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Abstract. Deep generative models have achieved conspicuous progress
in realistic image synthesis with multifarious conditional inputs, while
generating diverse yet high-fidelity images remains a grand challenge in
conditional image generation. This paper presents a versatile framework
for conditional image generation which incorporates the inductive bias of
CNNs and powerful sequence modeling of auto-regression that naturally
leads to diverse image generation. Instead of independently quantizing
the features of multiple domains as in prior research, we design an inte-
grated quantization scheme with a variational regularizer that mingles
the feature discretization in multiple domains, and markedly boosts the
auto-regressive modeling performance. Notably, the variational regular-
izer enables to regularize feature distributions in incomparable latent
spaces by penalizing the intra-domain variations of distributions. In ad-
dition, we design a Gumbel sampling strategy that allows to incorporate
distribution uncertainty into the auto-regressive training procedure. The
Gumbel sampling substantially mitigates the exposure bias that often in-
curs misalignment between the training and inference stages and severely
impairs the inference performance. Extensive experiments over multiple
conditional image generation tasks show that our method achieves su-
perior diverse image generation performance qualitatively and quantita-
tively as compared with the state-of-the-art.

1 Introduction

Conditional image generation aims to generate photorealistic images condition-
ing on certain guidance which can be semantic segmentation [35], key points
[43], layout [18] as well as heterogeneous guidance such as text [39] and audio
[2]. It has been widely formulated as one-to-one mapping tasks [48], though it is
essentially one-to-many mappings since one conditional input could correspond
to multiple images. Targeting to mimic the true conditional image distribution,
diverse yet high-fidelity image synthesis remains a great challenge in conditional
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image generation, especially when the conditional inputs come from different
visual domains or even heterogeneous domains.

A typical approach to model diverse mapping is to employ extra style exem-
plars to guide the generation process. For example, [63] build dense correspon-
dences between conditional inputs and style exemplars to transfer textures for
diverse generation, while building semantic correspondences essentially requires
the exemplars to have similar semantics as the conditional inputs. Without re-
quiring extra exemplars, Variational Autoencoders (VAEs) [5] aim to regular-
ize the latent distribution of encoded features, thus diverse generation can be
achieved by directly sampling from the latent distribution. However, VAEs in-
evitably suffer from posterior collapse phenomenon [24] which leads to degraded
diverse generation performance. Instead of regularizing the latent feature distri-
bution in VAE, VQ-VAE [33] is designed to auto-regressively model the distribu-
tions of image feature sequences. [6] further introduce transformers in VQ-VAE
to achieve high-resolution image synthesis. Nevertheless, above auto-regressive
generation methods discretize relevant features independently, neglecting the
potential association among multi-domain features in latent spaces.

This paper presents an Integrated Quantization Variational Auto-Encoder
(IQ-VAE) that inherits the merits of CNNs (locality and spatial invariance)
for high-fidelity image generation and the powerful sequence modeling of auto-
regressive transformer for diverse image generation. Instead of quantizing multi-
domain features independently as in [6], we introduce an integrated quantization
scheme to quantize the involved features collaboratively in the latent spaces.
The integrated quantization scheme provides a sound way to regularize the la-
tent structure of multi-domain distributions, which can facilitate the ensuing
auto-regressive modeling of sequence distributions. However, as the conditional
inputs and real images often have heterogeneous features with incomparable la-
tent spaces, KL-divergence or Wasserstein distance cannot directly measure their
feature discrepancy for regularization. Inspired by the differential circuit which
takes the variation between two signals as valid input, we introduce a variational
regularizer which penalizes the intra-domain variation between distributions to
regularize their structural discrepancy.

