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In the supplementary, we first demonstrate an extension of our approach
towards panorama generation (Section 1). In Section 2, we provide additional
qualitative and quantitative comparisons to baselines (super-resolution methods,
discrete-resolution and oracle generators), explore additional model variations,
and investigate the detectability of our method using an off-the-shelf forensics
method. We provide implementation details in Section 3.

1 Panorama generation extension

Our default training setup assumes that we use low-resolution images to learn
global context and patches from high-resolution images to learn details. An alter-
native setup to learn from patches directly, without ever knowing the entire global
context. One such scenario is panorama generation, where a large-scale dataset
would be much more difficult to obtain than single images. We investigate this
setup on the Mountains domain, in which the generator is tasked with synthesiz-
ing a panorama from landscape images, without training directly on panoramas.
Accordingly, we modify the [0, 1] x [0,1] coordinate grid to [—m, x| x [0, 1], and
enforce continuity on the endpoints by using a sine and cosine encoding prior
to Fourier feature embedding. At training time, we sample a “slice” of the co-
ordinate grid for generation corresponding to a random viewing angle, but at
inference time the entire panorama can be synthesized by specifying the full
grid of coordinates. In this case, we find that it is important to use a cross-frame
discriminator, in which the discriminator straddles the boundary between two
generated slices to enable seamless boundaries in the panorama. Qualitative re-
sults are shown in Fig 2. At inference time, we can spatially interpolate the w
latent code with arbitrary spacing, which generates seamless infinite landscapes.



2 L. Chai et al.

" . S

g & b

Fig. 1: Panorama generation from patches. We modify our training framework to train
without the global image context. We map our coordinate grid to [—m, 7] X [0, 1] and use
a cross-frame discriminator to enable seamless transitions between patches. The model
is trained with FOV = 60°. The vertical white line indicates a full 360° revolution.
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Fig. 2: By spatially adjusting the latent code only at inference time, the same model
is capable of generating infinite landscapes, shown on multiple lines here for visibility.

2 Experiments

2.1 Dataset Collection

Table 1: Image sources for
construction of our varied-
resolution datasets.

To collect our varied-size dataset, we scrape
image collections from Flickr photo groups
(Tab. 1). In cases where a standard fixed-
resolution dataset is available (e.g. LSUN
Churches [14]), we seek to find photos that ap-
proximately match the domain of the standard
dataset. Due to domain mismatches between
LSUN and the photos scraped from Flickr, we
manually filter the collected images to approximately match the LSUN domain,
which remains tractable for the few thousand HR images used in the patch-
based training phase. As is standard practice [10,7], and to not violate license
permissions, we will release the image IDs but not the images directly.

Domain Flickr Source

Church Church Exteriors
Mountains Mountains Anywhere
Birds Birding in the Wild
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Fig. 3: Preprocessing for FID and patch-FID (pFID).
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FID evaluates global structure,

but downsamples all images to a common 299px size which ignores higher resolution
details. pFID takes images crops instead rather than downsampling to capture texture
realism at higher resolutions. We use both to measure structure and texture properties.

2.2 Patch-FID

We describe details of our Patch FID metric, in-
troduced in Section 4.1 of the main paper. The
metric is aimed at better capturing the realism of
details at high resolution by avoiding downsam-
pling to capture texture details. In our setting, we
have a smaller number of real images present at
various resolutions. Standard FID, which focuses
on global structure, does not capture these varied-
resolution details. We modify the FID pipeline to
avoid downsampling global images at higher res-
olutions to a fixed 299 pixel width. Instead, we
randomly sample patches of size p from real im-
ages at global scale s and locations ¢y 4, and gen-
erate the corresponding patch G (z,cy s,s). The
number of samples is crucial to getting an accu-
rate estimate in FID calculation [1], and 50,000
is typically used. A benefit of this patch-sampling
procedure also means that we can obtain the nec-
essary large number of patches for FID computa-
tion, more than the available number of real im-
ages in the HR dataset. In the Mountains genera-
tor, where the patch size p is larger than 299, we
subsequently also select a random 299-pixel crop
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Fig.4: pFID vs FID@1024.
The metrics are largely cor-
related, but FID@1024 gen-
erates images at 1024 res-
olution and then downsam-
ples images, assuming a fixed-
size dataset. On other do-
mains where a ground-truth
HR dataset is not available, we
primarily use pFID to measure
sample quality.

