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Abstract. In this paper, we aim to devise a universally versatile style
transfer method capable of performing artistic, photo-realistic, and video
style transfer jointly, without seeing videos during training. Previous
single-frame methods assume a strong constraint on the whole image to
maintain temporal consistency, which could be violated in many cases.
Instead, we make a mild and reasonable assumption that global incon-
sistency is dominated by local inconsistencies and devise a generic Con-
trastive Coherence Preserving Loss (CCPL) applied to local patches.
CCPL can preserve the coherence of the content source during style
transfer without degrading stylization. Moreover, it owns a neighbor-
regulating mechanism, resulting in a vast reduction of local distortions
and considerable visual quality improvement. Aside from its superior per-
formance on versatile style transfer, it can be easily extended to other
tasks, such as image-to-image translation. Besides, to better fuse content
and style features, we propose Simple Covariance Transformation (SCT)
to effectively align second-order statistics of the content feature with the
style feature. Experiments demonstrate the effectiveness of the resulting
model for versatile style transfer, when armed with CCPL.

Keywords: image style transfer, video style transfer, temporal consis-
tency, contrastive learning, image-to-image translation.

1 Introduction

Over the past years, much progress has been made on style transfer to make
the result exceptionally pleasant and artistically valuable. In this work, we are
interested in versatile style transfer. Apart from artistic style transfer and photo-
realistic style transfer, our derived method is versatile in performing video style
transfer well without explicitly training with videos. The code is available at
https://github.com/JarrentWu1031/CCPL.

One naive solution to produce a stylized video is to independently transfer
the style of successive frames with the same style reference. Since no tempo-
ral consistency constraint is enforced, the generated video usually has obvious
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Fig. 1. Our algorithm can perform versatile style transfer. From left to right are exam-
ples of artistic image/video style transfer, photo-realistic image/video style transfer.
Adobe Acrobat Reader is recommended to see the animations.

flicker artifacts and incoherence between two consecutive frames. To combat this
problem, former methods [4,16,19,22,39,40] used optical flow as guidance to re-
store the estimated motions of the original videos. However, estimating optical
flow requires much computation, and the accuracy of estimated motions tightly
constrains the quality of the stylized video. Recently, some algorithms [14,29,33]
tried to improve the temporal consistency of the video outputs with single-frame
regularizations. They attempted to ensure a linear transformation from the con-
tent feature to the fused feature. The underlying idea is to encourage preserving
the dense pairwise relations within the content source. However, without explicit
guidance, the linearity is largely affected by the global style optimization. There-
fore, their video results are still not that temporally consistent. We notice that
most video results show good structure rigidity to their content video inputs,
but the local noise escalates the impression of inconsistency. So instead of con-
sidering a global constraint that could be easily violated, we start by thinking
about a more relaxed constraint defined on local patches.

As shown in Fig. 2, our idea is simple: the change between patches denoted
by R

′

A and R
′

B of the same location in the stylized images should be similar
to patches RA and RB of two adjacent content frames. If the two consecutive
content frames are shot within a short period, it is likely to find a similar patch
to RB in the neighboring area, which is denoted by RC (in the blue box). In other
words, we can treat two nearby patches in the same image as patches of the same
location in consecutive frames. Therefore, we can apply the constraint even when
we only have single-frame images. However, forcing these patch differences to be
the same is unreliable since it will encourage the outputs to be the same as
the content images. Then no style transfer effects would appear in the results.
Inspired by recent advances in contrastive learning [8,35,37], we use the InfoNCE
loss [35] to maximize the mutual information between the positive pair (from the
same region) of patch differences relative to other negative pairs (from different
regions). By sampling a sufficient number of negative pairs, the loss encourages
the positive pair to be close while keeping away from negative samples. We call
the derived loss as Contrastive Coherence Preserving Loss (CCPL).