In addition, most auto-regressive models are trained with a so-called “teacher
forcing” framework where the ground truth of target sequence (i.e., gold se-
quence) is provided at the training stage. However, such framework is suscepti-
ble to exposure bias, i.e., the misalignment between the training stage and the
inference stage where the gold target sequence is not available and decisions are
conditioned on previous model prediction. We design a Gumbel sampling strat-
egy that greatly mitigates the exposure bias by incorporating the uncertainty of
sequence distributions in training stage. Specifically, we adopt a reparameteri-
zation trick with Gumbel softmax to samples tokens from the predicted distri-
butions and then mixes them with the gold sequence according to a reliability-
based scheduling to make the final prediction. The Gumbel sampling also serves
as data augmentation strategy that helps to avoid overfitting and improve the
auto-regression performance substantially.
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The contributions of this work can be summarized in three aspects. First,
we introduce a versatile auto-regression framework with an integrated quantiza-
tion scheme for conditional image generation. Second, we propose a variational
regularizer that exploits intra-domain variations to regularize heterogeneous fea-
tures in latent spaces. Third, we design a Gumbel sampling strategy with a
reliability-based scheduling to mitigate the misalignment between the training
and inference stages of auto-regressive models.

2 Related Work

2.1 Conditional Image Generation

Conditional image generation has achieved remarkable progress by learning the
mapping among data of different domains. To achieve high-fidelity yet flex-
ible image generation, various conditional inputs have been adopted includ-
ing semantic segmentation [12,48,35,59,62], scene layouts [42,65,18], key points
[26,29,61,57], edge maps [12,55,56], etc. Recently, several studies explored to
generate images with cross-modal guidance [58,53]. For example, Qiao et al. [37]
propose a novel global-local attentive and semantic-preserving text-to-image-to-
text framework based on the idea of redescription. Ramesh et al. [39] handle
text-to-image generation by using a transformer that auto-regressively models
the text and image tokens. Chen et al. [2] investigated audio-to-visual generation
with a conditional GANs. Nevertheless, the aforementioned methods all focus
on deterministic image generation with a single generated image.

As an ill-posed problem, conditional image generation is a naturally a one-to-
many mapping task as one conditional input could map to multiple diverse and
faithful images. Earlier studies [15] manipulate latent feature codes to control
the generation outcome, but they struggle to capture complex textures. With
the emergence of GANs [7,67,34,60,54], style code injection has been designed to
address this issue. For example, Zhu et al. [69] design semantic region-adaptive
normalization (SEAN) to control the style of each semantic region individually.
Choi et al. [4] employ a style encoder for style consistency between exemplars and
the translated images. Huang et al. [11] and Ma et al. [25] transfer style codes
from exemplars to source images via adaptive instance normalization (AdaIN)
[10]. Recently, Zhang et al. [63] learn dense semantic correspondences between
conditional inputs and exemplars, but require the exemplars to have similar
semantics with the conditional input.

The aforementioned methods all suffer from low performance in diverse gen-
eration or require extra guidance for decent diverse generation. In this work, we
propose a versatile auto-regressive framework that introduces a joint quantiza-
tion scheme to achieve conditional image generation, and it inherently allows to
generate diverse yet high-fidelity images as well.

2.2 Auto-regression in Image Generation

Different from VAE or GANs in image generation, auto-regressive models treat
image pixels as a sequence and generate pixels one by one conditioning on the
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previously generated pixels by modeling their conditional distributions. With
the recent advance of deep learning, a number of studies explored to use deep
auto-regressive models to generate image pixels sequentially. For instance, Pix-
elRNN and PixelCNN [44] utilize LSTM [9] layers and masked convolutions to
capture pixel inter-dependencies in a fixed order. Gated PixelCNN [32] describes
a gated convolution to improve the generation quality with lower computational
cost. However, deep auto-regressive models still struggle to generate high-fidelity
images due to the limitation of sequential prediction of pixels. To address this is-
sue, VQ-VAE [33] adapts an encoder-decoder structure to learns discrete latent
representations for autoregressive modeling, which enables high fidelity image
synthesis.

Leveraging their powerful attention mechanisms, transformers [45] allow to
establish long-range dependencies effectively and have been adopted in vari-
ous computer vision tasks. In image generation, Chen et al. [3] introduce a se-
quence Transformer to generate low-resolution images auto-regressively. Based
on VQ-VAE [33], Esser et al. [6] propose a VQ-GAN to learn a discrete code-
book and utilize the transformers to efficiently model sequence distributions for
high-resolution images synthesis. Nevertheless, the aforementioned methods all
neglect exposure bias which often introduces clear misalignment between the
training and the inference. The proposed Gumbel sampling strategy introduces
uncertainty in training stage which mitigates the misalignment greatly.

