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Abstract. Learning to generate new images for a novel category based
on only a few images, named as few-shot image generation, has attracted
increasing research interest. Several state-of-the-art works have yielded
impressive results, but the diversity is still limited. In this work, we pro-
pose a novel Delta Generative Adversarial Network (DeltaGAN), which
consists of a reconstruction subnetwork and a generation subnetwork.
The reconstruction subnetwork captures intra-category transformation,
i.e., “delta”, between same-category pairs. The generation subnetwork
generates sample-specific “delta” for an input image, which is combined
with this input image to generate a new image within the same cate-
gory. Besides, an adversarial delta matching loss is designed to link the
above two subnetworks together. Extensive experiments on six bench-
mark datasets demonstrate the effectiveness of our proposed method.
Our code is available at https://github.com/bcmi/DeltaGAN-Few-Shot-
Image-Generation.

1 Introduction

With the great success of deep learning, existing deep image generation mod-
els [32,33,5,45,46,6,18,10,28,43] based on Variational Auto-Encoder (VAE) [35]
or Generative Adversarial Network (GAN) [22] have made a significant leap
forward for generating diverse and realistic images for a given category. These
methods generally require amounts of training images to generate new images
for a given category. For the long-tail or newly emerging categories with only
a few images, directly training or finetuning on limited data may cause over-
fitting issue [71,19]. Besides, it is very tedious to finetune the model for each
unseen category. Therefore, given a few images from an unseen category, it is
necessary to consider how to generate new realistic and diverse images for this
category instantly. This task is called few-shot image generation in previous lit-
erature [4,2,29,30]. In this paper, following [4,2,29,30], we target at achieving
instant adaptation from multiple seen categories to unseen categories without
finetuning as shown in Fig. 1, which can benefit a lot of downstream tasks like
low-data classification and few-shot classification.

⋆ Corresponding author.

https://orcid.org/0000-0001-6401-0812
https://orcid.org/0000-0003-1970-8634
https://orcid.org/0000-0002-2673-5860
https://orcid.org/0000-0001-7597-8503


2 Y. Hong et al.

Fig. 1. The illustration of few-shot image generation task. We train a generative model
on multiple seen categories. The learned generative model can be instantly applied
to generate new images for unseen categories at test time. Each color indicates one
category

The abovementioned few-shot image generation methods [4,2,29,30] resort to
seen categories with sufficient training images to train a generative model, which
can be used to generate new images for an unseen category with only a few im-
ages, which are dubbed as conditional images. For brevity, we refer to the images
from seen (resp., unseen) categories as seen (resp., unseen) images. We classify
the few-shot image generation methods into fusion-based methods [4,29,30,23]
and transformation-based method [2]. However, those fusion-based methods can
only produce images similar to conditional images and cannot be applied to
one-shot image generation. Although transformation-based method could pro-
duce new images based on one conditional image, however, it fails to produce
diverse images.

Following the research line of transformation-based methods, we propose a
novel Delta Generative Adversarial Network (DeltaGAN), which can generate
new images based on one conditional image by sampling random vectors. Our
DeltaGAN is inspired by few-shot feature generation method Delta-encoder [57],
in which intra-category transformation (i.e., the difference between two images
within the same category) is called “delta”. The main idea of Delta-encoder is
shown in Fig. 2(a). In the training stage, Delta-encoder learns to extract delta
∆r from same-category feature pair {fx1

,fx2
} of image pair {x1,x2} from seen

categories, in which ∆r is the additional information required to reconstruct fx2

from fx1 . We refer to x1 as conditional (source) sample and x2 as target sample.
In the testing stage, these extracted deltas are applied to a conditional feature
fy of image y from an unseen category to generate new feature f̃y for this unseen
category. However, Delta-encoder is a few-shot feature generation method, which
cannot be directly applied to image generation. Besides, Delta-encoder relies on
the deltas extracted from same-category training pairs, which does not support
stochastic sampling (i.e., sampling random vectors) to generate new samples in
the testing stage.

