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Abstract. This paper presents an end-to-end learning-based video com-
pression system, termed CANF-VC, based on conditional augmented
normalizing flows (CANF). Most learned video compression systems adopt
the same hybrid-based coding architecture as the traditional codecs. Re-
cent research on conditional coding has shown the sub-optimality of
the hybrid-based coding and opens up opportunities for deep generative
models to take a key role in creating new coding frameworks. CANF-VC
represents a new attempt that leverages the conditional ANF to learn
a video generative model for conditional inter-frame coding. We choose
ANF because it is a special type of generative model, which includes
variational autoencoder as a special case and is able to achieve better
expressiveness. CANF-VC also extends the idea of conditional coding to
motion coding, forming a purely conditional coding framework. Exten-
sive experimental results on commonly used datasets confirm the supe-
riority of CANF-VC to the state-of-the-art methods. The source code of
CANF-VC is available at https://github.com/NYCU-MAPL/CANF-VC.

1 Introduction

Video compression is an active research area. The video traffic continues to grow
exponentially due to an increased demand for various emerging video applica-
tions, particularly on social media platforms and mobile devices. The traditional
video codecs, such as HEVC [33] and VVC [7], are still thriving towards being
more efficient, hardware-friendly, and versatile. However, their backbones follow
the hybrid-based coding framework–namely, spatial/temporal predictive coding
plus transform-based residual coding–which has not changed since decades ago.

The arrival of deep learning spurs a new wave of developments in end-to-end
learned image and video compression [30,9,28,15,23,32]. The seminal work [4]
by Ballé et al. connects for the first time the learning of an image compression
system to learning a variational generative model, known as the variational au-
toencoder (VAE) [19]. VAE involves learning the autoencoder network jointly
with the prior distribution network by maximizing the variational lower bound
(ELBO) on the image likelihood p(x). Many follow-up works have been centered
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around enhancing the autoencoder network [9,8] and/or improving the prior
modeling [30,9]. Lately, there have been few attempts at introducing normaliz-
ing flow models [28,13] to learned image compression

Inspired by the success of learned image compression, research on learned
video compression is catching up quickly. However, most end-to-end learned
video compression systems [26,27,24,14,32] were developed based primarily on
the traditional, hybrid-based coding architecture, replacing key components,
such as inter-frame prediction and residual coding, with neural networks. The
idea of residual coding is to encode a target frame xt by coding the predic-
tion residual rt = xt − xc between xt and its motion-compensated reference
frame xc. The recent revisit of residual coding as a problem of conditional
coding in [21,22,23] opens up a new dimension of thinking. Arguably, the en-
tropy H(xt − xc) of the residual between the coding frame xt and its motion-
compensated reference frame xc is greater than or equal to the conditional en-
tropy H(xt|xc), i.e. H(xt − xc) ≥ H(xt|xc). How to learn p(xt|xc) is apparently
the key to the success of conditional coding.

In this paper, we present a conditional augmented normalizing flow-based
video compression (CANF-VC) system, which is inspired partly by the ANF-
based image compression (ANFIC) [13]. However, while ANFIC [13] adopts ANF
to learn the (unconditional) image distribution p(x) for image compression, we
address video compression from the perspective of learning a video generative
model by maximizing the conditional likelihood p(xt|xc). We choose the condi-
tional augmented normalizing flow (CANF) to learn p(xt|xc), because ANF is
a special type of generative model, which includes VAE as a special case and is
able to achieve superior expressiveness to VAE.

Our work has three main contributions: (1) CANF-VC is the first normaliz-
ing flow-based video compression system that leverages CANF to learn a video
generative model for conditional inter-frame coding; (2) CANF-VC extends the
idea of conditional inter-frame coding to conditional motion coding, forming
a purely conditional coding framework; and (3) extensive experimental results
confirm the superiority of CANF-VC to the state-of-the-art methods.

2 Related Work

2.1 Learned Video Compression

End-to-end learned video compression is a hot research area. DVC [26] presents
the first end-to-end learned video coding framework based on temporal predic-
tive coding. Since then, there have been several improvements on learning-based
motion-compensated prediction. Agustsson et al. [2] estimate the uncertainty
about the flow map in forming a frame predictor, with a scale index sent for
each pixel to determine a spatially-varying Gaussian kernel for blurring the ref-
erence frame. Liu et al. [25] perform feature-domain warping in a coarse-to-fine
manner. Hu et al. [15] adopt deformable convolution for feature warping. Lin
et al. [24] and Yang et al. [37] form a multi-hypothesis prediction from multiple
reference frames. To reduce motion overhead, Lin et al. [24] use predictive mo-
tion coding by extrapolating a flow map predictor from the decoded flow maps.
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Fig. 1: The architectures of ANF: (a) N-step ANF, (b) N-step hierarchical ANF, and
(c) ANF for image compression (ANFIC).