3 Proposed Method

3.1 Overall Framework

The framework of the proposed IQ-VAE is illustrated in Fig. 1. The IQ-VAE
is first trained to learn discrete feature representations of the real image and
conditional input with learnable codebook as shown in Fig. 2 (a). With the
learnt IQ-VAE and codebook, the conditional input and real image can be quan-
tized into discrete sequences by IQ-VAE encoders Ex and Ec. The transformer
then auto-regressively models the distribution of the image sequences with a
given sequence of conditional input. With the sequence distributions predicted
by the transformer, diverse sequences can be sampled and inversely quantized
into feature vectors based on the learnt codebook. Finally, the inversely quan-
tized feature vectors are concatenated with the conditional features and fed into
the IQ-VAE decoder Dx to achieve diverse image generation. Details of IQ-VAE
and auto-regressive transformer will be discussed in the ensuing subsections.

3.2 Integrated Quantization

For the task of conditional image generation, [6] employ two VQ-VAEs [33] to
quantize the features of conditional inputs and real images independently. How-
ever, this naive quantization approach neglects the potential coupling between
conditional inputs and real images in the latent spaces. Intuitively, as conditional
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Fig. 1. The framework of the proposed auto-regressive image generation with inte-
grated quantization: We design an integrated quantization VAE (IQ-VAE) with Ex and
Ec to encode the Image and Condition into discrete representation sequences X and
C concurrently. The distribution p(xt|C, x<t) of sequence X conditioned on C is mod-
eled by an auto-regressive Transformer. Finally, diverse sequences are sampled from
the predicted distribution p(xt|C, x<t) which are further inversely quantized and con-
catenated with the encoded condition features for diverse generation via the IQ-VAE
decoder Dx.

inputs imply certain information (e.g., edges) of the corresponding images, cer-
tain coupling or correlation should exist between their latent feature spaces.
Explicitly regularizing such coupling between images and conditional inputs will
be beneficial for the modeling of image distribution from the given conditional
inputs.

We propose an integrated quantization scheme to regularize the discretiza-
tion of the image and conditional input as illustrated in Fig. 2 (a). Specially, two
VQ-VAEs are employed to encode the image and conditional input to a pair of
feature distributions as denoted by X = [x1, x2, · · · , xn] and C = [c1, c2, · · · , cn].
An intuitive method to regularize the feature distributions is to employ KL
divergence to measure and minimize their inter-domain discrepancy, namely
KL(C,X ). However, this approach fails when a meaningful cost across the distri-
butions cannot be defined. This is especially true for heterogeneous conditional
inputs (e.g., texts and audios) that have incomparable latent spaces with respect
to the image. Under such context, the KL divergence is ill-suited and inappli-
cable to capture the discrepancy between distributions. We thus design a novel
variational regularizer that leverages the intra-domain variations of distributions
to adaptively regularize their latent distributions.

Variational Regularizer Inspired by the differential circuit which takes the vari-
ation of two signals as the valid input, we propose a variational regularizer that
penalizes the inter-domain discrepancy via the intra-domain variations as illus-
trated in Fig. 2 (b). Although the discrepancy between incomparable domain
features C = [c1, c2, · · · , cn] and X = [x1, x2, · · · , xn] cannot be duly measured,
the distance (or variation) among samples in the same domain can be effectively
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Fig. 2. (a) illustrates the framework of the proposed integrated quantization scheme.
We introduce a variational regularizer to regularize their feature distributions in latent
spaces. As shown in (b), the variational regularizer employs the intra-domain variations
to penalize the structural inter-domain discrepancy, and it is optimized through a sliced
projection.

measured with some simple metric M (Euclidean distances is adopted in this
work). We thus first compute the distances among intra-domain samples for
the conditioned input and real image as denoted by M(ci, ck) and M(xj , xl).
The discrepancy between intra-domain variations {M(ci, ck)}, i, k ∈ [1, n] and
{M(xj , xl)}, j, l ∈ [1, n] can then serve as a proxy to indicate the inter-domain
discrepancy between the conditional input and real image.

