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Abstract. Generative models operate at fixed resolution, even though
natural images come in a variety of sizes. As high-resolution details are
downsampled away and low-resolution images are discarded altogether,
precious supervision is lost. We argue that every pixel matters and cre-
ate datasets with variable-size images, collected at their native resolu-
tions. To take advantage of varied-size data, we introduce continuous-
scale training, a process that samples patches at random scales to train
a new generator with variable output resolutions. First, conditioning the
generator on a target scale allows us to generate higher resolution images
than previously possible, without adding layers to the model. Second, by
conditioning on continuous coordinates, we can sample patches that still
obey a consistent global layout, which also allows for scalable training at
higher resolutions. Controlled FFHQ experiments show that our method
can take advantage of multi-resolution training data better than discrete
multi-scale approaches, achieving better FID scores and cleaner high-
frequency details. We also train on other natural image domains includ-
ing churches, mountains, and birds, and demonstrate arbitrary scale syn-
thesis with both coherent global layouts and realistic local details, going
beyond 2K resolution in our experiments. Our project page is available
at: https://chail.github.io/anyres-gan/.

Keywords: Unconditional Image Synthesis, Generative Adversarial Net-
works, Continuous Coordinate Functions, Multi-scale Learning.

1 Introduction

The first step of typical generative modeling pipelines is to build a dataset with
a fixed, target resolution. Images above the target resolution are downsampled,
removing high-frequency details, and data of insufficient resolution is omitted,
discarding structural information about low frequencies. Our insight is that this
process wastes potentially learnable information. We propose to embrace the
natural diversity of image sizes, processing them at their native resolution.

Relaxing the fixed-dataset assumption offers new, previously unexplored op-
portunities. One can potentially simultaneously learn global structure – for which
large sets of readily-available low-resolution images suffice – and fine-scale details

https://chail.github.io/anyres-gan/


2 L. Chai et al.

1.0x (256)

2.8x (728)

6.4x (1638)

3.2x (819) 4.4x (1126)

Fig. 1: Trained on a dataset of varied-size images, our unconditional generator learns to
synthesize patches at continuous scales to match the distribution of real patches. Here,
we render crops of the image at different resolutions, indicating the target resolution
for each. We indicate the region of each crop in the top-left panel, which is the image
directly sampled without scale input.

– where even a handful of high-resolution images may be adequate, especially
given their internal recurrence [48]. This enables generating images at higher
resolutions than previously possible, by adding in higher-resolution images to
currently available fixed-size datasets.

This problem setting offers unique challenges, both in regards to modeling
and scaling. First, one must generate images across multiple scales in order to
compare with the target distribution. Näıvely downsampling the full-resolution
image is suboptimal, as it is common to even have images of 8× difference in scale
in the dataset. Secondly, generating and processing high-resolution images offers
scaling challenges. Modern training architectures at 1024 resolution already push
the current hardware to the limits in memory and training time, and are unable
to fully make use of images above that resolution.

To bypass these issues, we design a generator to synthesize image crops at
arbitrary scales, hence, performing any-resolution training. We modify the state-
of-the-art StyleGAN3 [26] architecture to take a grid of continuous coordinates,
defined on a bounded domain, as well as a target scale, inspired by recent work
in coordinate-based conditioning [37,2,32,7]. By keeping the latent code constant
and varying the crop coordinates and scale, our generator can output patches
of the same image [31,44], but at various scales. This allows us to (1) efficiently
generate at arbitrary scale, so that a discriminator critic can compare generations
to a multi-resolution dataset, and (2) decouple high-resolution synthesis from
increasing architecture size and prohibitive memory requirements.