In this paper, we aim to extend Delta-encoder to few-shot image generation
method DeltaGAN, which supports producing diverse deltas based on random
vectors. In this way, we can sample random vectors to generate diverse images
without reaching training data in the testing stage. Considering that the plau-
sibility of delta may depend on the conditional image [1], that is, a plausible
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Fig. 2. The illustration of evolving from Delta-encoder to our DeltaGAN. {x1,x2}
(resp., {fx1 ,fx2}) is a same-category seen image pair (resp., feature pair). y (resp., fy )
is a conditional image (resp., feature) from an unseen category. {x̂2, x̃2, ỹ} (resp., {f̂x2 ,
f̃y}) are generated images (resp., features). z is a random vector. {∆r, ∆r

x1
} (resp.,

{∆f
x1
, ∆f

y}) means real (resp., fake) deltas. Red arrows indicate using adversarial delta
matching loss to bridge the gap between real and fake delta. In (b), the green (resp.,
blue) box encloses the reconstruction (resp., generation) subnetwork, and pink arrows
indicate the process of generating sample-specific delta

delta for one conditional image may be unsuitable for another conditional image
(see Section 4.3), we aim to produce sample-specific delta. In particular, we take
in a random vector and a conditional image to generate sample-specific delta,
which represents the transformation from this conditional image to another pos-
sible image from the same category. We conjecture that the ability of generating
sample-specific delta can be transferred from seen categories to unseen cate-
gories. To this end, we develop our DeltaGAN according to Fig. 2(b). In the
training phase, we use a reconstruction subnetwork to reconstruct x2 from x1

with the delta∆r
x1

(real delta) extracted from {x1,x2}. We also use a generation
subnetwork to generate sample-specific delta ∆f

x1
(fake delta) and produce new

image x̃2. To ensure that fake deltas function similarly to real ones, we introduce
a novel adversarial delta matching loss by using a delta matching discriminator
to judge whether an input-output image pair matches the corresponding delta.
Besides, we employ a variant of mode seeking loss [44] to alleviate the mode
collapse issue. We also employ typical adversarial loss and classification loss to
make the generated images realistic and category-preserving. In the testing stage,
given a conditional unseen image y, we can obtain its sample-specific delta ∆f

y

by sampling random vector z for producing new image ỹ from the category of y.
Because each delta represents one possible intra-category transformation, given
a conditional unseen image, different deltas can produce realistic and diverse
images from the same unseen category. Extensive experiments on six benchmark
datasets demonstrate the effectiveness of our proposed method. Our contribu-
tions can be summarized as follows:

– We propose a novel delta-based few-shot image generation method, which
has never been explored before.
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– Technically, we extend few-shot feature generation method Delta-encoder
to few-shot image generation with stochastic sampling and sample-specific
delta. We also design a novel adversarial delta matching loss.

– Our method can produce diverse and realistic images for each unseen cate-
gory based on a single conditional image, surpassing existing few-shot image
generation methods by a large margin.

2 Related Work

Data augmentation: Data augmentation targets at augmenting training data
with new samples. Traditional data augmentation tricks (e.g., crop, flip, color
jittering) only have limited diversity. Also, there are some methods [15,39,27,60]
proposed to learn optimal augmentation strategies to improve the accuracy of
classifiers. Similarly, neural augmentation [51,53,31,70,7] allowed a network to
learn augmentations. As another research line, deep generative models can gener-
ate more diverse samples to augment training data, which can be categorized into
feature-based augmentation methods [2] and image-based augmentation meth-
ods [57]. Feature-based augmentation methods [12,24] focused on generating
more diverse deep features to augment the feature space of training data, while
image-based augmentation methods [11,62,29,30] targeted at exploiting the dis-
tribution of training images and generating more diverse images.
Few-shot feature generation In existing few-shot feature generation meth-
ods, the semantic knowledge learned from the seen categories is transferred to
compensate unseen categories in [17,24]. cCov-GAN [21] proposed a covariance-
preserving adversarial augmentation network to generate more features for un-
seen categories. In [66], a generator subnetwork was added to a classification net-
work to generate new examples. Intra-category diversity learned from seen cat-
egories was transferred to unseen categories to generate new features in [57,40].
Dual TriNet [12] proposed to synthesize instance features by leveraging seman-
tics using a novel auto-encoder network for unseen categories. DTN [9] learned to
transfer latent diversities from seen categories and composite them with support
features to generate diverse features for unseen categories.
Few-shot image generation Compared with few-shot feature generation, few-
shot image generation is a more challenging problem. Early methods can only be
applied to generate new images for simple concepts, such as Bayesian program
learning in [36], Bayesian reasoning in [55], and neural attention in [54].