To regularize the structural difference between two latent distributions effec-
tively, we adopt the discrete optimal transport (OT) [36,41] with a 2th Euclidean
distance cost as the discrepancy metric which naturally induces the intrinsic ge-
ometries of distributions and can measure the discrepancy between intra-domain
variations as follows:

OT(C,X ) = min
Γ∈

∏
(α,β)

∑
i,j,k,l

∣∣M(ci, ck)−M(xj , xl)
∣∣2ΓijΓkl (1)

where Γij and Γkl are entries of coupling matrice Γ ,
∏
(α, β) = {Γ ∈ Rn×n|Γ 1⃗n =

α, ΓT 1⃗n = β}, 1⃗n is a n-dimensional all-one vector, α = {αi} and β =
{βj}, i, j ∈ [1, n] are vectors of probability weights associated with ci and xj

(αi = 1/n, βj = 1/n). The formulation in Eq. (1) is often referred as Gromov
Wasserstein (GW) distance [28] between distributions C and X .

With GW distance as the metric in variational regularizer, we impose a
constraint on the posterior distributions defined in different latent spaces which
encourages structural similarity between them [51]. This regularizer helps avoid
over-regularization as it does not enforce a shared latent distribution across
different or heterogeneous domains. In addition, the GW distance is invariant
to translations, permutations or rotations on both distributions when Euclidean
distances are used, which allows to capture discrepancy between complex latent
distributions effectively.

Optimization. The solution of the variational regularizer in Eq. (1) is a non-
convex optimization problem. Grounded in the well-studied theory of Wasser-
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Fig. 3. (a) illustrates the framework of the proposed Gumbel sampling with twice ex-
ecutions. In the first forward pass, token distribution Pθ(X) is predicted from the gold
sequence with network parameters θ. A sample x is sampled from Pθ(X) according to
a reliability-based scheduling and is mixed with the gold sequence for the second pass
(namely final pass). (b) compares the gradient flows of direct sampling and Gumbel
sampling. The presence of stochastic node x in direct sampling precludes the back-
propagation of gradient from x to Pθ(X). Gumbel sampling allows gradient flow from
x to Pθ(X) through a reparameterization trick which transfers the stochasticity to a
Gumbel distribution.

stein disance [46], Eq. (1) can be solved through sliced Gromov Wasserstein
(sliced GW) distance [46]. Specifically, the original metric measure spaces are
projected to 1D spaces with random directions, and the sliced GW corresponds
to the expectation of the GW distances in these projected 1D spaces. In this
case, the sliced GW is approximated based on sample observations from the
distributions shown in Fig. 2 (b).

In particular, given [c1, c2, · · · , cn] from C and [x1, x2, · · · , xn] from X and L
projection vectors {γm}Lm=1, the empirical sliced GW can be formulated by:

1

L

L∑
m=1

min
Γij ,Γkl∈

∏
(p,q)

∑
i,j,k,l

∣∣M(⟨ci, γm⟩, ⟨cj , γm⟩)−M(⟨xk, γm⟩, ⟨xl, γm⟩)
∣∣2ΓijΓkl.

(2)
where ⟨ci, γm⟩ denotes the projection of ci on direction γm. Compared with direct
computation via proximal gradient optimization [52], the sliced GW has much
lower computational complexity of O(nd), where n and d denote the sample
number and sample dimension, respectively.

Besides the loss of variational regularizer (namely sliced GW) as denoted by
Lreg for the optimization of IQ-VAE, we also include reconstruction loss Lrecon

and quantization loss Lquan of the conditional input and real image. To further
improve the image quality, a perceptual loss Lperc and discriminator loss Ldis

are also included. Thus, the overall objective for the IQ-VAE network is:

LIQ−V AE = λ1Lreg + λ2Lrecon + λ3Lquan + λ4Lperc + λ5Ldis. (3)

where λ balances the loss terms.
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3.3 Auto-Regression

Auto-regressive (AR) modeling is representative objective to accommodate se-
quence dependencies in a raster scan order. The probability of each position
in the sequence is conditioned on all previously prediction and the joint dis-
tribution of sequences is modeled as the product of conditional distributions:
p(x) =