We first experiment on FFHQ images [24] as a controlled setting, showing
efficient data usage by comparing our training on image subsets to using the en-
tire full resolution dataset. We find minimal degradation (FIDs varying by 0.3),
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even at highly skewed distributions – 98% of the dataset at 4× lower resolution,
and just 2% at a higher, mixed resolutions. Practically, this means we can lever-
age large-scale (>100k) lower-resolution datasets, such as LSUN Churches [65],
Flickr Mountains [41], and Flickr Birds collected by us, and add a relatively small
amount of high-resolution images (∼ 6000), for continuous resolution synthesis
beyond the 1024 resolution limit of current generators. To summarize, we:
– propose to train on mixed-resolution datasets from images in-the-wild.
– modify the generator to be amenable to such data, sampling patches at arbi-

trary scales during our any-resolution training procedure.
– demonstrate successful generations beyond 1024× 1024, with fine details and

coherent global structure, without a larger and more expensive generator.
– introduce a variant of the FID metric that captures image statistics at multiple

scales, thus accounting for the details of high resolutions.

2 Related Works

Unconditional image synthesis. Recent generative models including GANs
[16,27,26,3], Variational Autoencoders [29], diffusion models [38,17,50,51,11], and
autoregressive models [30,54,40] such as transformers [55,6,14] are rapidly im-
proving in quality. Of these, we focus on GANs, which offer state-of-the-art
performance along with efficient inference and effective editing properties. A
key innovation in GANs has been multi-resolution supervision during training.
Works such as LapGAN [10], the Progressive/StyleGAN family [24,27,28,26],
MSG-GAN [23], and AnyCost-GAN [33] have demonstrated stable training by
growing the generator with additional layers that increase resolution by factors of
two. Such a strategy even works for single-image GANs [44,47], based on the ob-
servation that images share statistics across scales. While several works [25,70,69]
show data augmentations, such as small jitters in scale, can help stabilize train-
ing, they are processing the same, underlying fixed-resolution dataset. We draw
upon the insights in these works for stable training, and seek to unlock training
on an any-resolution dataset. Importantly, our generator does not use additional
layers and can synthesize images at continuous scales, not only powers of two.

Coordinate-based functions. Coordinate-based encodings enable spatial con-
ditioning and provide an inductive bias towards natural images [52]. Recent
methods use point-based neural mappings to transform 2D or 3D coordinates
to a color value for the purposes of unconditional generation [31,9,26,49,32,1],
conditional generation [45], 3D view synthesis [37,43,5], or fitting arbitrary sig-
nals [7,36]. By oversampling the coordinate grid, one can generate a larger im-
age at inference time. However, because these models keep the same fixed-scale
dataset assumption during training, the outputs struggle to offer additional high-
frequency details without a high-frequency training signal. We draw upon the
innovations in coordinate-based functions to sample patches at different scales
and locations, enabling us to efficiently train on multiple scales. MS-PIE [62]
and MS-PE [9] add positional encodings for multi-scale synthesis, but retain a
global image discriminator at smaller resolution. Concurrently, ScaleParty [39]
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also samples patches, but their goal is to generate at multiple scales with cross-
scale consistency while we focus on training with arbitrary size real images.

Extrapolation. One method of generating “infinite” resolution is extrapolating
an image. Early texture synthesis works [13,12,60] focus on stationary textures.
Recent advances [72] explore non-stationary textures, with large-scale structures
and inhomogeneous patterns. Similar approaches operate by outpainting images,
extending images beyond their boundaries in a conditional setting [53,64,35,72].
Recent generative models synthesize large scenes [32,8], typically casting syn-
thesis as an outpainting problem [64,35]. These methods are most effective for
signals with a strong stationary component, such as landscapes, although ex-
trapolation of structured scenes can be achieved in some domains [59]. Unlike
textures, the images we wish to synthesize typically have a strong global struc-
ture. In a sense, we seek to extrapolate by “zooming in” or out, rather than
“panning” beyond an image’s boundaries.

Super-resolution. An alternative approach to generating high-resolution im-
agery would be to start with an off-the-shelf generative model and feed its
outputs to a super-resolution method [18,7,58,57], possibly exploiting the self-
similarity properties of images [46,15,19,48]. Applying super-resolution models is
challenging, in part because of the specific blur kernels super-resolution models
are trained on [66]. Furthermore, though generations continue to improve, there
remains a persistent domain shift between synthesized and real images [56,4].
Finally, super-resolution is a local, conditional problem where the global struc-
ture is dictated by the low-resolution input, and optionally an additional high-
resolution reference image [71,63,34,22,61]. We synthesize plausible images un-
conditionally, leveraging a set of high-resolution images to produce both realistic
global structure and coherent fine details.