Recently, several more advanced methods have been proposed to generate
new real-world images in few-shot setting. To name a few, fusion-based method
GMN [4] (resp., MatchingGAN [29]) combined Matching Network [64] with Vari-
ational Auto-Encoder [52] (resp., Generative Adversarial Network [22]) to gener-
ate new images without finetuning in the test phase. F2GAN [30] was designed
to enhance the fusion ability of model by filling the details borrowed from con-
ditional images. Transformation-based method DAGAN [2] proposed to produce
new images by injecting random vectors into the generator conditioned on a
single image. Apart from fusion-based and transformation-based methods, there
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Fig. 3. Our DeltaGAN mainly consists of a reconstruction subnetwork and a generation
subnetwork. Generation subnetwork learns to generate new image x̃2 based on condi-
tional image x1 and random vector z. Reconstruction subnetwork learns to produce
reconstructed target image x̂2 based on image pair {x1,x2}. Best viewed in color

also exist optimization-based methods. For example, FIGR [13] (resp., DAW-
SON [38]) combined adversarial learning with meta-learning method Reptile [48]
(resp., MAML [20]) to generate new images. However, they need to fine-tune the
trained model with unseen category. Moreover, they can hardly produce sharp
and realistic images. In this work, we propose a new transformation-based few-
shot image generation method, which can produce more diverse images than
previous methods based on a single image.

Note that some more recent works [50,37,56,65] are also called few-shot im-
age generation. However, these works focus on adapting the generative model
pretrained on a large dataset to a small dataset with a few examples, whose
setting is quite different from ours. Firstly, these methods target at adapting
from one source domain to another target domain, whereas our method adapts
from multiple seen categories to unseen categories. Secondly, the models of these
works need to be finetuned for each unseen domain, which is very tedious. In-
stead, the model of our method can be instantly applied to unseen categories
without finetuning.

3 Our Method

We split all categories into seen categories and unseen categories, which have
no overlap. Our DeltaGAN mainly consists of a reconstruction subnetwork and
a generation subnetwork as shown in Fig. 3. The detailed architecture of each
encoder/decoder is reported in Supplementary. In the training stage, given a
same-category seen image pair {x1,x2} where x1 is the conditional image and
x2 is the target image, the reconstruction subnetwork extracts real delta ∆r

x1

from this pair, and reconstructs the target image x2 based on x1 and ∆r
x1
. In
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the generation subnetwork, a random vector z and the conditional image x1 are
used to obtain fake sample-specific delta ∆f

x1
, which collaborates with x1 to

generate a new image x̃2. Moreover, we design an adversarial delta matching
loss to bridge the gap between real delta and fake delta. In the testing stage,
given an unseen image y, only generation subnetwork is used to produce diverse
and realistic images {ỹk} belonging to the same category of y.

3.1 Reconstruction Subnetwork

In the reconstruction subnetwork (see Fig. 3), there are three encoders E∆, Ec,
Er and a decoder G. Given a same-category seen image pair {x1,x2}, we use E∆

to extract paired features {E∆(x1), E∆(x2)} ∈ RW×H×C , where W×H denotes
the feature map size and C denotes the channel number. Then, we calculate the
difference between E∆(x2) and E∆(x1), which is fed into Er to obtain real delta
∆r

x1
∈ RW×H×C :

∆r
x1

= Er(E∆(x2)− E∆(x1)), (1)

where ∆r
x1

contains the additional information needed to reconstruct x2 from
x1. We do not restrict our delta features to be linear offsets, which enables the
delta features to learn more complex transformations. Then,∆r

x1
is concatenated

with Ec(x1) ∈ RW×H×C and fed into G to obtain the reconstructed image x̂2:

x̂2 = G(∆r
x1
, Ec(x1)). (2)

We employ a reconstruction loss L1 to ensure that x̂2 is close to x2:

L1 = ||x̂2 − x2||1. (3)

Considering the instability issue of early training stage, we use a feature matching
loss [3] by matching the discriminative feature of x̂2 with that of x2. In detail,
we use a feature extractor D̂I to extract the discriminative features of x̂2 and
x2 in each layer to calculate the feature matching loss:

Lfm =
1

L

L∑
l=1

||D̂l
I(x2)− D̂l

I(x̂2)||1, (4)

where L is the layer number of D̂I .
To support stochastic sampling for generation, we design another generation

subnetwork in parallel with the reconstruction subnetwork (see Fig. 3). Two
subnetworks share two encoders E∆, Ec and the decoder G. Besides, a new
encoder Ef is introduced to obtain fake sample-specific delta. In our generation
subnetwork, we concatenate a random vector z sampled from unit Gaussian
distribution and the feature of conditional image E∆(x1) ∈ RW×H×C , which is
fed into Ef to obtain sample-specific delta ∆f

x1
∈ RW×H×C :

∆f
x1

= Ef (z, E∆(x1)), (5)
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where ∆f
x1

contains the additional information needed to transform conditional
image x1 to another possible image within the same category. Then, analogous
to the reconstruction subnetwork, ∆f

x1
is concatenated with Ec(x1) and fed into

G to produce a new image x̃2 belonging to the category of x1:

x̃2 = G(∆f
x1
, Ec(x1)), (6)

in which x̃2 is the transformed result after applying delta ∆f
x1

to x1.

3.2 Generation Subnetwork

Adversarial loss: To make the generated image x̃2 close to real images, we
employ a standard adversarial loss using the discriminator DI . DI contains the
feature extractor D̂I mentioned in Section 3.1 and a fully-connected (FC) layer.
We adopt the hinge adversarial loss proposed in [47]:

LI
adv,D = Ex2

[max(0, 1−DI(x2))]+Ex̃2
[max(0, 1+DI(x̃2))],

LI
adv,G = −Ex̃2

[DI(x̃2)]. (7)

The discriminator DI tends to distinguish fake images from real images by min-
imizing LI

adv,D, while the generator tends to generate realistic images to fool the

discriminator by minimizing LI
adv,G.

Classification loss: To ensure that x̃2 belongs to the expected category, we
construct a classifier by replacing the last FC layer of DI with another FC layer
(the number of outputs is the number of seen categories). Then, the images from
different categories can be distinguished by a cross-entropy classification loss:

Lc = − log p(c(x)|x), (8)

where c(x) is the category label of x. We train the classifier by minimizing
Lc,D = − log p(c(x2)|x2) of the target image x2. We also expect the generated
image x̃2 to be classified as the same category of target image x2. Thus, we
minimize Lc,G = − log p(c(x2)|x̃2) when updating the generator.
Adversarial delta matching loss: To ensure that the generated sample-
specific deltas function similarly to real deltas and encode the intra-category
transformation, we design a novel adversarial delta matching loss to bridge the
gap between real deltas and fake deltas. This goal is accomplished by a delta
matching discriminator DM , which takes a triplet (conditional image, output
image, the delta between them) as input as shown in Fig. 3. Our delta matching
discriminator DM is constructed by feature extractor D̂I and four FC layers
following global average pooling. In delta matching discriminator DM , we extract
the features of paired images {D̂I(x1), D̂I(x2)} (resp., {D̂I(x1), D̂I(x̃2)}), which
are concatenated with sample-specific delta∆r

x1
(resp.,∆f

x1
) to form a real (resp.,

fake) triplet. Then, the real triplet and fake triplet are fed into the four FC layers
to judge whether this conditional-output image pair matches the corresponding
delta, in other words, whether the delta is the additional information required
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to transform the conditional image to the output image. In adversarial learning,
the discriminator DM needs to distinguish the real triplet {x1,x2,∆

r
x1
} from

the fake triplet {x1, x̃2,∆
f
x1
}, while the generator aims to synthesize realistic

fake triplet to fool the discriminator. The delta matching adversarial loss is also
in the form of hinge adversarial loss [47], which can be written as

LM
adv,D =Ex1,x2,∆r

x1
[max(0, 1−DM (x1,x2,∆

r
x1
))]