After applying CCPL, we note that the temporal consistency of the video
outputs improves substantially while the stylization remains satisfying (see Fig. 5
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Fig. 2. Intuition of the contrastive coherence preserving loss. The regions denoted with

red boxes from the first frame (RA or R
′
A) have the same location with corresponding

patches in the second frame wrapped with brown box (RB or R
′
B). RC and R

′
C (in

the blue boxes) are cropped from the first frames but their semantics align with RB

and R
′
B. The difference between two patches is denoted as D (e.g., D(RA,RB)). The

mutual information between D(RA,RC) and D(R
′
A,R

′
C) (D(RA,RB) and D(R

′
A,R

′
B))

is encouraged to be maximized to preserve the coherence of the content source.

and Tab. 1). Besides, due to the neighbor-regulating strategy of the CCPL,
the local patches of the generated image are constrained by their neighboring
patches, which reduces local distortions significantly, thus leading to better visual
quality. Our proposed CCPL does not require video inputs and is not bound to
specific network architecture. Therefore we can apply it to any existing image
style transfer networks during training to improve their performance on images
and videos (see Fig. 9 and Tab. 1). The significant improvement in visual quality
and its flexibility empowers CCPL for photo-realistic style transfer with minor
modifications, marking it a vital tool towards versatile style transfer (see Fig. 1).

With CCPL, we now aspire to fuse content and style features both efficiently
and effectively. To realize this, we propose an efficient network for versatile style
transfer, called SCTNet. The critical element of SCTNet is the Simple Co-
variance Transformation (SCT) module to fuse style features and content
features. It computes the covariance of the style feature and directly multiplies
the feature covariance with the normalized content features. Compared to the
fusing operations in AdaIN [23] and Linear [29], our SCT is simple and can
capture precise style information at the same time.

To summarize, our contributions are three-fold:

1. We propose Contrastive Coherence Preserving Loss (CCPL) for versatile
style transfer. It encourages consistency between the content image and gen-
erated image in terms of the difference of an image patch with its neighboring
patches. It is effective and transferable to other style transfer methods.

2. We propose Simple Covariance Transformation (SCT) to align second-order
statistics of content and style features effectively. The resulted SCTNet is
structurally simple and remains efficient (about 25 frames per second at the
scale of 512× 512), which is of great potential for practical use.

3. We apply our CCPL to other tasks, such as image-to-image translation,
and improve the temporal consistency and visual quality of results without
further modifications, demonstrating the flexibility of CCPL.
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2 Related Works

Image Style Transfer. These algorithms aim at generating an image with the
structure of one image and the style of another. Gatys et al. first pioneered
Neural Style Transfer (NST) [17]. For acceleration, some algorithms [25,45] ap-
proximated the iterative optimization procedure as feed-forward networks and
achieved style transfer with a fast forward pass. For broader applications, several
algorithms tried to transfer multiple styles within a single model [5,15]. Never-
theless, these models have limitations on the number of learnt styles. Since then,
various methods have been designed to transfer style from random images.

Style-swap methods [7,42] swapped each content patch with its closest style
patch before reconstructing the image. WCT [30] utilized singular value decom-
position to whiten and then re-color images. AdaIN [23] replaced the feature
means and standard deviations with those from the style source. Recently, many
attention-based algorithms came forth. For example, Li et al. [29] devised a
linear transformation to align second-order statistics between the fused feature
and the style feature. Deng et al. [14] improved it with multi-channel corre-
lating. SANet [36] re-arranged style features utilizing spatial correlations with
content features. AdaAttN [33] combined AdaIN [23] and SANet [36] to balance
global and local style effects. Cheng et al. [11] proposed style-aware normalized
loss to balance stylization. Another branch aims to transfer photo-realistic style
onto images. Luan et al. [34] designed a color transformation network inspired
by the Matting Laplacian [28]. Li et al. [31] replaced the upsampling layers of
WCT [30] with unpooling layers and added max-pooling masks to alleviate detail
losses. Yoo et al. [47] introduced the wavelet transform to preserve structural
information. An et al. [2] used neural architecture search algorithms to find the
appropriate decoder design for better performance.

Video Style Transfer. Existing video style transfer algorithms can be roughly
divided into two categories according to whether to use the optical flow or not.