3 Methods
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Fig. 2: Data comes at a variety
of scales. Traditional dataset
construction filters out low-
resolution images and down-
samples high-resolution im-
ages to a fixed, training reso-
lution. We aim to keep images
at their original resolution.

In standard GAN training, all training images
share a common fixed resolution, which matches
the generator’s output size. We seek to exploit the
variety of image resolutions available in the wild,
learning from pixels that are usually discarded,
to enable high- and continuously-variable resolu-
tion synthesis. We achieve this by switching from
the common fixed-resolution thinking, to a novel
‘any-resolution’ approach, where the original size
of each training image is preserved (Fig 2). We in-
troduce a new class of GAN generators that learn
from this multi-resolution signal to synthesize im-
ages at any resolution (§ 3.1), and show how to
train them by sampling patches at multiple scales
to jointly supervise the global-structure and fine
image details (§ 3.2).
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Fig. 3: Overview. (Left) We parameterize images (real or synthetic) as continuous
functions over a normalized domain and extract random patches at various scales s,
but constant resolution p. (Right) To train, we sample crops at random scales and
offsets v from full-size real images. The same crops are sampled from the generator, by
passing it a grid of the desired coordinates cv,s, and injecting the image scale s through
modulation, in addition to a global latent code z.

3.1 Multi-resolution GAN

We design our approach to leverage state-of-the-art GANs. We keep the ar-
chitecture of the discriminator unchanged. Since the discriminator operates at
fixed resolution, we modify the generator to synthesize images at any resolution
and receive the discriminator’s fixed-resolution supervision. Our implementation
builds on the StyleGAN3 framework [26], which is conditioned on a fixed coor-
dinate grid. We modify this grid for any-resolution and patch-based synthesis.

Continuous-resolution generator. We treat each image as a continuous func-
tion defined on a bounded normalized coordinate domain [0, 1]× [0, 1]. The gen-
erator G always generates patches at a fixed pixel resolution p × p, but each
patch implicitly corresponds to a square sub-region, centered at v ∈ [0, 1]2, of
the larger image. Denoting the resolution of the larger image as s × s, we have
that the patch size is p/s in normalized coordinates (see Figure 3, left). During
training, we sample patches from images at multiple scales s, either from the
generator or from the multi-resolution dataset, before passing them to the fixed-
resolution discriminator D. Formally, our generator takes three inputs: a regular
grid of normalized continuous pixel coordinates cv,s ∈ Rp×p×2, the resolution
s ∈ N of the (implicit) larger image the patch is extracted from, and z, the latent
code representing this larger image. It synthesizes the patch’s pixel values at the
sampled coordinates as:

G(z, cv,s, s) = G(F (cv,s);M(z, s)), (1)

where F is a Fourier embedding of the continuous coordinates [26], and M is
an auxiliary function that maps the latent code and sampling resolution into
a set of modulation parameters for the StyleGAN3 generator (see § 3.3 for de-
tails). Our method therefore modifies two components from StyleGAN3. First,
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we replace the fixed coordinate grid with patch-dependent coordinates to train
on variable-resolution images; these coordinates are adjusted to account for up-
sampling in StyleGAN3. Second, we append an auxiliary branch M to inject
scale information throughout the generator.

At test time, we can generate images at arbitrarily high resolutions by sam-
pling the full continuous domain [0, 1]× [0, 1] at the desired sampling rate. The-
oretically, the maximum resolution is infinite, but in practice the amount of
detail that the model can generate is determined by generator resolution p and
the resolutions of the training images.