from the patches to compute the image features. Because this avoids downsam-
pling the generated content, we find that it is more sensitive to image quality
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Table 2: Alternative FID evaluation metrics. We primarily use pFID, which avoids
downsampling synthesized content and evaluates multiscale patches, as an evaluation
metric. Here, we also report FID at the base resolution from the result of fixed-size
pretraining (Fixed-Size), and compare to global FID metrics after downsampling the
HR images to a common size. On FFHQ, we also tried applying GFP-GAN [12] which
is a facial super-resolution model.
FFHQ6K Church Birds Mountain
FID  pFID FID  pFID FID pFID FID  pFID
256 1024 random 256 1024 random 256 512 random 1024 down random

Fixed-Size 3.71 33.80 52.95 3.39 242.10 146.24  3.92 12.69 55.42 3.09 13.42 46.20

Upsample - 11.70 17.29 - 14.21 80.48 - 7.67 30.57 - 4.53 20.00
LIIF - 7.05 2293 - 18.66 83.88 - 729 30.19 - 455 23.10
Real-ESRGAN - 19.04 16.92 - 1226 23.04 - 851 16.10 - 7.60 19.05
GFP-GAN - 19.15 16.27 - - - - - - - - -

Ours 3.34 4.06 2.96 3.84 6.98 9.89 3.78 6.29 6.52 3.14 433 7.99

at high resolutions. Using the full FFHQ dataset as ground-truth, we find that
our patch-FID metric is largely correlated to the standard FID numbers at 1024
resolution (Fig. 4). Therefore, we use Patch-FID as a metric of sample quality on
our datasets collected from Flickr, when a full high-resolution dataset of images
all at the same resolution is not available.

2.3 Additional quantitative results

In Table 3 of the main text, we report comparisons of our method and off-the-
shelf super-resolution methods using the patch-FID metric. We report additional
metrics in Table 2 here, including the FID at base resolution (the result of the
pretraining step), and FID at a higher resolution after downsampling all im-
ages in the HR dataset (between 5k-10k images, which is lower than the typi-
cal 50k used to compute FID) to a common size. Notably, the base resolution
FID is largely similar before and after patch-based training, and in the case of
FFHQ and Birds, patch-based training at higher resolutions even improves the
low-resolution FID. Without direct multi-scale training, however, the fixed-size
model obtained from the pretraining step does not naturally generalize to higher
resolutions. We find that our pFID metric is more discriminative to differences
in image quality at higher resolutions. In particular, the LIIF super-resolution
model tends to obtain better FID@1024 (corresponding to super-resolving gener-
ated images to 1024 resolution and computing FID) compared to Real-ESRGAN;
but the outputs are visually blurry. Because our pFID does not perform down-
sampling, it can better capture this blurriness, reflected in an increased pFID.
In another variant, we compute pFID on patches of size 1024 synthesized by the
Mountain generator, and then subsequently downsample them, which we denote
as pFID (down), rather than cropping. Again, we find that this downsampling
operation can obscure image deterioration at higher resolution, producing arti-
ficially lower FID scores compared to pFID computed without downsampling.
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2.4 Comparison to powers-of-two synthesis

Using the same set of generator weights, our model can synthesize images at
a specified scale by simply providing the corresponding s and ¢y s inputs. On
the other hand, other methods for multi-resolution synthesis [6,4,2,3] generate
images that are iteratively enlarged by a factor of two, by adding additional net-
work layers. These methods are typically introduced to impove training stability.
For this baseline, we modify the recent Anycost-GAN [6] framework to fit our
varied-size training setting. Specifically, we downsample all images in FFHQ6K
to the nearest power of two, and train the corresponding network layers only on
the appropriate subset of data. To generate at any resolution below 1024, we
take the nearest model output that is larger than the target resolution, and ap-
ply Lanczos downsampling. Similar to our approach, we start with a pretrained
model at 256 resolution, and initialize both the generator and discriminator with
pretrained weights. Because each increase in output resolution involves training
additional weights, and the number of images at a given resolution decreases as
resolution increases, we find that this training approach yields visual artifacts
at higher resolutions, shown in Fig. 5.