Rippel et al. [32] use the flow map predictor for motion compensation and signal
an incremental flow map between the resulting motion-compensated frame and
the target frame. Hu et al. [14] adapt, either locally or globally, the resolution of
the flow map features. Most learned video codecs encode the residual frame or
the residual flow map by a variational autoencoder (VAE)-based image coder [4].
Some additionally leverage a recurrent neural network to propagate causal, tem-
poral information in forming a temporal prior for entropy coding [38,25].

2.2 Conditional Coding

The idea of encoding the residual signal has recently been revisited from the
information-theoretic perspective. Ladune et al. [21] show that coding a video
frame xt conditionally based on its motion-compensated reference frame xc can
achieve a lower entropy rate than coding the residual signal xt−xc uncondition-
ally. The fact motivates their converting the VAE-based residual coder into a
conditional VAE by concatenating xc and xt for encoding, and their latent rep-
resentations for decoding. The idea was extended in [22] for conditional motion
coding, which encodes motion latents in an implicit, one-stage manner. However,
Fabian et al. [6] show that these conditional VAE-based approaches [21,22] may
suffer from the bottleneck issue; that is, the latent representation of xc produced
by a neural network for conditional decoding may not capture all the informa-
tion of xc, which serves as a condition for encoding xt. Such information loss and
asymmetry can harm the efficiency of conditional coding. Li et al. [23] improve
the work in [21] by ensuring that the same information-rich latent representation
of xc is utilized for both conditional encoding and decoding. Likewise, the work
in [12] creates the same coding context for conditional encoding and decoding
via a feedback recurrent module that aggregates the past latent information. In
common, these approaches do not evaluate any residual signal explicitly.

2.3 Augmented Normalizing Flows (ANF)

To learn properly the conditional distribution p(xt|xc) for conditional coding, we
turn to augmented normalizing flows (ANF), a special type of generative model
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able to achieve superior expressiveness to VAE. Different from the vanilla flow
models [20,18,10], ANF [16] augments the input x with an independent noise
ez (Fig. 1a), allowing the augmented noise to induce a complex marginal on
x [16]. ANF contains the autoencoding transform gπ as a basic building block,
where the encoding transformation gencπ from (x, ez) to (x, z) and the decoding
transformation gdecπ from (x, z) to (y, z) are specified by

gencπ (x, ez) = (x, sencπ (x)⊙ ez +menc
π (x)) = (x, z), (1)

gdecπ (x, z) = ((x− µdecπ (z))/σdecπ (z), z) = (y, z), (2)

respectively. sencπ , menc
π , µdecπ and σdecπ are element-wise affine transform param-

eters, and they are driven by neural networks parameterized by π.
The training of ANF aims to maximize the augmented data likelihood–namely,

argmaxπ pπ(x, ez) = p(gπ(x, ez))|det(∂gπ(x, ez)/∂(x, ez))|. Performing one au-
toencoding transformation (y, z) = gπ(x, ez) (known as the one-step ANF) is
equivalent to training a VAE by maximizing the evidence lower bound (ELBO)
on the log-marginal log pπ(x) [19]. As such, the learned image compression with
the factorized prior [3] can be viewed as an one-step ANF that adopts a purely
additive autoencoding transform (i.e. sencπ (x) = σdecπ (z) = 1) and an augmented
noise ez ∼ U(−0.5, 0.5) modeling the uniform quantization. In this case, the
latents y, z follow the standard Normal N (0, I) and the learned factorized prior,
respectively. In particular, the hyperprior extension [4] has a similar structure
to the hierarchical ANF (Fig. 1b), an enhanced form of ANF [16] with gencϕ , gdecϕ

playing a similar role to the hyper codec. For better expressiveness, one can stack
multiple one-step ANF’s as the multi-step ANF. In [13], Ho et al. introduce the
first ANF-based image compression (Fig 1c), which combines the multi-step and
the hierarchical ANF’s.

3 Proposed Method

3.1 Problem Statement

In this section, we formally define our task and objective. Let x1:T ∈ RT×3×H×W

denote a (RGB) video sequence of width W and height H to be encoded, and
x̂1:T the decoded video. The video compression task is to strike a good bal-
ance between the distortion d(x̂1:T , x1:T ) of the decoded video x̂1:T and the rate
r(x̂1:T ) needed to represent it. When T = 1, the task reduces to image com-
pression, of which the problem is cast as learning a VAE by maximizing the
ELBO on the log-likelihood log p(x) in [4]. The same perspective is applicable to
video compression yet with the aim of learning a VAE that maximizes the joint
log-likelihood log p(x1:T ). Because p(x1:T ) factorizes as

∏T
t=1 p(xt|x<t), with x<t

representing collectively the video frames up to time instance t− 1, video com-
pression is often done frame-by-frame by learning the conditional distribution
p(xt|x<t). In our task, the decoded frames x̂<t are used in place of x<t.