3.2 Two-phase training

We train our generator in two phases. In the first, we want the generator to learn
to generate globally-coherent images. For this, we disable the patch sampling
mechanism and pretrain the generator at a fixed scale, corresponding to the
full continuous image domain. That is, we fix s = p, and v = (0.5, 0.5), which is
equivalent to standard fixed-resolution GAN training. Both the coordinate tensor
cv,s and the scale conditioning variable s are constant in this phase, so we simply
refer to the image generated as Gfixed(z) and follow the training procedure of
StyleGAN3. In the second phase, we enable patch sampling for both the real
and synthetic images and continue training the generator using variable-scale
patches, so it learns to synthesize fine details at any resolution. We found that
using a copy of the pretrained fixed-scale generator Gfixed as a teacher model
helps stabilize training in this phase.

Global fixed-resolution pretraining. During the pretraing phase, we effec-
tively resample all the training images to a fixed resolution p× p, as in standard
GAN training. Let x ∼ Dfixed denote an image sampled from this fixed size
dataset. We optimize a standard GAN objective with non-saturating logistic
loss and R1 regularization on the discriminator:

V (D,G(z), x) = D(x)−D(G(z)), R1(D,x) = ||∇D(x)||2,

Gfixed = argmin
G

max
D

Ez,x∼Dfixed
V (D,G(z), x)− λR1

2
R1(D,x).

(2)

We follow the recommended values for λR1 , depending on the generator resolu-
tion p [26].

Mixed-resolution patch-based training. In the second phase, we enable
multi-resolution sampling, alternating between extracting random crops from
our any-resolution dataset and generating them with our continuous generator.

For synthetic patches, we sample a patch location v uniformly in the continu-
ous domain [0, 1]× [0, 1]; and an arbitrary image resolution s ≥ p, corresponding
to the implicit full image around the square patch. From those, we derive the
sampling coordinate grid cv,s, and synthesize the patch image G(z, cv,s, s), as
described earlier.

For ‘real’ patches, we sample an image from our dataset. Because this image
can have any resolution sim ≥ p, we crop it to a random square matching its
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smallest dimension, then Lanczos downsample this square to a random resolution
s × s with sim ≥ s ≥ p. Finally, we extract a random p × p crop from the
downsampled image, recording its center v. To preserve the generator’s global
coherence and continuous generation ability, we sample at global scale s = p and
v = (0.5, 0.5) (similar to the pretraining step) with probability 50%. We found
that image quality at global resolution s = p degrades otherwise, and we refer
to these generated full images of size p× p as “base images.” Our any-resolution
GAN optimizes the following objective during this phase:

G∗ = argmin
G

min
D

Ez,{x,s,v}∼D V (D,G(z, cv,s, s), x)

+λteacherLteacher(G,Gfixed, z)−
λR1

2
R1(D,x).

(3)

We use λteacher = 5; other values offer slight tradeoffs between similarity to the
base teacher model Gfixed, and FID score (see supplemental). Lteacher is an aux-
iliary loss to encourage faithfulness to the pretrained fixed-resolution generator
Gfixed. The architecture of D remains the same as in the pretraining step; we
found that modifying the discriminator setup did not further improve results
(see supplemental).

Teacher model. For the second training phase above, we initialize G with the
pretrained weights of Gfixed. Weights for discriminator D are also kept for fine-
tuning. We keep a separate copy of Gfixed with frozen weights, the teacher, for
additional supervision. We design a loss function that encourages the generated
patch (at any resolution), to match the teacher’s fixed-resolution output in the
region corresponding to the patch, after downsampling and proper alignment[21].
Formally, this loss is given by:

Lteacher(G,Gfixed, z) = d (m⊙ wv,s(G(z, cv,s, s)), m⊙Gfixed(z)) , (4)

where d is the sum of a pixel-wise ℓ1 loss, and the LPIPS perceptual distance
[20,67]. The warp function wv,s transforms and resamples the generated high-
resolution patch using a band-limited Lanczos kernel, to project it in the coor-
dinate frames of the low-resolution, global image Gfixed(z). Because the warped
patch does not cover the entire image domain, we multiply it with a binary mask
m to indicate the valid pixels, prior to computing loss d.