One line of work leverages optical flow when producing the video output.
These algorithms try to estimate the motion of the original video and restore it
in the generated video. Ruder et al. [39] proposed a temporal loss to regulate the
current frame with the warped previous frame to extend the image style transfer
algorithm [17] to videos. Chen et al. [4] designed an RNN structure baseline
and performed the warping operation in the feature domain. Gupta et al. [19]
concatenated the former stylized frame with the current content frame before
rendering and formed a flow loss as a constraint. Huang et al. [22] tried to inte-
grate temporal coherence into the stylization network with a hybrid loss. Ruder
et al. [40] extended their previous work [39] with new initializations and loss
functions to improve robustness against large motions and strong occlusions.
Temporal consistency can be improved with these optical flow constraints. How-
ever, optical flow estimation is not perfectly accurate, resulting in artifacts in
the video results. Besides, it is computationally expensive, especially when the
image size scales up. Considering these, another line of work tries to maintain
the coherence of content inputs without using optical flow.

Li et al. [29] and Deng et al. [14] devised linear transformations for content
features to preserve structure affinity. Liu et al. [33] used L1 normalization to
replace the softmax operation of SANet [36] to get a more flat attention score
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Fig. 3. Diagram of the proposed CCPL. Cf and Gf represent the encoded features from
a specific layer of the encoder E. ⊖ denotes vector subtraction, and SCE means softmax
cross-entropy. The yellow dashed lines illustrate how the positive pair is produced.

distribution. Wang et al. [46] proposed compound temporal regularization to
enhance the robustness of the network to motions and illumination changes.
Compared to these approaches, our proposed CCPL poses no requirements for
the network architecture, making it exceptionally adaptive to other networks.
With our SCTNet, the temporal consistency of video outputs surpasses SOTAs
while the stylization remains satisfying. We also apply CCPL to other networks.
The results show similar improvements in video stability (see Tab. 1).

Contrastive Learning. The original purpose of contrastive learning algorithms
is to learn a good feature representation in a self-supervised scenario. A rich
family of methods tried to achieve this by maximizing the mutual information
of positive feature pairs while minimizing it in negative pairs [8,9,10,18,20,35].
Recent works extended contrastive learning to the field of image-to-image trans-
lation [37] and image style transfer [6]. Our work is most relevant to CUT [37] in
using patch-based InfoNCE loss [35]. But CUT [37] utilized the correspondence
of patches at the same locations for the image-to-image (Im2Im) translation
task. However, our CCPL incorporates a neighbor-regulating scheme to preserve
the correlations among neighboring patches, making it suitable for image and
video generation. Besides, our experiment illustrates the effectiveness of CCPL
on top of CUT [37] in the Im2Im translation task, as depicted in Sec. 4.4.

3 Methods

3.1 Contrastive Coherence Preserving Loss

Given two frames Ct and Ct+∆t where ∆t is the time interval in between, we
assume the difference between the corresponding generated images Gt and Gt+∆t

is linearly dependent on the difference between Ct and Ct+∆t, when ∆t is small:

lim
∆t→0

D(Ct+∆t, Ct) ≃ D(Gt+∆t, Gt), (1)
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where D(a, b) represents the difference between a and b. This constraint is proba-
bly too strict to hold for the whole image but technically sound for local patches
where usually only simple image transformations, e.g., translation or rotation,
can occur. Under this assumption, we propose a generic Contrastive Coherence
Preserving Loss (CCPL) applied to local patches to enforce this constraint. We
show in Sec. 1 that our loss applied on neighboring patches is equivalent to that
on corresponding patches of two frames, assuming ∆t is small. Operating on a
single frame frees us from processing multiple frames of a video source, saving
computation budget.

To apply CCPL, first, we send the generated image G and its content input
C to the fixed image encoder E to get feature maps of a specific layer, denoted
as Gf and Cf (shown in Fig. 3). Second, we randomly sample N vectors4 from
Gf (red dots in Fig. 3), denoted as Gx

a where x = 1, · · · , N . Third, we sample
the eight nearest neighboring vectors of each Gx

a (blue dots in Fig. 3), denoted
by Gx,y

n where y = 1, · · · , 8 is the neighbor index. Then, we accordingly sample
from Cf at the same locations to get Cx

a and Cx,y
n , respectively. The differences

between a vector and its neighboring vectors are measured by:

dx,yg = Gx
a ⊖Gx,y

n , dx,yc = Cx
a ⊖ Cx,y

n , (2)