∏n
t=1 p(xt|x1, x2, · · · , xt−1) =

∏n
t=1 p(xt|x<t). Under the context of con-

ditional image generation, a conditional auto-regression is actually adopted for
the modeling of image distribution. For clarity, we still denote the discrete image
sequence as X = [x1, x2, . . . , xn], the conditional sequence as C = [c1, c2, . . . , cn].
Then the joint distribution of image sequence conditioned on C can be formulated
as:

p(x|C) =
n∏

t=1

p(xt|c1, c2, · · · , cn, x1, x2, · · · , xt−1) =

n∏
t=1

p(xt|C, x<t). (4)

Auto-regressive models factorize the predicted tokens with chain rule of prob-
ability, which establishes the output dependency effectively for yielding bet-
ter predictions. During inference, each token is predicted auto-regressively in a
raster-scan order. A top-k (k is 100 in this work) sampling strategy is adopted
to randomly sample from the k most likely next tokens, which naturally enables
diverse sampling results. The predicted tokens are then concatenated with the
previous sequence as conditions for the prediction of next token. This process
repeats iteratively until all the tokens are sampled.

Gumbel sampling. Auto-regressive models are trained using the ground
truth sequence (i.e., gold sequence). This framework leads to quick convergence
during training, but it is misaligned with the inference stage where gold sequence
is not available and decisions are purely conditioned on previous predictions.
This phenomenon is typically referred as exposure bias [40]. Intuitively, this
problem can be tackled by using the previous predictions as conditions with
certain probability in training stage as mentioned in [30].

Specially, in order to conduct sampling from previous predictions, the auto-
regression process is executed twice in training stage as illustrated in Fig. 3.
In the first execution, the predictions are conditioned on the gold sequence and
yield discrete distribution pθ(X) = [p1, · · · , pl] for each token (θ is network
parameter, l is the number of codebook embedding). In the second execution,
we aim to sample tokens according to the discrete distributions. However, di-
rect sampling from a distribution will preclude the gradient backpropagation
as shown in Fig. 3 (b). A Gumbel sampling strategy is thus introduced with a
reparameterization trick [13] to enable gradient backpropagation in discrete dis-
tribution sampling. Specially, the sampling operation is conducted on a Gumbel-
softmax distribution [13] which is defined by: softmax(1/τ(pθ(X) + g)), where
g ∼ Gumbel(0, 1) = − log(− logU), U ∼ Uniform(0, 1). A sample xi drawn from
the Gumbel-softmax distribution can be denoted by:

xi =
exp((log(pi)) + gi)/τ)∑n
j=1 exp((log(pj) + gj)/τ)

for i = 1, 2, · · · , n.
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where τ is an annealing parameter. The sampling from a Gumbel-softmax dis-
tribution exactly approximates the sampling from the categorical distribution
pθ(X) as proved in [27]. In forward pass of network training, sampling is ac-
tually conducted on the Gumbel(0,1) distribution which is independent of the
network parameter θ. In backpropagation, the sampling operation is not involved
in the gradient flow, which means that the stochasticity of sampling operation
is transferred from pθ(X) to the Gumbel(0,1) distribution.

To schedule the sampling in accordance with the training process, we de-
sign a Gumbel sampling strategy based on the prediction reliability. Considering
sampled tokens are more difficult to learn than the ground truth especially at
the early training stage, we only sample tokens for positions with high pre-
diction reliability as denoted by R [20]. For a ground truth embedding γi and
predicted distributions [p1, · · · , pl] associated with normalized codebook embed-
dings [γ1, . . . , γl], the prediction reliability Ri can be quantified by the weighted
summation of the inner products of embeddings:

Ri =

l∑
j=1

pj ∗ γj · γi , i ∈ [1, n] . (5)

Ri ∈ [0, 1] accurately indicates the similarity between the predicted token dis-
tribution and the ground truth token, and measures whether the prediction
reliability reaches the threshold (0.9 by default) to conduct token sampling.