3.3 Implementation details

Scale-conditioning. In addition to the pixel location cv,s, we also pass the
global resolution information s to the generator. Knowledge of the global im-
age scale is important to enable continuous scale variations and proper anti-
aliasing [7,2]. We found it beneficial to explicitly inject this information into all
intermediate layers of the generator. To achieve this, we use a dual modulation
approach [68], embedding the latent code z and scale s separately using two
independent sub-networks (we use the same mapping network architecture for
each). The two outputs are summed to obtain a set of modulation parameters
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M(z, s), used to modulate the main generator features. Architectural details of
the generator G and mapping network M , can be found in the supplemental.

Synthesizing large images. Our fully-convolutional generator can render im-
age at arbitrary resolutions. But images larger than 1024× 1024 require signif-
icant GPU memory. Equivalently, we can render non-overlapping tiles that we
assemble into a larger image. Our patch-based multi-resolution training and the
Fourier encoding of the spatial coordinates make the tile junctions seamless.

4 Experiments

We introduce a modified image quality metric that computes FID over multi-
scale image patches without downsampling, which is largely correlated to the
standard FID metric when ground truth high-resolution images are available
(FFHQ), yet more sensitive to the quality of larger resolutions. We then com-
pare our model to alternative approaches for variable scale synthesis and super-
resolution on other natural image domains (§ 4.1). Finally, we investigate varia-
tions of our model and training procedure to validate our design decisions (§ 4.2).
Data. Our method is general and can work on collections of any-resolution data.
As such, when targeting high-resolution generation, rather than starting over,
we can add additional high-resolution (HR) images to existing, fixed-size, low-
resolution (LR) datasets. Our datasets and their statistics are listed in Tab. 1.
Figure 4 shows the resolution distrbution in each dataset.

We begin initial experiments with a controlled setting of FFHQ, which con-
tains 70K images at 1024 resolution. From these, we construct a varied-size
dataset by (1) using 256 resolution for all images (2) downsampling a 5K subset
between 512-1024 (uniformly distributed) and (3) add 1k subset at full 1024.
The last step enables us to judiciously compare to methods that are limited to
synthesizing images at strict powers of 2. We refer to this mixture as FFHQ6k.
We use the full 1024 dataset as ground-truth for evaluation metrics.

In the remaining domains, we push current generation results to higher res-
olution by scraping HR images from Flickr. In cases where a standard fixed-size
dataset is available (LSUN Churches [65] and Mountains [41]), we select the ad-
ditional HR images to approximately match the LR domain. Our final generators
synthesize realistic details despite the majority of the training set being LR. For
Birds and Churches, > 92% of the training set is at 256 resolution but our model
maintains quality beyond 1024; for Mountains > 98% of training set at 1024 but
our model can generate beyond 2048. These categories cover a range between
objects (but without the strong alignment of FFHQ) and outdoor scenes.

4.1 Continuous Multi-Scale Image Synthesis.

Qualitative examples. We show qualitative examples in Fig. 5. Our generated
images preserve the fine details of HR structures, such as bricks, rocky slopes,
feathers, or hair. Pushing the inference resolution towards and beyond the higher
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Table 1: Any-resolution datasets and generator settings. We build upon low-resolution
(LR) datasets, and use it for fixed-size dataset pre-training. We add additional high-
resolution (HR) images, of mixed resolutions. Note that the number of HR images is
small (∼2-8% of LR size). Patches of size p are sampled from both subsets during
training, with average sampled scale E[s].

Domain

Dataset Generator

Source
# Imgs Resolutions

Config
Resolutions

LR HR LR HRmin HRmed HRmax p E[s]

Faces FFHQ 70,000 6000 256 512 819 1024 R 256 458
Churches LSUN & Flickr 126,227 6253 256 1024 2836 18,000 T 256 1061
Birds Flickr 112,266 7625 256 512 1365 2048 T 256 585
Mountains Flickr 507,495 9361 1024 2049 3168 12,431 T 1024 1823
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Fig. 4: Training set size distributions. Histogram shows the size distribution of the HR
images (y-axis in log scale); pie chart indicates the proportion of LR to HR images.

resolutions of training images, we find that textured surfaces typically deteriorate
first before edge boundaries deteriorate eventually (Fig. 6).