With the traditional predictive coding framework, the ELBO on log p(xt|x̂<t)
has a form of

Eq(f̂t,r̂t|xt,x̂<t)
log p(xt|f̂t, r̂t, x̂<t)−DKL(q(f̂t, r̂t|xt, x̂<t)||p(f̂t, r̂t|x̂<t)), (3)
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where the latents f̂t ∈ R2×H×W , r̂t ∈ R3×H×W represent the (quantized) opti-
cal flow map and the (quantized) motion-compensated residual frame associated

with xt ∈ R3×H×W , respectively. The encoding distribution q(f̂t, r̂t|xt, x̂<t) =

q(f̂t|xt, x̂<t)q(r̂t|f̂t, xt, x̂<t) specifies the generation of f̂t, r̂t, while the decoding

distribution p(xt|f̂t, r̂t, x̂<t) = N (r̂t + warp(x̂t−1; f̂t),
1
2λI) models the recon-

struction process of xt, with warp(x̂t−1; f̂t) denoting the backward warping of

x̂t−1 based on f̂t, and
1
2λ being the variance of the Gaussian. Assuming the use of

uniform quantization function for obtaining f̂t, r̂t, the Kullback–Leibler (KL) di-
vergence DKL(·||·) evaluates to the rate costs associated with their transmission:

DKL(q(f̂t, r̂t|xt, x̂<t)||p(f̂t, r̂t|x̂<t)) (4)

= Eq(f̂t,r̂t|xt,x̂<t)
(− log p(f̂t|x̂<t)− log p(r̂t|f̂t, x̂<t)).

Substituting Eq. (4) into Eq. (3) and applying the law of total expectation yields

Eq(f̂t|xt,x̂<t)
(RDr(xt|f̂t, x̂<t) + log p(f̂t|x̂<t)), (5)

where

RDr(xt|f̂t, x̂<t) = Eq(r̂t|f̂t,xt,x̂<t)
(log p(xt|f̂t, r̂t, x̂<t) + log p(r̂t|f̂t, x̂<t)), (6)

which bears the interpretation of the ELBO on log p(xt|f̂t, x̂<t), with the latent
being the quantized residual frame r̂t.

From Eqs. (5) and (6), we see that the traditional predictive coding of a video

frame xt includes (1) encoding the residual frame r̂t based on f̂t, x̂<t in order to

maximize the log-likelihood log p(xt|f̂t, x̂<t) and (2) encoding the flow map f̂t in

a way that strikes a good balance between the maximization of log p(xt|f̂t, x̂<t)
and the (negative) rate Eq(f̂t|xt,x̂<t)

log p(f̂t|x̂x<t) needed to signal f̂t.
In this work, we propose to turn the maximization of the log-likelihood

log p(xt|f̂t, x̂<t), i.e. Eq. (6), into a problem of conditional coding, where f̂t, x̂<t
are utilized to formulate the motion-compensated frame xc ∈ R3×H×W as a
condition. Unlike the existing works [21,22,23,12], which adopt the conditional
VAE, our conditional coder is constructed based on multi-step CANF in model-
ing p(xt|xc) for its better expressiveness.

3.2 System Overview

Fig. 2a depicts our CANF-based video compression system, abbreviated as CANF-
VC. It includes two major components: (1) the CANF-based inter-frame coder
{Gπ, G−1

π } and (2) the CANF-based motion coder {Fπ, F−1
π }. The inter-frame

coder encodes a video frame xt conditionally, given the motion-compensated
frame xc. It departs from the conventional residual coding by maximizing the
conditional log-likelihood p(xt|xc) with CANF model (Section 3.3). The motion
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Fig. 2: Illustration of (a) the proposed CANF-VC framework and (b) the CANF-based
inter-frame coder {Gπ, G

−1
π }. The CANF-based motion coder {Fπ, F

−1
π } follows the

same design as the inter-frame coder, with xt, xc replaced by ft, fc, respectively.

coder shares a similar architecture to the inter-frame coder. It extends con-
ditional coding to motion coding, in order to signal the flow map ft, which
characterizes the motion between xt and its reference frame x̂t−1. In our work,
ft is estimated by PWC-Net [34]. The compressed flow map f̂t serves to warp
the reference frame x̂t−1, with the warped result enhanced further by a motion
compensation network to arrive at xc. To formulate a condition for conditional
motion coding, we introduce a flow extrapolation network to extrapolate a flow
map fc from three previously decoded frames x̂t−1, x̂t−2, x̂t−3 and two decoded
flow maps f̂t−1, f̂t−2. Note that we expand the condition of p(xt|x̂<t) from pre-

viously decoded frames {x̂<t} to include also previously decoded flows {f̂<t}.