After obtaining a sequence representing the model prediction for each posi-
tion, we mix the gold tokens and predicted tokens with a given probability which
is a function of the training step and is calculated with a selected schedule. We
then pass the new mixed sequence to the transformer for the second execution to
yield the final predictions. Note that only the gradient of the second execution
is backpropagated in model training.

Computational cost. Twice execution for Gumbel sampling will increase
the training time, which can be mitigated by reducing the frequency of applying
Gumbel sampling. In our implementation, the Gumbel sampling is applied for
every 4 iterations by default. The average speed of our model with Gumbel
sampling is 2.8 iteration/s, and the model speed without Gumbel sampling is
3.0 iteration/s. Therefore, the increase of computational cost is very limited.

4 Experiments

4.1 Experimental Settings

Datasets. We benchmark our method over multiple public datasets in condi-
tional image generation.
• ADE20k [66] has 20k training images associated with a 150-class segmentation
mask. We use its semantic segmentation as conditional inputs in experiments.
• CelebA-HQ [22] has 30,000 high quality face images whose semantic maps and
edges serve as the condition for image generation.
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Table 1. Comparing IQ-VAE with state-of-the-art image generation methods over
four conditional image generation tasks. The adopted evaluation metrics include FID,
SWD and LPIPS.

Methods
ADE20K CelebA-HQ(Edge) DeepFashion

FID ↓ SWD ↓ LPIPS ↑ FID ↓ SWD ↓ LPIPS ↑ FID ↓ SWD ↓ LPIPS ↑
Pix2pixHD [48] 61.08 28.47 N/A 42.70 33.30 N/A 25.20 16.40 N/A

Pix2pixSC [47] 56.23 24.52 0.378 49.39 33.20 0.193 28.49 21.13 0.172

BicycleGAN [68] 62.52 33.27 0.405 44.63 31.96 0.224 29.82 22.74 0.251

StarGAN v2 [4] 98.72 65.47 0.451 48.63 41.96 0.214 43.29 30.87 0.296

DRIT++ [16] 105.1 81.82 0.432 50.31 47.21 0.313 52.67 42.34 0.281

SPADE [35] 33.90 19.70 0.344 31.50 26.90 0.207 36.20 27.80 0.231

SMIS [70] 42.17 22.67 0.416 23.71 22.23 0.201 26.23 23.73 0.240

VQ-GAN [6] 35.50 21.50 0.421 16.23 23.33 0.330 16.49 21.20 0.314

IQ-VAE 29.77 17.44 0.447 14.71 19.74 0.344 11.15 19.01 0.320

Condition OursTamingSMISDRIT++Pix2pixSC SPADEStarGANv2Ground Truth BicycleGANPix2pixHD

Fig. 4. Qualitative illustration of IQ-VAE and state-of-the-art image generation meth-
ods over four types of generation tasks. IQ-VAE is able to generate faithful images with
high fidelity.

• DeepFashion [21] has 52,712 person images of different appearances and poses.
We use the key points of the person images as conditional inputs in experiments.

• COCO-Stuff [1] augments COCO [19] with pixel-level stuff annotations. We
use its layout as condition for image generation.

• CUB-200 [49] has 200 bird species with attribute labels and we use it for
text-to-image generation.

• Sub-URMP [2] is a subset of URMP [17] and we use it for audio-to-image
generation.

Evaluation Metrics.We evaluate the proposed IQ-VAE on the tasks of semantic-
to-image, edge-to-image and keypoint-to-image generation, as these tasks have
rich prior studies for comprehensive yet fair benchmarking. We assess the com-
pared methods with several widely adopted evaluation metrics. Specifically, Fréchet
Inception Score (FID) [8] and Sliced Wasserstein distance (SWD) [14] are em-
ployed to evaluate the quality of generated images. Learned Perceptual Image
Patch Similarity (LPIPS) [64] measures the distance between image patches,
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Transformer IQ-VAE

Parameters Setting Parameters Setting

learning rate 1.5e-4 learning rate 1.5e-4

batch size 32 batch size 32

epoch 50 epoch 100

vocabulary size 1024 codebook embedding number 1024

embedding number 1024 codebook embedding dimension 256

sequence length 512 feature number 256

number of transformer block 24
Table 2. The parameter setting in the proposed transformer and IQ-VAE.