Patch-FID metric. Standard FID evaluates global structure by first downsam-
pling all images to a common size of 299. By design, this ignores high-resolution
details (and itself can cause artifacts [42]). Therefore, we propose a modifica-
tion, which we dub ‘patch-FID’, to specifically evaluate texture synthesized at
higher resolutions. Our patch-FID randomly resizes and crops patches from the
HR dataset, and computes FID on real and generated patches, sampled at cor-
responding scales and locations. We use 50k patches, matching standard FID.
By avoiding downsampling, our patch-FID is more sensitive to blurriness or ar-
tifacts at higher resolutions, resulting in larger absolute difference compared to
standard FID at 1024 resolution. As a sanity check, when a full HR ground-truth
is available, we find it is largely correlated to standard FID (see Table 2).

To summarize, to evaluate structure, we compute standard FID on images
generated at specified resolutions, e.g., FID (256). To evaluate texture, we sample
patches at random scales and locations and measure our patch-FID, which we
denote as pFID (random). Lower numbers are better in both cases.

Alternative methods of multi-size training and generation. Our gener-
ator is encouraged to synthesize realistic high-resolution textures at training,
even when the discriminator does not get to see the full image. While MS-PE [9]
also enables continuous resolution synthesis, the discriminator learns only at a
single resolution and the generator is not trained patch-wise. We find that this
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5.9x (1500)

3.9x (1000)

2.4x (2500)

3.9x (1000)

4.7x (1200)
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Fig. 5: The inset shows the entire generated, high-resolution images (between 1000-
3000 resolution), with enlarged regions of interest outlined in the white box. Note that
our model can render the image (or any sub-region) at any resolution.

1x (256) 16x (4096)8x (2048)4x (1024)2x (512)

Fig. 6: Extrapolation limits. We test the extrapolation capabilities of our model by
specifying the inference scale s. Typically, textures such as bricks and feathers deteri-
orate first before edges degrade. The dotted line indicates when generation starts to
exceed the average scale sampled in training E[s] (which is 585 for birds and 1061 for
churches).
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Table 2: Varied-size training and in-
ference. Random-resize MS-PE [9] per-
forms varied-size synthesis, but assumes
a fixed-size dataset. AnyCost-GAN han-
dles varied training at powers of 2. Our
method directly utilizes training images
at any size, achieving better results by
FID. († = copied from paper)

FFHQ6K
FID pFID

256 512 1024 random

MS-PE [9]† 6.75 30.41 – –
Anycost [33] 4.24 5.94 6.47 18.39
Ours 3.34 3.71 4.06 2.96

Table 3: Comparison to super-resolution
using patch-FID (pFID). For each do-
main, we compare our model to continuous-
scale (LIIF) and fixed-scale super-resolution
(Real-ESRGAN) models. Lower pFID sug-
gests that our model can generate realistic
details at high resolutions, not achievable
with super-resolution alone.

pFID (random)

FFHQ6K Church Bird Mountain

LIIF [7] 22.93 83.88 30.19 23.10
Real-ESRGAN [57] 16.92 23.04 16.10 19.05
Ours 2.96 9.89 6.52 7.99

downsampling for the discriminator is detrimental to image quality at higher
resolutions. Anycost-GAN[33] performs image synthesis at powers-of-two reso-
lutions by adding additional synthesis blocks. For comparison, we modify it to
handle a multi-size dataset by downsampling images to the nearest power of two
and training each layer only on the valid image subset. Compared to Anycost-
GAN, our model is more data-efficient, due to weight sharing for generation at
multiple scales. Anycost-GAN learns a separate module for each increase in reso-
lution, creating artifacts at higher resolutions when fewer HR training images are
available and higher FID scores (Tab. 2). Additionally, Anycost-GAN increases
the generator and discriminator size for synthesis at higher resolutions, whereas
our model incurs a constant training cost, regardless of the inference scale.