3.3 CANF-based Inter-frame Coder

Fig. 2b presents the architecture of our CANF-based inter-frame coder, which
aims to learn the conditional distribution p(xt|xc) of the coding frame xt given
the motion-compensated frame xc. This is achieved by maximizing the aug-
mented likelihood p(xt, ez, eh|xc) in the CANF framework, where ez ∈ RC× H

16×
W
16 ,

eh ∈ RC× H
64×

W
64 are the two augmented noise inputs. It is shown in [16] that

maximizing p(xt, ez, eh|xc) is equivalent to maximizing a lower bound on the
marginal likelihood p(xt|xc).

Architecture: Motivated by [13], our conditional inter-frame coder is a hy-
brid of the two-step and the hierarchical ANF’s. The two autoencoding trans-
forms {gencπ1

, gdecπ1
}, {gencπ2

, gdecπ2
} convert xt, ez into their latents y2, z2, respectively,

while the hierarchical autoencoding transform {hencπ3
, hdecπ3

} acts as the hyperprior
codec, encoding the latent z2 into the hyperprior representation ĥ2. The volume
preserving property of CANF requires that the latents y2, z2 (or ẑ2), ĥ2 have the
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same dimensions as their respective inputs xt, ez, eh. One notable distinction be-
tween CANF and ANFIC [13] is the incorporation of the condition xc into the
autoencoding transforms and the prior distribution, as will be detailed next.

Conditional Encoding: The core idea of our conditional coding is to let
the latent y2, which represents a transformed version of the target frame xt,
approximate the condition xc, with the latents z2, ĥ2 encoding the information
necessary for instructing the transformation. Specifically, the two autoencoding
transforms operate similarly and successively. Taking {gencπ1

, gdecπ1
} as an example

(see Fig.2b), we have

gencπ1
(xt, ez|xc) = (xt, ez +menc

π1
(xt, xc)) = (xt, z1), (7)

gdecπ1
(xt, z1) = (xt − µdecπ1

(z1), z1) = (y1, z1). (8)

That is, the one-step transformation from xt to y1 is done by subtracting the
decoder output µdecπ1

(z1) from xt. Note that µdecπ1
(z1) decodes the latent z1, which

aggregates the information of xt, xc, and the augmented noise ez. We remark that
the encoding process is made conditional on xc by concatenating xc and xt to
form the encoder input. Intuitively, supplying xc as an auxiliary signal should
ease the transformation from xt to xc. This process is repeated by taking y1 and
z1 as the inputs to the next autoencoding transform {gencπ2

, gdecπ2
}. In fact, the

number of the autoencoding transforms is flexible. In comparison with Eqs. (1)
and (2), our autoencoding transform is purely additive (i.e. sencπ , σdecπ in Eqs. (1)
and (2) are set to 1), which is found beneficial in terms of training stability.

The hierarchical autoencoding transform {hencπ3
, hdecπ3

} serves to estimate the
probability distribution of z2 for entropy coding. It operates according to

hencπ3
(z2, eh) = (z2, eh +menc

π3
(z2)) = (z2, ĥ2), (9)

hdecπ3
(z2, ĥ2|xc) = (⌊z2 − µdecπ3

(ĥ2, h
temporal
π3

(xc))⌉, ĥ2) = (ẑ2, ĥ2), (10)

where ⌊·⌉ (depicted as Q in Fig. 2b) denotes the nearest-integer rounding, which
is needed to express z2 in fixed-point representation for lossy compression. At
training time, the rounding effect is modeled by additive quantization noise.
It is worth noting that xc is provided as an auxiliary input to µdecπ3

to exert a
combined effect of the hyperprior and the temporal prior (htemporalπ3

in Fig. 2b).
Conditional Decoding: The decoding process of our inter-frame coder up-

dates the motion-compensated frame xc successively to reconstruct xt. It starts
by entropy decoding the latents ẑ2, ĥ2, and substituting xc for y2. The quantized
z2 will then be recovered and decoded to reconstruct µdecπ2

(z2), which updates xc
as y1 = xc + µdecπ2

(z2). Subsequently, y1 will be encoded conditionally based on
xc using m

enc
π2

(y1, xc) in order to update the latent z2 as z1 = z2 −menc
π2

(y1, xc).
Finally, z1 is decoded by µdecπ1

(z1) to update y1 as the reconstructed version
x̂t = y1 + µdecπ1

(z1) of xt. In a sense, the reconstruction of xt is achieved by
passing the latent ẑ2 through the composition of the decoding and encoding
transforms to update xc.

Conditional Prior Distribution: Another strategy we adopt to learn
p(xt, ez, eh|xc) is to introduce a conditional prior distribution p(y2, ẑ2, ĥ2|xc).
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Specifically, we assume that it factorizes as follows:

p(y2, ẑ2, ĥ2|xc) = p(y2|xc)p(ẑ2|ĥ2, xc)p(ĥ2). (11)

Because we require y2 to approximate xc, it is natural to choose p(y2|xc) to be
N (xc,

1
2λ1

I) with a small variance 1
2λ1

. Moreover, following the hyperprior [4],

p(ẑ2|ĥ2, xc) and p(ĥ2) are modeled by

p(ẑ2|ĥ2, xc) = N (0, (σdecπ3
(ĥ2, h

temporal
π3

(xc)))
2I) ∗ U(−0.5, 0.5)

p(ĥ2) = Pĥ2|ψ ∗ U(−0.5, 0.5),

where ∗ denotes convolution and Pĥ2|ψ is a factorized prior parameterized by ψ.