Conditions Generated Samples Conditions Generated Samples Conditions Generated Samples

The bird has a 
brown breast, 

black crown and 
a black cheek 

patch

This bird has a 
yellow wing, 

with an orange 
forehead and an 

orange belly

“Horn”

Audio

“Violin”

Audio

Fig. 5. Illustration of diverse image generation by the proposed IQ-VAE: Faithful
yet diverse images are successfully generated with different types of conditional inputs
such as semantic maps, edge maps, key points, layout maps, as well as heterogeneous
conditions like texts and audios.

which is employed to evaluate the diversity of generated images and reconstruc-
tion performance of auto-encoder.
Implementation Details. The proposed model is optimized with a learning
rate of 1.5e-4. The auto-regressive transformer is implemented based on the
GPT2 architecture [38] with a input size of 256. AdamW [23] solver is adopted
with β1 = 0.9 and β2 = 0.95. All experiments are conducted on 4 Tesla V100
GPUs with a batch size of 32. The size of generated images is 256× 256 for all
evaluated generation tasks. The transformer is implemented based on minGPT 4.
Table. 2 shows parameter setting in the transformer and IQ-VAE.

4.2 Quantitative Results

We compare the proposed IQ-VAE with several state-of-the-art conditional im-
age generation methods including 1) Pix2pixHD [48]; 2) Pix2pixSC [47]; 3) Bicy-
cleGAN [68]; 4) StarGAN v2 [4]; 5) DRIT++ [16]; 6) SPADE [35]; 7) SMIS [70];
8) Taming Transformer [6].

4 https://github.com/karpathy/minGPT
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Table 3. Ablation study of IQ-VAE on ADE20k. VR and None denote the proposed
variational regularizer and no regularization, respectively. GS denotes the proposed
Gumbel sampling.

Models FID ↓ SWD ↓ LPIPS ↑
VQ-GAN 35.50 21.50 0.421

IQ-VAE(None) 31.88 19.14 0.441

IQ-VAE(VR) 31.41 18.71 0.450

IQ-VAE(VR) + GS 29.77 17.44 0.447

In the quantitative experiments, all compared methods generate diverse im-
ages except Pix2PixHD [48] which does not support diverse generation. Table 1
shows experimental results in FID, SWD and LPIPS. It can be observed that
IQ-VAE outperforms all compared methods across most metrics and tasks con-
sistently. DRIT++ [16] and StarGAN v2 [4] achieve relatively high LPIPS scores
by sacrificing the image quality as measured by FID and SWD, while SPADE [35]
and SMIS [70] achieve decent FID and SWD scores with degraded LPIPS scores.
The proposed IQ-VAE employs powerful variational auto-encoders to achieve
high-fidelity image synthesis and a auto-regressive model for faithful image di-
versity modeling, thus achieving superior performance in terms of image quality
and diversity. Compared with Taming transformer [6], the proposed IQ-VAE al-
lows to quantize the image sequences and conditional sequence jointly and boosts
the auto-regressive modeling for better FID and SWD scores. In addition, the
proposed Gumbel sampling introduces uncertainty of distribution sampling into
the training process which mitigates the exposure bias and improves the infer-
ence performance clearly. As the mixed sequence serves as certain extra data
augmentation, the Gumbel sampling also helps to alleviate the over-fitting of
auto-regressive model effectively.

4.3 Qualitative Evaluation

We perform qualitative comparisons as shown in Fig. 4. The experiments are
conducted over six datasets including ADE20k [66], CelebA-HQ [22], DeepFash-
ion [21], COCO-Stuff [1], CUB-200 [49], and Sub-URMP [2]. The splits of train-
ing and testing sets on all above datasets follow the default split settings. In
addition, the data used in the experiments do not contains person identity re-
lated information or offensive contents. It can be seen that IQ-VAE achieves
the best visual quality and presents remarkable coherence with the condition.
SPADE [35] and SMIS [70] adopt VAE to constraint the distribution of encoded
features which cannot capture the complex distributions of real images. Star-
GAN v2 [4] and DRIT++ [16] adopt single latent code to encode image styles,
which tends to capture global styles but misses local details.