Comparison to super-resolution. Most super-resolution methods require
LR/HR image pairs, whereas there is no ground-truth HR counterpart to a
LR image synthesized by our fixed-scale generator Gfixed. The teacher regular-
ization encourages similarity between Gfixed and G’s outputs, but unlike super-
resolution, this supervision occurs at low-resolution, allowing variations in fine
details. Figure 7 compares our model to super-resolution methods applied to the
output of Gfixed. Our method produces much sharper details than LIIF [7], a
recent continuous-scale super-resolution technique, and cleaner images than the
state-of-the-art Real-ESRGAN [57]. The latter is a fixed-resolution model, so we
run it iteratively until exceeding a target resolution, and then Lanczos down-
sample the result to the target size. Real-ESRGAN’s outputs are either overly
smooth, or exhibit grid-like artifacts. Our method generates realistic textures
based on the low-resolution output of Gfixed and reaches a lower pFID (Tab. 3).

4.2 Model Variations

Using the full high-resolution FFHQ dataset as a benchmark, we investigate
individual components of our architecture and training process. We train each
model variation for 5M images and record metrics from the best FID@1024
checkpoint. We only report quantitative metrics in the main paper and refer to
the supplemental for further evaluations and visual comparisons.
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Fig. 7: Super-resolution Comparisons. Qualitative comparisons of Lanczos upsampling
a patch from the base image (upsample), continuous (LIIF [7]) and fixed-factor (Real
ESRGAN [57]) super-resolution models, and our trained model. LIIF tends to amplify
artifacts from the base image (e.g. the JPEG artifacts around the church). While
Real-ESRGAN is better at suppressing artifacts, it tends to overly smooth surfaces or
synthesize grid-like textures (mountain). Our model is not a super-resolution model; it
can add additional details to the low-resolution image but tolerates slight distortions
in structure which are regularized with the teacher weight.

Impact of teacher regularization. Our full model uses an “inverse” teacher
regularizer to encourages a downsampled HR patch to match the low-resolution
teacher as described in 3.2. We also explored a variant with a “forward” teacher
loss, in which the generated patch is encouraged to match the upsampled teacher
output. This variation is qualitatively inferior and blurs details; it has worse FID
at higher resolutions (see supplemental for details and visuals). Removing the
teacher altogether improves pFID but degrades FID. Qualitatively, the gener-
ated patches diverge significantly from the fixed-size global image. We hypothe-
size that the global change in structure negatively impacts overall image quality,
causing global FID metrics to increase, but this cannot be captured from evalu-
ating patches alone. We found λteacher = 5 to provide the best balance between
global and local image quality, but we observe minimal differences in FID and
pFID for other values, evidence that the model can tolerate a range of values for
this parameter. See supplemental for a parameter sweep with full scores.

Removing scale conditioning degrades quality. We inject the scale in-
formation to intermediate layers of the generator through scale-conditioning.
Adding this improves FID@1024 from 4.88 to 4.47, and pFID from 4.67 to 4.28.

Multi-size training improves fidelity at all scales. Our multi-size data
pipeline lets our model learn to synthesize at continuous scales, which is a strictly
more challenging than learning at a fixed scale. In Table 4, we investigate to
what extent learning from images of varied sizes offers benefits over fixed-scale
training on a smaller dataset. Visual comparisons can be found in supplemental.
In a first alternative, using the same FFHQ-6K dataset, we resize all images
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Table 4: Multisize Training. Downsam-
pling or upsampling all images to a com-
mon size, or using only the subset of the
largest images, worsens FID compared to
our training strategy. (*) indicates our de-
fault setting.

FID pFID

256 512 1024 random

Resize down to 512 3.31 4.11 19.18 26.83
Resize up to 1024 3.46 13.43 4.86 6.65
Train 1024 subset 3.46 12.41 4.67 5.43
Multisize training (*) 3.37 4.41 4.47 4.28

Table 5: Number of HR images. Our
method is robust to a wide range of HR
images, even when only 1K images at HR
are available (<2% of the full ground-
truth dataset).