where ⊖ represents vector subtraction. In order to realize Eq. 1, one simple
thought is to enforce dg equal to dc. But in this case, an easy workaround of
the network is to encourage G similar to C, meaning that this constraint would
contradict the purpose of style transfer. Inspired by the recent progress in con-
trastive learning [8,20,35], we instead try to maximize the mutual information
between “positive” difference vector pairs. A pair is only defined between a differ-
ence vector from Cf and Gf . Namely, the difference vectors of the same locations
are defined as positive pairs between dg and dc, otherwise negative. The under-
lying intuition is also straightforward: the difference vectors of the same location
should be most relevant in the latent space compared to other random pairs.

We follow the design of [8] to build a two-layer MLP (multi-layer perceptron)
to map the difference vectors and normalize them onto a unit sphere before
computing InfoNCE loss [35]. Mathematically:

Lccp =

8×N∑
m=1

− log[
exp(dmg · dmc /τ)

exp(dmg · dmc /τ) +
∑8×N

n=1,n̸= m exp(dmg · dnc /τ)
], (3)

where τ stands for a temperature hyper-parameter set to 0.07 by default. With
this setting, the temporal consistency of video outputs improves significantly (see
Fig. 5 and Tab. 1) while the stylization remains satisfying or even gets better
(see Fig. 6, Fig. 9, dirty texture disappears with our CCPL).

This loss avoids direct contradiction with style losses used to ensure style co-
herence between the generated and style image. Meanwhile, it can improve the
temporal consistency of the generated video even without leveraging information
from other frames of the input video. The complexity of CCPL is O (8×N)

2
,

4 As encoded features are spatially decreased, each vector in the feature level corre-
sponds to an image patch in the image level.
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Fig. 4. Details of the proposed SCT module and its comparison with similar algorithms
(AdaIN [23], Linear [29]). Here conv represents a convolutional layer, and the yellow
lines in cnet and snet denote relu layers. Besides, std norm represents normalizing fea-
tures by the means and standard deviations of channels, while mean norm normalizes
features by the means of its channels.

where 8 ×N represents the number of sampled difference vectors. It is compu-
tationally affordable during training and has zero influence on inference speed
(shown in Fig. 8a). CCPL can even work as a simple plugin to extend methods
of other image generation tasks to produce videos with much better temporal
consistency, as shown in Sec. 4.4.

3.2 Simple Covariance Transformation

With CCPL guaranteeing temporal consistency, our next goal is to design a
simple and effective module for the fusion of content and style features for rich
stylization. Huang et al. [23] proposed AdaIN to align channel-wise mean and
variance of content and style features directly. Although simple enough, the inter-
channel correlations are ignored, which are verified to be effective in the latter
literature [14,29]. Li et al. [29] devised a channel-attention mechanism to transfer
second-order statistics of style features onto corresponding content features. But
we empirically find that the structure of Linear [29] can be simplified.

To combine the advantages of AdaIN [23] and Linear [29], we design a Sim-
ple Covariance Transformation (SCT) module to fuse style and content
features. As shown in Fig. 4, first, we normalize the content feature fc by the
means and deviations of its channels [23] and the style feature fs by the means
of its channels [29] to get f̄c and f̄s. To reduce computation costs, we send f̄c
and f̄s to cnet and snet (cnet and snet both contain three convolutional layers,
and two relu layers in between) to gradually reduce the dimension of channels

(512 → 32), and get f
′

c and f
′

s. Then we flatten f
′

s and calculate its covariance

matrix cov(f
′

s) to find out the channel-wise correlations. After that, we simply

fuse the features by performing a matrix multiplication between cov(f
′

s) and f
′

c

to get fg. Finally, we use a single convolutional layer (denoted as conv in Fig. 4)
to restore the channel dimension of fg back to normal (32 → 512) and add
channel means of the original style feature before sending it to the decoder.
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Combined with a symmetric encoder-decoder module, we name the whole
network as SCTNet. The encoder is a VGG-19 network [43] pre-trained on
ImageNet [13] to extract features from the content and style images, while the
symmetric decoder needs to convert the fused feature back to images. Experi-
ments suggest that our SCTNet is comparable to Linear [29] in stylization effects
(see Fig. 6 and Tab. 1), while being lighter and faster (see Tab. 3).