Base Image Patch Base Image Patch

AnyCost-GAN

1.9x (476)

Ours

3.4x (862)

Fig. 5: Using the same FFHQ6K dataset, we train an Anycost-GAN [(] and compare
it to our model. While Anycost-GAN adds additional modules to increase synthesis
resolution, our model shares weights across resolutions. Note that the output from
Anycost-GAN contain more visual artifacts, particularly in finely textured regions such
as hair.

2.5 Comparison to Oracle Generator

In Section 4 of the paper, we describe our experimental setup on the face domain,
and in Table 5 in the paper, we show competitive performance training on few HR
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Table 3: Comparison of our patch generator (6k images, varied sizes) to oracle gener-
ators which train on the entire FFHQ dataset (70k images, 1024 resolution). Although
the oracle generators attain better FID, our method enables synthesis at continuous
resolutions and can train without assuming that all images are resized to a common
resolution. We also include pFID at the maximum 1024 scale.

FID pFID
256 512 1024 random 1024

SGAN2 Oracle 3.05 2.81 2.69 2.26 4.83
SGAN3 Oracle 3.54 3.23 3.06 2.44 4.29
Patch (Ours) 3.343.71 4.06 2.96 8.01

images, even compared training on the whole HR dataset. We provide additional
details and visualizations here.

We use the FFHQ dataset as a collection of 70k high-resolution ground-truth
images. To simulate more “in-the-wild” settings, we use a fraction (6k) of HR
images for patch-based training with a generator of size p = 256, where only
1k of the images are the full 1024 resolution, and the remainder are uniformly
downsampled between 512 and 1024 prior to training. As a comparison, we also
evaluate two oracle models that train a generator directly for the s = 1024 global
image, using the entire 70K images in the FFHQ dataset, and Lanczos down-
sample the result for FID computations at other resolutions. We also evaluate a
variant of pFID, by holding the scale fized at the maximal resolution and ran-
domly sampling crop locations (pFID 1024), in addition to our original pFID
metric that randomly samples both scale and location (pFID random). Note
that this evaluation is only possible for FFHQ controlled setting, as all images
are present at the maximal 1024 size.

Despite being trained to generate patches, our generator can approximately
match the frequency content in real images, and that of a StyleGAN3 model
trained for 1024 resolution generation on the full FFHQ dataset (Fig. 6). While
StyleGAN2 achieves better FID than StyleGAN3, we find that it has a different
frequency profile that is less similar to that of real images. We compare the FID
of these oracle models with our continuous patch model in Tab. 3. While the
oracles can achieve lower FID and pFID variants, we note that training the oracle
assumes that a sufficient number of high-resolution images of the same size are
available, and trains the model specifically for a fixed resolution, whereas we
employ mixed resolution training on fewer than 10% of the full HR dataset. Our
training strategy therefore allows us to take advantage of the varied resolutions
of images in the wild, which is not possible in the oracle setting.

2.6 Additional Model Variations

In Section 4.2 of the main text, we describe and study variations of our model.
Here, we provide additional quantitative and qualitative results and study addi-
tional factors.
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Fig. 6: Comparison of frequency distribution. We plot the frequency spectrum of real
images, StyleGAN2 and StyleGANS3 trained on the entire FFHQ dataset at 1024 reso-
lution, and our Patch Generator which is trained on p x p patches of FFHQ6K (which
contains approximately 1k images at 1024 resolution and 5k at lower resolutions). The
frequency distributions are similar, suggesting that even a smaller generator is able to
approximate fine textures well.
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Fig. 7: Qualitative examples of model variations. (Top) Using an inverse teacher loss
and the scale conditioning branch generates sharper details while also preserving sim-
ilarity to the base image. (Bottom) We compare our multi-size training approach to
methods that do not take advantage of different image sizes and instead train for a fixed
resolution. Fixed-resolution training cannot generalize to other resolutions, and up-
sampling images leads to blurring. Our final model is able learn from mixed-resolution
training images and also synthesize at arbitrary resolutions.