The use of the motion-compensated frame xc along with ĥ2 in estimating the
distribution of ẑ2 combines temporal prior (htemporalπ3

in Fig. 2b) and hyperprior.
Augmented Noises ez, eh: In the theory of ANF [16], the augmented noises

are meant to induce a complex marginal on the input x. For the compression
task, we fix ez at 0 during training and test, in order not to increase the entropy
rate at ẑ2. For training, the quantization Q in Fig. 2b is simulated by additive
noise. In contrast, we draw eh ∼ U(−0.5, 0.5) for simulating the quantization
of the hyperprior at training time, and set it to zero at test time when the
hyperprior is actually rounded.

Extension to Conditional Motion Coding: The CANF-based motion
coder follows the same design as the CANF-based inter-frame coder. The coding
frame xt is replaced with the optical flow map ft and the motion-compensated
frame xc with the extrapolated flow map fc. In addition, the temporal prior
takes the extrapolated frame warp(x̂t−1; fc) as input. To perform the flow map
extrapolation, we adopt a U-Net-based network (see supplementary document).

In the supplementary document, we provide another CANF implementation,
which additionally accepts xc as input to the decoding transforms. We choose the
current implementation due to its comparable performance and simpler design.

3.4 Training Objective

We train the conditional inter-frame and motion coders end-to-end. Inspired by
Eq. (5), we first turn the maximization of the ELBO (i.e. RDr in Eq. (6)) on

log p(xt|f̂t, x̂<t) into maximizing log p(xt, ez, eh|xc). That is, to minimize

− log p(xt, ez, eh|xc) = − log p(ĥ2)− log p(ẑ2|ĥ2, xc)

+λ1∥y2 − xc∥2 − log

∣∣∣∣det∂Gπ(xt, ez, eh|xc)∂(xt, ez, eh)

∣∣∣∣ .
To ensure the reconstruction quality, we follow [13] to replace the negative log-
determinant of the Jacobian with a weighted reconstruction loss λ2d(xt, x̂t),
arriving at

− log p(xt, ez, eh|xc) ≈ − log p(ĥ2)− log p(ẑ2|ĥ2, xc)︸ ︷︷ ︸
R

+λ1∥y2 − xc∥2 + λ2d(xt, x̂t)︸ ︷︷ ︸
D

,
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which includes the rate R needed to signal the transformation between xt and
xc, the regularization term requiring y2 to approximate xc, and the distortion D
of x̂t. To complete the loss function, we also follow the second term in Eq. (5)
to include the conditional motion rate used to signal ft given fc, which leads to

L =− log p(ĥ2)− log p(ẑ2|ĥ2, xc) + λ1∥y2 − xc∥2

− log pf (ĥ2)− log pf (ẑ2|ĥ2, fc) + λ2d(xt, x̂t),
(12)

where pf (respectively, p) describes the prior distribution over the motion (re-
spectively, inter-frame) latents.

3.5 Comparison with ANFIC and Other VAE-based Schemes

Our CANF-VC is based on ANF, as well as ANFIC, a learned image compression
system proposed in [13]. However, they significantly differ from each other, not
only because they refer to different applications. ANFIC [13] adopts an uncondi-
tional ANF to learn the image distribution p(x) for image compression, whereas
CANF-VC uses two conditional ANF’s (CANF’s) to learn the conditional distri-
bution p(xt|xc) for inter-frame coding and the conditional rate needed to signal
the motion part, respectively. As a result, CANF-VC is a complete video coding
framework. Note that how the conditional information xc and fc are both incor-
porated in the respective autoencoding transforms and in the respective prior
distributions is first proposed in this work.

CANF-VC is also distinct from conditional VAE-based frameworks, such as
DCVC [23] and [22]. CANF-VC bases the compression backbone on CANF,
which is a flow-based model and includes VAE as a special case. As compared
with DCVC [23], CANF-VC additionally features conditional motion coding.
Although conditional motion coding also appears in [22], their VAE-based ap-
proach does not explicitly estimate a flow map prior to conditional coding, and
may suffer from the bottleneck issue [6] (Section 2.2). In contrast, CANF-VC
takes an explicit approach and avoids the bottleneck issue by using the same xc
symmetrically in the encoder and the decoder due to its invertible property.