3.3 Loss Function

Apart from the proposed CCPL, we adopt two commonly used losses [1,14,23,33]
for style transfer. The overall training loss is a weighted sum of these three losses:

Ltotoal = λc · Lc + λs · Ls + λccp · Lccp. (4)

The content loss Lc (the style loss Ls) is measured by the Frobenius norm
of the differences between (means µ(·) and standard deviations σ(·) of) the
generated features and the content (style) features:

Lc = ∥ϕl(Ig)− ϕl(Ic)∥F , (5)

Ls =
∑
l

(∥µ(ϕl(Ig))− µ(ϕl(Is))∥F + ∥σ(ϕl(Ig))− σ(ϕl(Is))∥F ), (6)

where ϕl(·) denotes the feature map from the l-th layer of the encoder. For
artistic style transfer, we use the features from {relu4 1}, {relu1 1, relu2 1,
relu3 1, relu4 1}, {relu2 1, relu3 1, relu4 1} to calculate the content loss, style
loss, and CCPL, respectively. As for photo-realistic style transfer, we set the loss
layers to {relu3 1}, {relu1 1, relu2 1, relu3 1}, {relu1 1, relu2 1, relu3 1} for
the above losses. The loss weights are set to λc = 1.0, λs = 10.0, λccp = 5.0 by
default. Please check Sec. 4.3 for details about how we find these configurations.

4 Experiments

4.1 Experimental settings

Implementation details. We adopt content images from MS-COCO [32] data-
set and style images from Wikiart [38] data-set to train our network. Both data-
sets contain approximately 80,000 images. We use the Adam optimizer [26] with
a learning rate of 1e-4 and the batch size of 8 to train the model for 160k
iterations by default. During training, we first resize the smaller dimension of
images to 512. Then we randomly crop 256 × 256 patches from images as the
final input. For CCPL, we only treat difference vectors within the same content
image as negative samples. More details are provided in the supplemental file.

Metrics. To comprehensively evaluate the performance of different algorithms
and make the comparison fair, we adopt several metrics to assess the results’
stylization effects and temporal consistency. To evaluate stylization effects, we
compute SIFID [41] between the generated image and its style input to measure
their style distribution distance. Lower SIFID represents closer style distributions
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Table 1. Quantitative comparison of video and artistic style transfer. Here i stands
for the interval of frames, and Pre. stands for human preference score. We show the
human preference score of both artistic image style transfer (Art) and video style
transfer (Vid) in the table. The results of temporal loss are magnified 100 times. We
show the first-place score in bold and the second-place score with underlining.

Methods SIFID (↓) LPIPS(↓) Temporal Loss (↓) Pre. (↑)
i=1 i=10 i=1 i=10 Art Vid

AdaIN [23] 2.44 0.184 0.444 5.16 7.92 0.028 0.028
AdaIN [23]+Lccp 2.58 0.163 0.408 4.21 6.72 0.054 0.054
SANet [36] 2.40 0.227 0.478 6.31 13.72 0.062 0.046
SANet [36]+Lccp 2.60 0.167 0.390 4.42 7.09 0.084 0.086
Linear [29] 2.38 0.160 0.417 4.25 7.61 0.076 0.080
Linear [29]+Lccp 2.47 0.147 0.370 4.01 6.96 0.082 0.088
MCCNet [14] 2.34 0.162 0.424 4.21 7.64 0.088 0.106
AdaAttN [33] 2.48 0.207 0.419 4.87 6.49 0.098 0.094
DSTN [21] 2.83 0.234 0.450 5.72 10.76 0.070 0.038
IE [6] 2.99 0.182 0.379 4.35 6.76 0.054 0.058
ReReVST [46] 2.78 0.137 0.359 2.97 5.19 0.046 0.062
SCTNet 2.29 0.187 0.446 4.82 12.22 0.066 0.060
SCTNet+Lnor[11] 2.31 0.191 0.439 5.07 11.54 0.070 0.062
SCTNet+Lccp 2.43 0.144 0.367 3.45 5.08 0.122 0.138

Table 2. Quantitative comparison of photo-realistic style transfer.