Table 4: We evaluate additional preci-
sion and recall metrics [9], and their cor-
responding patch variants, for our model,
naive upsampling, and super-resolution
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Table 5: Variations of teacher regular-
izer on FFHQG6k. The inverse teacher reg-
ularization outperforms forward regular-
ization, and adding a scale-conditioning

branch further improves higher resolu-
tions. Omitting the teacher harms global

methods on the FFH(Q dataset. We also

include pFID at a fixed 1024 scale evalu-

ated in Tab. 3. structure. (*) indicates default setting.
Precision Recall pFID FID pFID
1024 Patch 1024 Patch 10?1 256 512 1024 random

Upsample 0.68 0.77 0.37 0.20 31.70 3.234.21 5.35 6.06
Real-ESRGAN 0.40 0.54 0.51 0.47 20.04 Inverse teacher 3.354.18 4.88 4.67
GFP-GAN 0.48 0.62 0.34 0.32 20.58 No teacher 5.50 5.93 7.13  3.17
Ours 0.69 0.68 0.47 0.55 8.01 Inverse + scale (*) 3.37 4.41 4.47 4.28

Forward teacher

Table 7: We sample patches from the
HR dataset at global resolutions be-
tween (Smin, Smax). The same model
architecture trained on patches from
higher resolution images improves the
synthesis result at 1024 resolution. (*)
indicates our default setting.

FID pFID
256 512 1024 random

Table 6: Teacher regularization weight trades
off between improved detail synthesis (pFID)
and global realism (full image FIDs). We
choose an in-between value (Ateacher = 5); this
value can be adjusted based on desired simi-
larity to the base resolution. (*) indicates our
default setting.

FID pFID
256 512 1024 random
5.505.93 7.13 3.17 0.16

L1

Ateacher = 0

Ateachor = 2 3.42 458 5.46 3.15 0.10 (256, 512) 5.20 5.92 19.01 35.66
Ateacher = 5 (¥) 3.37 4.41 4.47 4.28 0.08 (256, 1024)  3.434.16 4.61 4.19
Mteacher = 10 3.46 4.25 4.61  5.39  0.07 (512, 1024) (*) 3.28 4.04 4.16 3.61

Alternative metrics In addition to FID and pFID, we also report precision and
recall [9] for our model, naive upsampling, and super-resolution models (Tab. 4).
Super-resolution obtains lower precision (suggesting out-of-distribution results)
and similar or lower recall. Upsampling obtains similar or better precision, but
lower recall (suggesting that is does not sufficiently cover the real image distri-
bution). Here, we also include pFID measured at the maximum resolution for
FFHQ (1024).

Variations on teacher regularization. In the main text, we introduce varia-
tions on the teacher regularization including “forward” and “inverse” loss formu-
lations, and discarding the teacher regularization all-together. Tab. 5 shows the
FID comparisons of these three variants, in which the “inverse” loss obtains the
best FID scores at the highest 1024 resolution. Adding the scale-conditioning
branch to inject scale information throughout the generator further improves
FID@1024 and pFID. We show qualitative examples in Fig. 7 (top), where the
inverse teacher with scale-conditioning input can synthesize the cleanest details
while still being similar to the base image.
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As default, we set Ayeacher = D during the patch-based training phase. Chang-
ing Ateacher balances between local image quality and similarity to the base res-
olution image, where higher Acacher Offers the most similarity to the base res-
olution with lower L1 difference, but lower Aieacher improves pFID, suggesting
better quality of the synthesized patches (Tab. 6).

Generator Discriminator

1.0

o 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
kimg kimg
Fig. 8: Number of training images. While FID numbers are similar, we find that using
1K HR images for training shows some evidence of divergence. The training dynamics
of 5K images is similar to that of the full dataset.

Fixed-size vs Multi-size training. Fig 7 (bottom) shows an example of a
synthesized patch comparing our multi-size training to strategies of fixed-size
training. Fixed-size training does not naturally generalize to other sizes, causing
deterioration in image quality when sampled at resolutions not equal to the
training resolution. Upsampling the training images to a common resolution
introduces blurriness in the synthesized output. The result of training on only
the subset of images at 1024 resolution looks qualitatively similar to that of
multi-scale training, but multi-scale training attains better FID metrics and is
able to use more images for training.

Changing the number of training images. While the model FID scores
remain largely similar (within a range of 0.3) when training on 1k to 70k high-
resolution images, we found that using 1k images showed some evidence of train-
ing divergence (Fig. 8). On the other hand, the training trajectory of using 5k
images looks largely similar to that of using the full HR dataset (70k) images.
Therefore, when collecting images for the remaining domains, we aim to collect
between 5k-10k images to construct the HR dataset.

