — —
SPADE-Sketch [36] — — — 63.7 —

PoE-GAN (Ours) 43.4 20.5 15.8 25.5 13.6

4.1 Main results

We compare PoE-GAN with a recent multimodal image synthesis method named
TediGAN [57] and also with state-of-the-art approaches specifically designed for
each modality. For text-to-image, we compare with DF-GAN [51] and DM-GAN
+ CL [60] on MS-COCO. Since the original models are trained on the 2014 split,
we retrain their models on the 2017 split using the official code. For segmentation-
to-image synthesis, we compare with SPADE [36], VQGAN [8], OASIS [45],
and pSp [43]. For sketch-to-image synthesis, we compare with SPADE [36] and
pSp [43]. We additionally compare with StyleGAN2 [23] in the unconditional
setting. We use Clean-FID [37] for benchmarking due to its reported benefits
over previous implementations of FID [15].5

Results on MM-CelebA-HQ and MS-COCO are summarized in Tab. 1 and
Tab. 2, respectively. PoE-GAN obtains a much lower FID than TediGAN in all set-
tings on MM-CelebA-HQ. In Supplementary Material C.3, we compare PoE-GAN
with TediGAN in more detail and show that PoE-GAN is faster and more general
than TediGAN. When conditioned on a single modality, PoE-GAN surprisingly
outperforms the state-of-the-art method designed specifically for that modality
on both datasets, although PoE-GAN is trained for a more general purpose. We
note that PoE-GAN and TediGAN are trained on multiple modalities while other
baselines are trained on an individual modality or unconditionally (StyleGAN2).

5 As a result, the baseline scores differ slightly from those in the original papers.
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A lake in the desert with
mountains at a distance.

A waterfall in sunset. A mountain with pine trees
in a starry winter night.

Fig. 8: Examples of multimodal conditional image synthesis results produced by
PoE-GAN trained on the 1024×1024 landscape dataset. We show the segmenta-
tion/sketch/style inputs on the bottom right of the generated images for the results in
the first row. The results in the second row additionally leverage text inputs, which are
shown below the corresponding generated images. Please zoom in for details.

In Supplementary Material C.4, we further show that PoE-GAN trained on a
single modality always outperforms the multimodal-trained PoE-GAN when
evaluated on that modality. This shows that the improvement of PoE-GAN over
state-of-the-art unimodal image synthesis methods comes from our architecture
and training scheme rather than additional annotations. In Figs. 6 and 7, we
qualitatively compare PoE-GAN with previous segmentation-to-image and text-
to-image methods on MS-COCO. We find that PoE-GAN produces images of
much better quality and can synthesize realistic objects with complex struc-
tures, such as cats and stop signs. More qualitative comparisons are included in
Supplementary Material C.5.

Multimodal generation examples. In Fig. 8, we show example images gener-
ated by our PoE-GAN using multiple input modalities on the landscape dataset.
Our model is able to synthesize a wide range of landscapes in high resolution
with photo-realistic details. More results are included in Supplementary Material
C.5, where we additionally show that PoE-GAN can generate diverse images
when given the same conditional inputs.
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Table 3: Ablation study on MM-CelebA-HQ (256×256). The best scores are highlighted
in bold and the second best ones are underlined

Uncond Text Segmentation Sketch All

Methods FID↓ FID↓ LPIPS↑ FID↓ LPIPS↑ FID↓ LPIPS↑ FID↓ LPIPS↑
(a)Concatenation + dropout 29.3 26.4 0.33 19.4 0.22 9.2 0.11 7.7 0.11
(b)Ours w/o KL loss 29.1 26.6 0.35 18.1 0.21 9.1 0.10 7.7 0.12
(c)Ours w/o modality dropout 30.8 31.6 0.50 21.0 0.39 28.0 0.34 9.5 0.30
(d)Ours w/o MMPD 21.5 20.8 0.48 18.3 0.40 16.4 0.36 16.2 0.34
(e)Ours w/o image contrastive 15.4 14.5 0.55 13.5 0.46 10.2 0.44 9.5 0.42
(f) Ours w/o text contrastive 15.8 15.0 0.56 13.1 0.40 10.0 0.39 8.9 0.38
(g)Ours 14.9 13.7 0.58 12.9 0.43 9.9 0.37 8.5 0.35