4 Experiments

4.1 Settings and Implementation Details

Training Details: We train our model on Vimeo-90k [36] dataset, which con-
tains 91,701 7-frame sequences with resolution 448 × 256. We randomly crop
these video clips into 256× 256 for training. We adopt the Adam [17] optimizer
with the learning rate 10−4 and the batch size 32. Separate models are trained
to optimize first the mean-square error with λ2 = {256, 512, 1024, 2048} and
λ1 = 0.01 ∗ λ2 (see Eq. (12)). We then fine-tune these models for Multi-scale
Structural Similarity Index (MS-SSIM), with λ2 set to {4, 8, 16, 32, 64}. All the
low-rate models are adapted from the one trained for the highest rate point.

Evaluation Methodologies: We evaluate our models on commonly used
datasets, including UVG [29], MCL-JCV [35], and HEVC Class B [11]. We follow
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Intra coder BD-rate (%) PSNR-RGB BD-rate (%) MS-SSIM-RGB
Size

(PSNR-RGB/MS-SSIM-RGB) UVG MCL-JCV HEVC-B UVG MCL-JCV HEVC-B

DVC Pro [27] -/- -3.0 - -13.1 -5.2 - -20.8 29M
M-LVC [24] BPG/BPG -15.3 18.8 -38.6 -0.2 4.7 -37.9 -
RaFC [14] hyperprior/hyperprior -11.1 4.4 -9.3 -25.5 -27.9 -37.2 -
FVC [15] BPG/BPG -16.9 -3.8 -17.8 -45.0 -46.1 -54.3 26M
HM (LDP, 4 refs) -/- -29.4 -13.9 -29.6 -18.9 -13.8 -17.1 -
CANF-VC∗ BPG/BPG -35.5 -14.6 -35.4 -46.6 -46.7 -53.2 31M

DCVC [23] cheng2020-anchor/hyperprior -23.8 -14.4 -34.9 -43.9 -44.9 -50.7 8M
DCVC (ANFIC) ANFIC/ANFIC -24.8 -13.6 -34.0 -41.9 -43.7 -51.1 8M
CANF-VC Lite ANFIC/ANFIC -37.3 -14.3 -39.8 -47.6 -44.2 -56.8 15M
CANF-VC ANFIC/ANFIC -42.5 -21.0 -40.1 -51.4 -47.6 -54.7 31M

Table 1: BD-rate comparison with GOP size 10/12. The anchor is x265 in veryslow
mode. The best performer is marked in red and the second best in blue.

common test protocols to provide results in Table 1 for 100-frame encoding with
GOP 1 size 10 on HEVC Class B, and full-sequence encoding with GOP size
12 on the other datasets. Additionally, we present results for GOP size 32 in
Table 2, to underline the contributions of our inter-frame and motion coders. For
this additional setting, all the learned codecs use ANFIC [13] as the intra-frame
coder and encode only the first 96 frames in every test sequence. To evaluate the
rate-distortion performance, the bit rates are measured in bits per pixel (bpp),
and the quality in PSNR-RGB and MS-SSIM-RGB. Moreover, we use x265 in
veryslow mode as the anchor for reporting BD-rates.

Baseline Methods: The baseline methods for comparison include x265,
HEVC Test Model (HM) [1] and several recent publications, including DVC Pro
[27], M-LVC [24], RaFC [14], FVC [15] and DCVC [23]. Because these baseline
methods adopt different intra-frame coders (see the second column of Table 1),
which are critical to the overall rate-distortion performance, we provide results
with ANFIC [13] (CANF-VC) and BPG (CANF-VC*) as the intra-frame coders
to ease comparison. Note that ANFIC [13] shows comparable performance to
cheng2020-anchor [5]. It is to be noted that x265, HM [1], DVC Pro [27], and
M-LVC [24] use the same model optimized for PSNR to report PSNR-RGB
and MS-SSIM-RGB results. While the other methods train separate models in
reporting these results. We also present CANF-VC− and CANF-VC Lite as
two additional variants of CANF-VC. CANF-VC− disables conditional motion
coding while CANF-VC Lite implements a lightweight version of CANF-VC by
reducing the channels in the autoencoding and the hyperprior transforms, and
adopting SPyNet [31] as the flow estimation network.

4.2 Rate-Distortion and Subjective Quality Comparison

Rate-Distortion Comparison: The upper part of Table 1 compares the com-
peting methods with their intra-frame coders, e.g. hyperprior [3], performing
comparably to BPG. We see that our CANF-VC* (with BPG as the intra-frame
coder) outperforms most of these baselines across different datasets in terms
of PSNR-RGB. Its slight rate inflation (3%) as compared to M-LVC [24] on

1 GOP refers to Group-of-Pictures and is often used interchangeably with the intra
period in papers on learned video codecs.
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Intra coder BD-rate (%) PSNR-RGB BD-rate (%) MS-SSIM-RGB
(PSNR-RGB/MS-SSIM-RGB) UVG MCL-JCV HEVC-B UVG MCL-JCV HEVC-B