Metrics Linear [29] WCT2 [47] StyleNAS [2] DSTN [21] SCTNet SCTNet+Lccp

SIFID (↓) 1.82 1.86 2.37 3.35 1.65 2.14
LPIPS (↓) 0.395 0.419 0.379 0.464 0.427 0.351
Pre. (↑) 0.176 0.186 0.180 0.068 0.128 0.262

of a pair. To evaluate the visual quality and temporal consistency, we opt to
LPIPS [48], which is originally used to measure the diversity of the generated
images [12,24,27]. In our cases, small LPIPS represents few local distortions of
the photo-realistic results or minor changes between two stylized video frames.
Nonetheless, LPIPS only considers the correlations between stylized video frames
while ignoring the changes between the original frames. As a supplement, we
also adopt the temporal loss defined in [46] to measure temporal consistency. It
is done by utilizing the optical flow between two frames to warp one stylized
result and compute the Frobenius difference with another. We evaluate short-
term (two adjacent frames) and long-term (9 frames in between) consistency for
video style transfer. For short-term consistency, we directly use the ground-truth
optical flow from the MPI Sintel data-set [3]. Otherwise, we use PWC-Net [44] to
estimate the optical flow between two frames. The lower temporal loss represents
better preservation of coherence between two frames.

For image style transfer comparison, we randomly choose 10 content images
and 10 style images to synthesize 100 stylized images for each method and calcu-
late their mean SIFID as the stylization metric. Besides, we compute the mean
LPIPS to measure the visual quality of photo-realistic results. As for temporal
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Fig. 5. Qualitative comparison of short-term temporal consistency. We compare our
method with seven algorithms: SANet [36], Linear [29], IE [6], ReReVST [46], MCC-
Net [14], AdaAttN [33], DSTN [21]. The odd rows show the previous frames. The even
rows show the heat-maps of differences between consecutive frames.

consistency, we randomly select 10 video clips (50 frames, 12 FPS each) from the
MPI Sintel dataset [3] and use 10 style images to transfer these videos, respec-
tively. Then we compute the mean LPIPS and temporal loss as the temporal
consistency metrics. We also include human evaluation, which is more represen-
tative in image generation tasks. To do so, we invite 50 participants to choose
their favorite stylized image/video from each image/video-style pair considering
the visual quality, stylization effect, and temporal consistency. These participants
come from different backgrounds, making the evaluation less biased towards a
certain group of people. Overall, we get 500 votes for images and videos, respec-
tively. Then we calculate the percentage of votes as the human preference score.
All the evaluations are shown in Tab. 1 and Tab. 2.

4.2 Comparison with Former Methods

For video and artistic image style transfer, we compare our method with nine
algorithms: AdaIN [23], SANet [36], DSTN [21], ReReVST [46], Linear [29],
MCCNet [14], AdaAttN [33], IE [6], Lnor [11], which are the SOTAs of artistic
image style transfer. Among these methods, [6,14,29,33] are also the most ad-
vanced single-frame-based video style transfer methods while ReReVST [46] is
the SOTA multi-frames-based method. As for photo-realistic image style trans-
fer, we compare our method with four SOTAs: Linear [29], WCT2 [47], Style-
NAS [2], DSTN [21]. Note that among all these mentioned algorithms, Linear [29]
and DSTN [21] are most relevant to our method, since both of them are capable
of transferring artistic and photo-realistic style onto images. We obtain all the
test results from the official codes these methods provide.

Video style transfer. As shown in Tab. 1, our original SCTNet scores the best
in SIFID, indicating its superiority in obtaining correct styles. Also, we can see
the proposed CCPL improves the temporal consistency a lot with a minor de-
crease of the SIFID score, when the loss is applied to different methods. And our
full model (with CCPL) exceeds all the single-frame methods [6,14,21,29,33,36]
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C & S AdaIN SANet Linear ReReVST MCCNet AdaAttN DSTN SCTNet+LnorSCTNetIE SCTNet+Lccp