FID pFID

256 512 1024 random

1k (1.4%) 3.43 5.13 4.38 3.73
5k (7.1%) (*) 3.36 4.97 4.54 3.48
10k (14.2%) 3.46 4.96 4.65 3.54
70k (100%) 3.42 4.88 4.52 3.42

down to 512 and train the model to generate patches at 512× 512. In this case,
the model performs well up to 512 scale, but does not generalize beyond (e.g.,
1024) since it cannot exploit the information lost in downsampling. In two other
variants, we train models for 1024 resolution in the first case by upsampling all
images up to 1024, in the second by keeping only the 1K subset of images at
1024 resolution. Both variants are trained to output images specifically at 1024
resolution. The former approach (upsampling) increases blurriness. In the latter,
FID@1024 remains worse than that of our multi-size training, which can take
advantage of more data despite most of it being smaller than 1024.

Impact of number of HR images Due to the patch-based training procedure,
we find that our model can be trained with a small fraction of HR images,
compared to the 70k LR images in the dataset. In Table 5, we use progressively
larger subsets of HR images: 1k, 5k, 10k. We found that the FID scores are
largely similar (within 0.3) to using the entire 70k HR images. However, training
with 1k or fewer HR images shows evidence of divergence during training (see
supplemental), but stabilizes by 5k HR images, For the remaining domains, we
collect roughly 5K-10K images to construct the HR dataset.

4.3 Properties of Multi-Scale Generation

Correcting artifacts from low resolution. Because our model is not directly
trained with corresponding LR and HR image pairs, we find that there can be
small distortions between the upsampled base image and the HR generation from
the same latent code. In some cases, this can be a desirable property (Fig. 8).
For instance, the base generator on the birds dataset can struggle in synthesizing
the eye of the bird, which is less apparent at low resolutions, but more salient
at high resolution. Consequently, our HR generation will add the missing eye,
and also synthesizes additional feather and beak details. In the churches do-
main, because the LR and HR datasets are collected separately, we find that the
synthesized watermarks and JPEG artifacts at the base resolution disappear at
higher resolution, because the HR dataset we used is of higher quality and does
not have any watermark. The similarity between the LR and HR generations
can be tuned using λteacher during training.
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OursUpsample Upsample Ours

Base Image Upsample λ = 5 λ = 10

Failure Cases
Upsample Ours

3.3x (840)3.8x (966)

3.0x (771)

3.4x (867)

3.2x (824)

Fig. 8: Model Properties and Failure Cases. As fine details can be more difficult to
learn at low resolution, our model is capable of adding corrections when generating at
higher resolutions. In the case of inconsistencies between the LR and HR data sources,
the model deletes patterns that are not present in the HR dataset (e.g. watermarks and
compression artifacts), influenced by the teacher regularization weight. Failure cases
include biases towards circular or ring-like structures.

Failure Cases. Our model tends to inherit the artifacts from StyleGAN3, such
as a centered front tooth in FFHQ. In instances in which the base resolution
image contains uneven surfaces, the model may fail to fully mitigate them at
higher resolutions. These artifacts are often subtle at the low resolution, but
become more apparent when upsampling the base image or generating at a
larger target scale. In some cases, our model also has a tendency to generate
“watery” circular or ring-like artifacts (Fig. 8).

5 Conclusion

We propose an image synthesis approach that can train on images of var-
ied resolution and perform inference at continuous resolutions. This lifts the
fixed-resolution requirement of prior generative models, which discard higher-
resolution details. To do this, we train a generator jointly on a low-resolution
dataset to learn global structure, and on patches from the varied-size dataset to
learn details. At inference time, we can synthesize an image at any resolution
by supplying the appropriate coordinate grid and scale factor to the genera-
tor. By using training images at their native resolutions and a single model for
continuous-resolution synthesis, our method can efficiently leverage information
present in only a handful of high-resolution images to complement a large set of
low-resolution images. This approach enables high-resolution synthesis without
a larger generator or large dataset of fixed-size, high-resolution images.
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