Table 4: Ablation study on MS-COCO 2017 (64×64). The best scores are highlighted
in bold and the second best ones are underlined

Uncond Text Segmentation Sketch All

Methods FID↓ FID↓ LPIPS↑ FID↓ LPIPS↑ FID↓ LPIPS↑ FID↓ LPIPS↑
(a)Concatenation + dropout 59.1 30.7 0.40 20.4 0.16 36.1 0.27 16.6 0.12
(b)Ours w/o KL loss 59.3 30.5 0.39 21.5 0.16 33.0 0.27 16.9 0.12
(c)Ours w/o modality dropout 86.2 87.8 0.58 19.9 0.44 85.1 0.55 18.7 0.47
(d)Ours w/o MMPD 43.1 40.2 0.64 21.7 0.46 45.5 0.57 21.1 0.42
(e)Ours w/o image contrastive 25.7 21.3 0.64 18.0 0.50 37.9 0.61 18.5 0.54
(f) Ours w/o text contrastive 27.6 26.0 0.66 17.4 0.46 33.5 0.55 17.9 0.43
(g)Ours 26.6 22.2 0.65 17.1 0.47 30.2 0.58 17.1 0.44

4.2 Ablation studies

In Tabs. 3 and 4, we analyze the importance of different components of PoE-GAN.
We use LPIPS [63] as an additional metric to evaluate the diversity of images
conditioned on the same input. Specifically, we randomly sample two output
images conditioned on the same input and report the average LPIPS distance
between the two outputs. A higher LPIPS score indicates more diverse outputs.

First, we compare our product-of-experts generator (row (g)) with a baseline
that simply concatenates the embedding of all modalities, while performing
modality dropout (missing modality embeddings set to zero). As seen in row (a),
this baseline only works well when all modalities are available and its FID signifi-
cantly drops when some modalities are missing. Further, the output images have
low diversity as indicated by the LPIPS score. This is not surprising as previous
work has shown that conditional GANs are prone to mode collapse [66,18,59].

Row (b) of Tabs. 3 and 4 shows that the KL loss is important for training
our model. Without it, our model suffers from low sample diversity and lack
of robustness towards missing modalities, similar to the concatenation baseline
described above. The variances of individual experts become near zero without
the KL loss. The latent code zk then becomes a deterministic weighted average
of the mean of each expert, which is equivalent to concatenating all modality
embeddings and projecting it with a linear layer. This explains why our model
without the KL loss behaves similarly to the concatenation baseline. Row (c)
shows that our modality dropout scheme is important for handling missing
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Table 5: User study on text-to-image synthesis. Each column shows the percentage of
users that prefer the image generated by our model over the baseline

DF-GAN [51] DM-GAN + CL [60]

Ours vs. 82.1% 72.9%

Table 6: User study on segmentation-to-image synthesis. Each column shows the
percentage of users that prefer the image generated from our model over the baseline

SPADE [36] VQGAN [8] OASIS [45]

Ours vs. 69% 66.7% 64.9%

modalities. Without it, the model tends to overly rely on the most informative
modality, such as segmentation in MS-COCO.

To evaluate the proposed multiscale multimodal discriminator architecture,
we replace MMPD with a discriminator that receives concatenated images and
all conditional inputs. Row (d) shows that MMPD is much more effective than
such a concatenation-based discriminator in all settings.

Finally in rows (e) and (f), we show that contrastive losses are useful but
not essential. The image contrastive loss slightly improves FID in most settings,
while the text contrastive loss improves FID for text-to-image synthesis.

4.3 User study

We conduct a user study to compare PoE-GAN with state-of-the-art text-to-
image and segmentation-to-image synthesis methods on MS-COCO. We show
users two images generated by different algorithms from the same conditional
input and ask them which one is more realistic. As shown in Tab. 5 and Tab. 6,
the majority of users prefer PoE-GAN over the baseline methods.

5 Conclusion

We introduce a multimodal conditional image synthesis model based on product-
of-experts and show its effectiveness for converting an arbitrary subset of input
modalities to an image satisfying all conditions. While empirically superior than
the prior multimodal synthesis work, it also outperforms state-of-the-art unimodal
conditional image synthesis approaches when conditioned on a single modality.
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