Fig. 6. Qualitative comparison of artistic style transfer. We compare our method with
nine algorithms: AdaIN [23], SANet [36], Linear [29], ReReVST [46], MCCNet [14],
AdaAttN [33], DSTN [21], IE [6], Lnor [11].

in both short-term and long-term temporal consistency, which are measured by
LPIPS [48] and temporal loss, and performs on par with the SOTA multi-frame
method: ReReVST [46]. However, our SIFID score exceeds ReReVST [46] signif-
icantly, which is consistent with the results shown in the qualitative comparison
(See Fig. 6). The qualitative comparisons also show the advantage of our CCPL
in maintaining short-term (Fig. 5) temporal consistency of the original video
as our heat-map difference is mostly similar to ground-truth. We have another
figure in the supplemental file to show the comparison of long-term temporal
consistency. In terms of human preference score, our full model also ranks the
best, further validating the effectiveness of our CCPL.

Artistic style transfer. As shown in Fig. 6, AdaIN [23] generates results with
severe shape distortion (e.g., house in the 1st and bridge in the 3rd row) and
disarranged texture patterns (4th, 5th rows). SANet [36] also has shape distortion
and misses some structural details in its results (1st → 3rd rows). Linear [29]
and MCCNet [14] have relatively quite clean outputs. However, Linear [29] loses
some content details (1st, 3rd rows), and some results of MCCNet [14] have
checkerboard artifacts in local regions (around collar in the 2nd row and corner of
mouth in the 4th row). ReReVST [46] shows obvious color distortion (2nd → 5th

rows). AdaAttN [33] is effective in reducing messy textures but the stylization
effect seems to degenerate in some cases (1st row). The results of DSTN [21] have
severe obvious distortion (3rd, 4th rows). And the results of IE [6] are less similar
to the original style (1st, 3rd, 5th rows). Our original SCTNet captures accurate
style (2nd, 3rd rows), but there are some messy regions in the generated images
as well (4th, 5th rows). When adding Lnor [11], some results are even messier
(4th, 5th rows). However, with CCPL, the generated results of our full model
maintain well the structures of their content sources with vivid and appealing
colorization. Besides, this effect is reinforced by its multi-level scheme. Therefore,
irregular textures and local color distortions are decreased significantly. It even
helps to improve stylization with better preservation of the semantic information
of the content sources (as shown in Fig. 9).
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C & S Linear WCT StyleNAS DSTN SCTNet SCTNet + Lccp2

Fig. 7. Qualitative comparison of photo-realistic style transfer. We compare our
method with four algorithms: Linear [29], WCT2 [47], StyleNAS [2] and DSTN [21].

Photo-realistic style transfer. Since CCPL can preserve the semantic in-
formation of the content source and significantly reduce local distortions, it is
well-suited for the task of photo-realistic style transfer. We make slight changes
to SCTNet to enable it for this task: build a shallower encoder by throwing off
layers beyond relu3 1, then use feature maps from all three layers to calculate
CCPL. As shown in Fig. 7, Linear [29] and DSTN [21] generates results with
detail losses (vanished windows in the 3rd row). As for WCT2 [47] and Style-
NAS [2], some results of them show unreasonable color distribution (red road in
the 2nd row). In comparison, our full model generates results comparable or even
better than those SOTAs, with high visual quality and appropriate stylization,
which is consistent with the quantitative comparison shown in Tab. 2.

Efficiency analysis. Our model is quite efficient due to the simple feed-forward
architecture of the network and the efficient feature fusion module SCT. We use
a single 12GB Titan XP GPU with no other ongoing programs to compare its
running speed with other algorithms. Tab. 3 shows the average running speed
(over 100 independent runs) of different methods on three input image scales.
The result suggests that SCTNet surpasses the SOTAs in efficiency at different
scales (comparisons for photo-realistic style transfer methods are provided in the
supplemental file), indicating the feasibility of our algorithm for real-time use.