Investigating the impact of sampling resolutions. Our FFHQ6k dataset
contains images between 512 and 1024 resolution, and during training the images
are randomly downsampled from their native resolution, and can be optionally
clipped at an upper resolution. Here, we conduct experiments to study the effects
of these sampling ranges. When training the model on resolutions s sampled be-
tween 256 and 512, the image quality declines by 1024 resolution at inference
time and contains visual artifacts (Tab. 7, Fig. 9). Taking the same image and
model architecture, but instead training on resolutions between 256 and 1024
offers better FID@1024, and sampling from 512 to 1024 resolution further im-
proves FID@1024. As before, all models are trained on patches of size p = 256,
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Fig. 9: Impact of sampling resolutions. Using the same model architecture and FFHQ6k
dataset, we sample images (top) from 256 to 512 resolution, and (bottom) from 512
to 1024 resolution. The dotted line indicates when inference resolution exceeds the
maximum training resolution. Watery artifacts start to appear when extrapolation,
but this can be tempered by simply training on patches from larger images.

and the model is jointly trained on the fixed-size dataset to preserve FID@256.
Accordingly for the other domains, our sampled resolutions for HR dataset range
between the native resolution s;;, and the minimum resolution of the HR im-
ages. These results suggest that the synthesized resolution can be dictated by the
training images; simply adding patches from higher resolution images can allow
the same model to better synthesize at a higher resolution.We also tried an ex-
periment using a separately trained smaller 128px patch generator and the same
512 to 1024 resolution patch sampling scheme, but obtained worse FID (8.38 at
1024 resolution compared to 4.16 for our default model); we hypothesize this is
because may be due to worse FID from the initial pretraining phase that carries
over to the patch training phase (5.14 compared to 3.71 for our default model).

Changing the discriminator. Taple 8: Discriminator variations. Our default
Our final model introduces changes  discriminator, which jointly trains globally on
to the generator, but keeps the the LR dataset and patches from the HR
same discriminator from the ini- dataset attains the best FID metrics. Other
tial pretraining step. During patch- changes to the discriminator did not improve
training, the discriminator must performance. (*) indicates our default setting.
also learn to distinguish between
real and synthesized patches. Here,

. - . FID FID
we investigate alternatives of chang- P
. . - 256 512 1024 random
ing the discriminator setup (Tab. 8). '
1) W li £ h Default Discriminator (*) 3.28 4.04 4.16 3.61
(1) We remove sampling from the  \, Base Resolution 9.96 4.23 4.69 292
LR dataset, now causing the dis-  Two Discriminators 3.82 4.63 534 3.38

criminator to focus entirely on Scale-conditioned Discriminator 31.81 71.33 89.38 120.06

patches. This causes pFID to im-
prove but the remaining global FIDs to worsen. In particular, this allows the
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generator to forget how to synthesize at the base resolution, causing a large in-
crease in FID@256. The impact of sampling from the base resolution and the
teacher regularization have similar outcomes: both encourage global coherence,
but the teacher has a stronger effect than base resolution training. (2) We also
try adding a second discriminator so that one focuses entirely on the global
low-resolution image, and the other entirely on patches. Both discriminators are
initialized with the result from pretraining, but we find that this setting leads
to suboptimal metrics, compared to using a single discriminator. (3) We inject
scale information into the discriminator following a similar method as the gen-
erator via weight modulation. In this case, the training becomes unstable as the
discriminator is able to out-compete the generator.

Removing the pretraining step. Our final model is first pretrained at a fixed,
smaller resolution before varied-size patch training is enabled. This pretraining
phase encourages global coherence and also serves as the teacher model later
during patch-based training. We conduct an experiment in which the initial pre-
training step is omitted, and the model is trained on randomly sampled patches
from the start of training. When trained with the same number of HR image
patches, the model without global pretraining suffers in both structure and tex-
ture — FID for 1024px generated images is 26.78 and pFID is 8.64 — compared
to our original model which performs global pretraining at low resolution — FID
at 1024px is 4.50 and pFID is 3.46 after 10M training images.