M-LVC (ANFIC) ANFIC/ANFIC -12.1 -5.3 -9.7 -7.5 -8.4 -18.8
DCVC (ANFIC) ANFIC/ANFIC -16.3 -21.3 -10.5 -38.8 -48.9 -39.3

CANF-VC Lite ANFIC/ANFIC -36.1 -26.5 -30.3 -37.9 -47.8 -44.2
CANF-VC− ANFIC/ANFIC -31.1 -29.5 -23.6 -36.2 -47.8 -38.0
CANF-VC ANFIC/ANFIC -35.9 -32.0 -27.7 -40.3 -49.6 -41.3

HM (LDP, 4 refs) -/- -41.6 -38.6 -32.1 -34.3 -32.0 -31.0

Table 2: BD-rate comparison with GOP size 32. All the competing methods (except
HM) use ANFIC [13] as the intra-frame coder. The anchor is x265 in veryslow mode.
The best performer is marked in red and the second best in blue.

(a) UVG, PSNR-RGB (b) UVG, MS-SSIM-RGB

(c) HEVC Class B, PSNR-RGB (d) HEVC Class B, MS-SSIM-RGB

(e) MCL-JCV, PSNR-RGB (f) MCL-JCV, MS-SSIM-RGB

Fig. 3: Rate-distortion performance evaluation with GOP size 10/12 on UVG, HEVC
Class B, and MCL-JCV datasets for both PSNR-RGB and MS-SSIM-RGB.

HEVC-B class may be attributed to the not-fully-aligned rate range in which
the BD-rate is measured (see Fig. 3). Note that M-LVC [24] is initially trained
for GOP size 100. With no access to its training software, a rate shift occurs
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Ground Truth DCVC (ANFIC) CANF-VC DCVC-ssim (ANFIC) CANF-VC-ssim

PSNR-RGB: 27.71 dB PSNR-RGB: 29.00 dB MS-SSIM-RGB: 0.952 MS-SSIM-RGB: 0.955
0.0441 bpp 0.0396 bpp 0.0425 bpp 0.0465 bpp

PSNR-RGB: 29.29 dB PSNR-RGB: 30.23 dB MS-SSIM-RGB: 0.946 MS-SSIM-RGB: 0.947
0.0373 bpp 0.0294 bpp 0.0580 bpp 0.0573 bpp

Fig. 4: Subjective quality comparison between CANF-VC and DCVC (ANFIC).

when its test code is re-run for GOP size 10/12. Another observation is that
CANF-VC* shows similar MS-SSIM-RGB results to FVC [15], while surpassing
the others considerably. The lower part of Table 1 further shows that in terms
of both quality metrics, our full model CANF-VC performs consistently better
than both DCVC variants, where one uses ANFIC [13] and the other adopts
cheng2020-anchor [5] as their respective intra-frame coders. The same obser-
vation can be made with CANF-VC− and CANF-VC Lite, except that they
perform similarly to DCVC [23] on MCL-JCV.

Under the long GOP setting (Table 2), the gain of our schemes (all three
variants) over DCVC (ANFIC) and M-LVC (ANFIC) becomes more significant
in terms of PSNR-RGB, while CANF-VC− and CANF-VC Lite show comparable
or better MS-SSIM-RGB results than DCVC (ANFIC). Interestingly, the gap
in PSNR-RGB between the more capable HM and the learned coders is still
considerable, although the latter outperform HM in terms of MS-SSIM-RGB.

Subjective Quality Comparison: Fig. 4 presents a subjective comparison
between our CANF-VC and DCVC (ANFIC). Both schemes are trained for
PSNR-RGB and MS-SSIM-RGB, use ANFIC as the intra-frame coder, and set
GOP size to 32. Our CANF-VC is seen to preserve better the shape of the objects
and has no color bias, as compared to DCVC (ANFIC).

4.3 Ablation Experiments

In this section, unless otherwise stated, all the experiments are conducted on
UVG dataset [29], with the BD-rates reported against x265 in veryslow mode.

Conditional Inter-frame Coding vs. Residual Coding: To single out
the gain of conditional inter-frame coding over residual coding, Table 3a presents
a breakdown analysis in terms of BD-rate savings. In this ablation experiment,
the conditional motion coding is disabled and replaced with the motion coder
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from DVC [26]. Besides, the residual coding schemes adopt ANFIC [13] for cod-
ing the residual frame xt−xc as an intra image. The variants with the temporal
prior additionally involve the motion-compensated frame xc in estimating the
coding probabilities of the latent code (i.e. ẑ2 in Fig. 2b). As seen in the table,
the conditional inter-frame coding outperforms the residual coding significantly,
whether the temporal prior is enabled or not. This suggests that a direct appli-
cation of ANFIC to residual coding is unable to achieve the same level of gain as
our CANF-based inter-frame coding. The temporal prior additionally improves
the rate savings of both schemes by 2.5% to 4.2%.