4.3 Ablation Studies

There are several factors relevant to the performance induced by the CCPL:
1) layers to apply the loss; 2) the number of difference vectors sampled each
layer; 3) the loss weight ratio with the style loss. Therefore, we conduct several
experiments by enumerating the number of CCPL layers from 0 to 4 (start from
the deepest layer) and choosing from [16, 32, 64, 128] as the number of sampled
combinations to show the impacts of the first two factors. Then we adjust the loss
weight ratio between the CCPL and the style loss to manifest which ratio gives
the best trade-off between style effects and temporal coherence. To be noted, the
stylization score here represents the SIFID score, and the temporal consistency
is measured by: (20− 10×LPIPS− temporal loss) to show the escalating trend.

From the sub-figures, we can see that, as the number of CCPL layers in-
creases, the short-term (Fig. 8d) and long-term (Fig. 8e) temporal consistency
increases with the reduction of stylization score (Fig. 8b) and greater computa-
tion (Fig. 8a). And when the number of CCPL layers increases from 3 to 4, the
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Table 3. Execution speed comparison (unit: FPS). We use a single 12GB Titan XP
GPU for all the execution time testing. OOM denotes the Out-Of-Memory error.

Artistic Ad [23] SA [36] LT [29] Re [46] MC [14] AN [33] DN [21] IE [6] Ours
256× 256 40.0 34.5 66.7 37.0 22.2 15.6 15.9 31.3 77.0
512× 512 12.5 14.3 18.9 13.7 8.1 12.5 4.2 13.0 21.7

1024× 1024 2.7 2.7 4.6 2.8 1.9 2.1 1.2 2.6 5.0

d e f

a b c

Fig. 8. Ablation studies on three factors of the CCPL: 1) layers to apply the loss; 2)
the number of vectors sampled each layer; 3) the loss weight ratio with style loss.

changes of temporal consistency are minor. In contrast, the computation costs
increase significantly, and the stylization effects are much weaker. Therefore, we
choose 3 as the default setting for the number of CCPL layers.

As for the number of sampled difference vectors (per layer), the blue lines (64
sampled vectors) in Fig. 8d & e are near the yellow lines (128 sampled vectors),
which means the performance of these two settings are close on improving tem-
poral consistency. However, sampling 128 difference vectors per layer brings a
significantly heavier computation burden and style degeneration. So we sample
64 difference vectors per layer by default.

The loss weight ratio can also be regarded as a handle to adjust temporal
consistency and stylization. Fig. 8c & f show the trade-off between temporal
consistency and stylization when the loss weight ratio changes. We find 0.5 a
good choice for the weight ratio because it gives a good trade-off between tem-
poral consistency improvement and stylization score reduction. We show the
qualitative results of ablation studies on CCPL in the supplemental file and
more analysis, such as different sampling strategies in CCPL.

4.4 Applications

CCPL on existing methods. CCPL is highly flexible and can be plugged
into other methods with minor modifications. We apply the proposed CCPL
on three typical former methods: AdaIN [23], SANet [36], Linear [29]. All these
methods achieve consistent improvements in temporal consistency with only a
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Fig. 9. CCPL can be easily applied to other methods, such as AdaIN [23], SANet [36]
and Linear [29], to improve visual quality.
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Fig. 10. Comparison of applying the CCPL on CUT [37] with its original model.

slight decrease on the SIFID score (see Tab. 1 and Fig. 9). The result reveals
the effectiveness and flexibility of the CCPL.

Image-to-image translation. CCPL can be easily added to other generation
tasks like image-to-image translation. We apply our CCPL on a recent image-
to-image translation method CUT [37] and then train the model with the same
horse2zebra dataset. The results in Fig. 10 demonstrate that our CCPL improves
both the visual quality and temporal consistency. Please refer to the supplemen-
tal file for more applications.

5 Conclusions

In this work, we propose CCPL to preserve content coherence during style trans-
fer. By contrasting the feature differences of image patches, the loss encourages
the difference of patches of the same location in the content and generated im-
ages to be similar. Models trained with CCPL achieve a good trade-off between
temporal consistency and style effects. We also propose a simple and effective
module for aligning second-order statistics of the content feature with style fea-
ture. Combining these two techniques, our full model is light and fast while
generating satisfying image and video results. Besides, we demonstrate the effec-
tiveness of the proposed loss on other models and tasks, such as image-to-image
style transfer, which shows the vast potential of our loss for broader applications.

Acknowledgements This work was supported by the National Natural Science
Foundation of China 62192784.
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