2.7 Detectability

A concern with improved image gen-
eration is the potential for more con-
vincing deceiving images, particularly
those of higher resolution, which is the
focus of our work. We use the off-the-
shelf detector from Wang et al. [L1] on
our Birds (generated 256 — 2048) and
Mountains (1024 — 4096) generators, 60

across a large range of resolutions. — T

As shown in Figure 10, the scores 50 D

are well above chance (50%) across o o 153§§s°§fué?§ 5072 3584 409
both datasets and resolutions. Inter- Fig. 10: Detection score from [11] on our
estingly, the curve generally trends Birds and Mountains datasets. All scores
upwards, indicating that while higher are above chance of 50%. Note in both
resolution images may look more nat- cases, the detectability of our network
ural, they are also easier to detect. trends upwards with resolution.

100

90

80

70

Average Precision (AP)

3 Additional implementation details

Building off the StyleGAN3 [5] architecture, we describe our coordinate condi-
tioning and scale modulation branch applied to enable generation of multi-scale
patches during the second training phase.
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3.1 Patch-based training

Extracting patches from varied size images From our dataset of images
D, we sample an image z; € R7:*Wix3 ~ D with short-side s;, = min(H;, W;),
and take an sj,-by-sim square crop. We then Lanczos downsample the image to
an intermediate resolution s € [p, sim], which provides “free” additional views
from the same image, without introducing image corruptions.

Next, we sample a random crop of size p and record the sampling location
v € R2. To summarize this procedure, we obtain a patch z € RPXP*3 from these
two operations, while saving the sampled image resolution s and patch center
location v = (v, v,) € [0,1]? for later use.

x,s,v = Crop(Downsample(x;)) (1)

Synthesizing patches from the generator Given a set of patches from the
image dataset, the generator is tasked with synthesizing images at the cor-
responding patch locations. To transform the normalized coordinate domain
[0,1] x [0,1] into patch coordinates, we apply a transformation matrix to each
2D location ¢ in homogenous coordinates:

Vg
vy | *c (2)
1

Cv,s = dpatch ¥ C =

O Ouls
Oulkd O

Following StyleGAN3, these transformed coordinates are then encoded as K
random Fourier channels by multiplying by frequencies B € R¥*2? and adding
phases ¢ € R¥. For patch synthesis, the Fourier feature extraction at index
(h, w) becomes:

Fpw(cy,s) = sin (27 Bey s + ¢) € RY, (3)

3.2 Scale-conditioning branch

As individual coordinate positions ¢y s do not directly convey scale information,
we found it beneficial additionally incorporate the scale input to intermediate
layers of the generator. To do this, we first normalize the target scale s to [0, 1]
using:

_ §—P

§ Smax — P (4)
where spax is selected from dataset statistics and is only present as a normal-
ization factor, but does not clip the upper synthesis bound during inference.
Empirically, we found that adding a small offset factor (we use 0.1) to the nor-
malized target scale 5 allows for smoother interpolations between resolutions by
avoiding a discontinuity at zero.

We then encode § using a parallel mapping network of identical architecture

to the latent mapping network M(z), and add the two inputs after undergoing



14 L. Chai et al.

a layer-specific affine transformation into style-space [13,8] to obtain the final
modulation parameter M (z, s); at layer k:

M(Z, S)k = (Wz’k * MZ(Z) + bz,k) + (Ws,k * Ms(s) + bs,k) (5)

Because the modulation parameter is a multiplicative factor on the network
weights and the scale-conditioning portion is added only during the secondary
patch-wise training step, we initialize b, ;, = 1 and b, = 0 to allow the network
to smoothly transition between the initial pretraining step and secondary patch-
based training.

3.3 Training procedure

We train our models on four to eight V100 GPUs with 16GB memory. By sam-
pling fixed-size patches, the memory and compute footprint remain constant
during training. For FFHQ, we finetune our initial fixed-scale generator from the
pretrained FFHQ-U model [5], which reaches a minimum FID within 4M training
images. In the remaining domains, we perform the pretraining step from scratch,
retaining the checkpoint with the lowest FID, computed over 25M image samples,
before continuing with the second, mixed-resolution training phase. Our training
procedure is compatible with both 3x3 and 1x1 kernel sizes in StyleGAN3 (T
& R configurations, respectively). For the patch-based training step, we proceed
with the model configuration that reaches the best FID in pretraining, which is
typically Config T with the exception of the FFHQ domain.
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