Conditional Motion Coding vs. Predictive/Intra Motion Coding:
This ablation experiment addresses the benefits of conditional motion coding.
To this end, different competing settings employ the same conditional inter-frame
coding, but change the way the flow map ft is coded. The baseline settings use
ANFIC [13] to code ft as an intra image or the flow map residual ft−fc without
any condition. For the conditional motion coding, we additionally present results
by simply using the previously decoded flow map f̂t−1 as the condition. Separate
models are trained for each test case. From Table 3b, our conditional motion
coding (i.e. coding ft based on fc) achieves the best performance. In terms of
rate savings, its gain over the two unconditional variants, i.e. coding ft or ft−fc
unconditionally, is quite significant. This result corroborates the superiority of
our conditional motion coding to predictive motion coding (i.e. coding ft − fc).
As expected, the quality of the condition has a crucial effect on compression
performance. The trivial use of the previously decoded flow f̂t−1 does not show
much gain as compared to unconditional coding. The fact substantiates the
effectiveness of our extrapolation network.

The Number of Autoencoding Transforms: Table 3c explores the effect
of the number of autoencoding transforms on compression performance. The 1-
step models are obtained by skipping the autoencoding transform {gencπ1

, gdecπ1
} in

Fig. 2b. To have the model size compatible with the 2-step models, the 1-step
models have more channels in every autoencoding transform. We first experiment
with the conditional inter-frame coding, with the motion coder from DVC [26].
In this case, the 2-step model improves the rate saving of the 1-step model by
1.7%. Given the 2-step inter-frame coder, it is further seen that the 2-step motion
coder also improves the rate saving of the 1-step motion coder by 4.4%. This
suggests that with a similar model size, the 2-step model is superior to the 1-step
model in both inter-frame and motion coding.

Table 3d complements Table 3c to present results for 1-, 2- and 3-step CANF
when applied to both the motion and inter-frame codecs. 3-step CANF extends
straightforwardly the 2-step CANF by incorporating one additional autoencod-
ing transform. Despite a larger capacity, the 3-step CANF performs worse than
the 2-step CANF and comparably to the 1-step CANF. From Fig. 2b, the quan-
tization error introduced to the latent code z2 and the approximation error
between xc (used for decoding) and y2 (generated during encoding) are propa-
gated and accumulated (from top to bottom in Fig. 2b) during decoding. The
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Cond. Inter-frame Coding Residual Coding Temporal Prior BD-Rate

✓ -21.8%
✓ ✓ -24.3%

✓ -28.9%
✓ ✓ -33.1%

(a)

Input of Motion Coder Cond. BD-Rate

ft - -33.4%
ft − fc - -35.3%

ft f̂t−1 -35.2%
ft fc -42.5%

(b)

Motion Coder Inter-frame Coder BD-Rate

DVC [26] 1-step CANF -31.4%
DVC [26] 2-step CANF -33.1%

1-step CANF 2-step CANF -38.1%
2-step CANF 2-step CANF -42.5%

(c)

Motion Coder Inter-frame Coder BD-Rate

1-step CANF 1-step CANF 35.3%
2-step CANF 2-step CANF -42.5%
3-step CANF 3-step CANF -31.4%

(d)

Table 3: (a) Comparison of conditional inter-frame coding and residual coding under
the settings with and without the temporal prior. (b) Comparison of the conditional
motion coding, predictive motion coding, and intra motion coding. (c)(d) Comparisons
of the conditional motion and inter-frame coders with a varied number of autoencoding
transforms. The rows with blue color are our proposed full model.

cascading effect, compounded by temporal error propagation, may outweigh the
benefits of having more autoencoding transforms.

5 Conclusion

This work introduces CANF-VC for conditional inter-frame and motion coding.
CANF-VC achieves the state-of-the-art video compression performance. Our ma-
jor findings include: (1) the CANF-based inter-frame coding outperforms resid-
ual coding; (2) likewise, our conditional motion coding outperforms predictive
motion coding at the cost of additional buffer requirements; (3) the quality
of the conditioning variable is critical to compression performance; (4) our 2-
step CANF performs better than 1-step CANF, justifying the use of multi-step
CANF. Lastly, we note that CANF-VC does not use auto-regressive models in
inter-frame and motion coding. Its operations are parallelizable.

Acknowledgements

This work was supported by MediaTek, National Center for High-Performance
Computing, Taiwan, Ministry of Science and Technology, Taiwan under Grand
Application 110-2221-E-A49-065-MY3 and 110-2634-F-A49-006-, and Italian Min-
istry of University and Research under Grant Application PRIN 2022N25TSZ.



CANF-VC 15

References

1. Hm reference software for hevc. https://vcgit.hhi.fraunhofer.de/jvet/HM/-
/tree/HM-16.20, accessed: 2022-03-03

2. Agustsson, E., Minnen, D., Johnston, N., Balle, J., Hwang, S.J., Toderici, G.:
Scale-space flow for end-to-end optimized video compression. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8503–
8512 (2020)
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