+Ex1,x̃2,∆
f
x1
[max(0, 1 + DM (x1, x̃2,∆

f
x1
))],

LM
adv,G = −Ex1,x̃2,∆

f
x1
[DM (x1, x̃2,∆

f
x1
)], (9)

where LM
adv,D (resp., LM

adv,G) is optimized for updating {D̂I ,DM} (resp., the
generator).
Mode seeking loss: We observe that by varying random vector z, the gen-
erated images may collapse into a few modes, which is referred to as mode
collapse [44]. Therefore, we use a variant of mode seeking loss [44] to seek for
more modes to enhance the diversity of generated images. Different from [44],
we apply mode seeking loss to multi-layer features extracted by D̂I . In particu-
lar, we minimize the ratio of the distance between z1 and z2 over the distance
between D̂l

I(x̃
1
2) and D̂l

I(x̃
2
2) at the l-th layer of D̂I :

Lms =
1

L

L∑
l=1

||z1 − z2||1
||D̂l

I(x̃
1
2)− D̂l

I(x̃
2
2)||1

. (10)

Intuitively, when ||z1−z2||1 is large, we expect D̂l
I(x̃

1
2) and D̂l

I(x̃
2
2) to be consid-

erably different, which can push the generator to search more modes to produce
diverse images. In our experiments (see Section 4.3), we find that mode seek-
ing loss is critical for diversity. However, without the guidance of reconstruction
subnetwork and adversarial delta matching loss, solely using mode seeking loss
cannot generate meaningful deltas, with both diversity and realism significantly
downgraded.

3.3 Optimization

We use θG to denote the model parameters of {E∆, Er, Ec, Ef , G}, while θD is
used to denote the model parameters of {DI , DM}. The total loss function of
our method can be written as

L = LI
adv + LM

adv + λ1L1 + Lc + λfmLfm + λmsLms, (11)

in which λ1, λfm, and λms are trade-off parameters. LI
adv represents LI

adv,G

(resp., LI
adv,D) when updating the model parameters θG (resp., θD). Similarly,

LM
adv represents LM

adv,G (resp., LM
adv,D) when updating the model parameters θG

(resp., θD).
θG and θD are optimized using related loss terms in an alternating fashion. In

particular, θD is optimized by minimizing LI
adv,D+LM

adv,D+Lc,D. θG is optimized

by minimizing LI
adv,G + LM

adv,G + λ1L1 + Lc,G + λfmLfm + λmsLms, in which
Lc,D and Lc,G are defined below Eqn. 8.
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Table 1. FID (↓) and LPIPS (↑) of images generated by different methods for unseen
categories on four datasets in 1/3-shot setting

Method Shot
VGGFace Flowers Animal Faces NABirds

FID LPIPS FID LPIPS FID LPIPS FID LPIPS

FIGR [13] 3 139.83 0.0834 190.12 0.0634 211.54 0.0756 210.75 0.0918
DAWSON [38] 3 137.82 0.0769 188.96 0.0583 208.68 0.0642 181.97 0.1105
GMN [4] 3 136.21 0.0902 200.11 0.0743 220.45 0.0868 208.74 0.0923
DAGAN [2] 3 128.34 0.0913 151.21 0.0812 155.29 0.0892 159.69 0.1405
DAGAN [2] 1 134.28 0.0608 179.59 0.0496 185.54 0.0687 183.57 0.0967
MatchingGAN[29] 3 118.62 0.1695 143.35 0.1627 148.52 0.1514 142.52 0.1915
F2GAN [30] 3 109.16 0.2125 120.48 0.2172 117.74 0.1831 126.15 0.2015
LoFGAN [23] 3 106.24 0.2096 112.55 0.2687 116.45 0.1756 124.56 0.2041

DeltaGAN 3 78.35 0.3487 104.62 0.4281 87.04 0.4642 95.97 0.5136
DeltaGAN 1 80.12 0.3146 109.78 0.3912 89.81 0.4418 96.79 0.5069

4 Experiments

We conduct experiments on six few-shot image datasets: EMNIST [14], VG-
GFace [8], Flowers [49], Animal Faces [16], NABirds [63], and Foods [34]. Fol-
lowing MatchingGAN and FUNIT, we split all categories into seen categories
and unseen categories. After having a few trials, we set λ1 = 10, λfm = 0.1,
and λms = 10 by observing the quality of generated images during training. We
adopt Adam optimizer with learning rate of 1e−4. The batch size is set to 16 and
our model is trained for 200 epochs. The details of datasets and implementation
are reported in Supplementary.