IQ-VAE also generalizes well and demonstrates superior synthesis quality
and diversity in various generation tasks as illustrated in Fig. 5. It can be ob-
served that IQ-VAE is capable of synthesizing high-fidelity images with various
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conditional inputs such as semantic maps, edge maps, keypoints, layout maps as
well as heterogeneous conditions such as texts and audios.

4.4 Ablation Study

We conduct extensive ablation studies to evaluate IQ-VAE as shown in Ta-
ble 3. The baseline is selected as VQ-GAN (namely Taming Transformer [6]).
Replacing VQ-GAN with the proposed IQ-VAE without any regularization in
IQ-VAE(None) brings in marginal improvement. The proposed variational reg-
ularizer with adaptive weights in IQ-VAE(VR) improves the generation per-
formance, demonstrating the effectiveness of adaptive weights learning. Finally,
including the Gumbel sampling remarkably boosts the performance as indicated
in IQ-VAE(VR)+GS.
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Fig. 6. Trade-off between negative log-
likelihood and reconstruction error with dif-
ferent sizes of encoded features on Cele-
baHQ [22].

We study the effect of feature sizes
for discrete representation in IQ-VAE
and Fig. 6 shows experimental results
on the CelebaHQ dataset. As Fig. 6
shows, we specify the size of repre-
sentation features in terms of a fac-
tor F where Fx denotes a feature
size of x × x. Note the input size of
transformer is always fixed at 16 ×
16. The horizontal axis of the graph
shows reconstruction error as mea-
sured by LPIPS [64] which indicates
the upper bound of generation qual-
ity (lower is better), while the verti-
cal axis shows negative log-likelihood
from the transformer which indicates
the performance of the auto-regressive
modeling (lower is better). We can see
that there is a trade-off between the negative log-likelihood and reconstruction
error. Though an encoded feature of small size allows the transformer to bet-
ter model the image distribution, the reconstruction deteriorates severely after
a certain value (F16 in this case). The proposed integrated quantization and
Gumbel sampling instead improve the negative log-likelihood remarkably with-
out sacrificing the reconstruction performance clearly.

4.5 User Study

We conduct crowdsourcing user study to evaluate the quality of generated images
as shown in Fig. 7. Specifically, 100 pairs of images generated by all compared
methods are shown to 10 users who selected the image with the best visual
quality. As shown in Fig. 7, we compared the proposed IQ-VAE with several
state-of-the-art generation methods including BicycleGAN [68], SPADE [35],
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SMIS [70], and Taming Transformer [6]. The images generated by the proposed
IQ-VAE are much more realistic according to the user feedback.

0

10

20

30

40

50

60

ADE20k CelebA-HQ (Semantic) CelebA-HQ (Edge) DeepFashion

BicycleGAN SPADE SMIS Taming Transformer IQ-VAE

Fig. 7. User study over four datasets ADE20K [66], CelebA-HQ [22](Semantic),
CelebA-HQ [22](Edge), DeepFashion [21]. The bars show the number of images that
AMT users ranked with the best visual quality.

5 Conclusions

This paper presents IQ-VAE, an auto-regressive framework with integrated quan-
tization for conditional image synthesis. We propose a novel variational regular-
izer to regularize the feature distribution structures of conditional inputs and
real images, which boosts the auto-regressive modeling clearly. To mitigate the
misalignment between training and inference of auto-regressive model, a Gumbel
sampling strategy with a reliability-based scheduling is included in the training
stage and improves the inference performance by a large margin. Quantitative
and qualitative experiments show that IQ-VAE is capable of generating diverse
yet high-fidelity images with multifarious conditional inputs.

Limitations. As auto-regression is adopted in the model to predict image
sequence, the inference speed is inevitably constrained which may limit the appli-
cation of the proposed model in time-critical tasks. Although some works [50,31]
have been proposed to speed up the autoregressive sampling, the acceleration
for the inference of auto-regressive model is still an open challenge.

Potential Negative Societal Impacts This work aims to synthesize di-
verse yet high-fidelity images with given conditional inputs. It could have neg-
ative impacts if it is used for certain illegal purpose such as image forgery and
manipulation.
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