4.1 Evaluation of Generated Images

To evaluate the quality of images generated by different methods, we calcu-
late Fréchet Inception Distance (FID) [26] and Learned Perceptual Image Patch
Similarity (LPIPS) [69] on four datasets. FID is used to measure the distance
between the extracted features of generated unseen images and those of real un-
seen images. LPIPS is used to measure the diversity of generated unseen images.
For each unseen category, the average of pairwise distances among generated
images is calculated, and then the average of all unseen categories is calculated
as the final LPIPS score. Since the number of conditional images in fusion-based
methods GMN [4], MatchingGAN [29], F2GAN [30], and LoFGAN [23]) is a tun-
able hyper-parameter, we use 3 conditional images in each training and testing
episode. In the testing stage, if K images are provided for each unseen category,
we refer to this setting as K-shot setting. We report the 3-shot results for all
methods and 1-shot results for the methods which only require one conditional
image.

In either setting, following [23,30], we use each method to generate 128 im-
ages for each unseen category, which are used to calculate FID and LPIPS. For
DeltaGAN and DAGAN which are applicable to both 1-shot and 3-shot set-
tings, we generate 128 images based on one conditional image in 1-shot setting
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Fig. 4. Images generated by our DeltaGAN in 1-shot setting on four datasets (from
top to bottom:EMNIST, VGGFace, Flowers, Animal Faces, NABirds, and Foods). The
conditional images are in the leftmost column

and generate 128 images by randomly sampling one conditional image each time
in 3-shot setting. The results are summarized in Table 1, we can observe that
our method achieves the lowest FID and highest LPIPS in the 3-shot setting,
which demonstrates that our method could generate more diverse and realistic
images compared with baseline methods. Besides, our method in 1-shot setting
also achieves competitive results, which are even better than other baselines
in 3-shot setting. We also compare our DeltaGAN with other few-shot image
generation method [50] in Supplementary.

We show some example images generated by our DeltaGAN on six datasets
in Fig. 4. We exhibit 12 generated images based on one conditional unseen image
by sampling different random vectors. On EMNIST dataset, we can see that gen-
erated images maintain the concepts of conditional images and have remarkable
diversity. On natural datasets VGGFace, Flowers, Animal Faces, NABirds, and
Foods, our DeltaGAN can generate diverse images with high fidelity.

For comparison, we also show some example images generated by DAGAN
and F2GAN in Fig. 5. For DAGAN, we arrange the results according to the
conditional image. It can be seen that the structures of images produced by DA-
GAN are almost the same as the conditional image. For F2GAN, the generated
images are still close to one of the conditional images and may have unreasonable
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Fig. 5. Images generated by DAGAN, F2GAN, and our DeltaGAN in 3-shot setting
on two datasets (from top to bottom: Animal Faces and NABirds). The conditional
images are in the left three columns

shapes when fusing conditional images. Apparently, our DeltaGAN can produce
images of higher quality and more diversity.

4.2 Few-shot Classification

In this section, we demonstrate that the new images generated by our Delta-
GAN can greatly benefit few-shot classification. The experiments for low-data
classification and comparison with traditional data augmentation methods can
be found in Supplementary. Following the N -way C-shot setting in few-shot
classification [20], in which evaluation episodes are created and the averaged
accuracy over multiple evaluation episodes is calculated for evaluation. In each
evaluation episode, N categories from unseen categories are randomly selected
and C images from each of N categories are randomly selected. These selected
N × C images are used as training set while the remaining unseen images from
N unseen categories are used as test set. We pretrain ResNet18 [25] on the
seen images and remove the last FC layer as the feature extractor, which is
used to extract features for unseen images. In each evaluation episode in N -way
C-shot setting, our DeltaGAN generates 512 new images to augment each of
N categories. Based on the extracted features, we train a linear classifier with
N × (C + 512) training images, which is then applied to the test set. we train a
linear classifier to evaluate the few-shot generation ability of our DeltaGAN. Be-
sides N ×C training images, our generator can generate 512 images to augment
each of N categories in the training set.

We compare our DeltaGAN with existing few-shot classification methods, in-
cluding the representative methods MatchingNets [64], RelationNets [59], MAML
[20] as well as the state-of-the-art methods MTL [58], MatchingNet-LFT [61],
DPGN [67], DeepEMD [68], and GCNET [41]. For these baselines, no augmented
images are added to the training set in each evaluation episode. Instead, the im-
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Table 2. Accuracy(%) of different methods on three datasets in few-shot classification
setting (10-way 1/5-shot). Note that fusion-based methods MatchingGAN, F2GAN,
and LoFGAN are not applicable in 1-shot setting

Method
VGGFace Flowers Animal Faces

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNets [64] 33.68 48.67 40.96 56.12 36.54 50.12
MAML [20] 32.16 47.89 42.95 58.01 35.98 49.89
RelationNets [59] 39.95 54.12 48.18 61.03 45.32 58.12
MTL [58] 51.45 68.95 54.34 73.24 52.54 70.91
MatchingNet-LFT [61] 54.34 69.92 58.41 74.32 56.83 71.62
DPGN [67] 54.83 70.27 58.95 74.56 57.18 72.02
DeepEMD [68] 54.15 70.35 59.12 73.97 58.01 72.71
GCNET [41] 53.73 71.68 57.61 72.47 56.64 71.53
Delta-encoder [57] 53.19 67.57 56.05 72.84 56.38 71.29
MatchingGAN [29] - 70.94 - 74.09 - 70.89
F2GAN [30] - 72.31 - 75.02 - 73.19
LoFGAN [23] - 73.01 - 75.86 - 73.43

DeltaGAN 56.85 75.71 61.23 77.09 60.31 74.59

ages from seen categories are used to train those few-shot classifiers by strictly
following their original training procedure. We also compare our DeltaGAN with
few-shot image generation methods MatchingGAN and F2GAN as well as few-
shot feature generation method Delta-encoder. We adopt the same augmenta-
tion strategy as our DeltaGAN in each evaluation episode. Besides, we compare
our DeltaGAN with few-shot image translation method FUNIT [42] in Supple-
mentary. By taking 10-way 1-shot/5-shot as examples, we report the averaged
accuracy over 10 episodes on three datasets in Table 2. Our method achieves
the best performance on all datasets compared with few-shot classification and
few-shot generation baselines, which demonstrates the high quality of generated
images by our DeltaGAN.

4.3 Ablation Studies

We analyze the impact of each loss and alternative network designs on Animal
Faces dataset in 1-shot setting. For each ablated method, FID, LPIPS, and the
accuracy of 10-way 1-shot classification augmented with generated images are
reported in Table 3.
Loss terms: In our method, we employ a reconstruction loss L1, a mode seeking
loss Lms, a feature matching loss Lfm, a classification loss Lc, and an adversarial
loss LI

adv. To investigate the impact of each loss term, we conduct ablation stud-
ies on Animal Faces dataset by removing each loss term from the final objective
in Eqn. 11 separately. The results are summarized in Table 3, which shows that
the diversity and fidelity of generated images are compromised when removing
L1. By removing mode seeking loss Lms, we can see that all metrics become
much worse, which implies the mode collapse issue after removing Lms. Another
observation is that ablating Lfm leads to slight degradation of generated im-
ages. Removing Lc results in severe degradation of generated images, since the
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Table 3. Ablation studies of our loss terms and alternative network designs on Animal
Faces dataset

Setting Accuracy(%) ↑ FID ↓ LPIPS ↑

w/o L1 58.68 100.21 0.4191
w/o Lms 50.08 121.74 0.2976
w/o Lfm 59.17 95.82 0.4324
w/o Lc 42.21 196.18 0.4119
w/o LI

adv 52.18 139.46 0.3912
w/o LM

adv 57.12 115.11 0.4153

w/o real delta 53.03 128.69 0.3838

Global delta 58.96 94.51 0.4311
SC delta 56.11 101.05 0.4162
DC delta 55.29 105.91 0.4021

Simple D1 54.53 129.17 0.3012
Simple D2 58.01 109.54 0.4401
Simple D3 59.51 94.12 0.4392
Linear delta 53.89 122.71 0.4091

DeltaGAN 60.31 89.81 0.4418

generated images may not belong to the category of conditional image. When
LI
adv is removed from the final objective, the worse quality of generated images

indicates that typical adversarial loss can ensure the fidelity of generated images.
To investigate the impact of our adversarial delta matching loss LM

adv in Eqn. 9,
We remove LM

adv from the final objective in Eqn. 11, which is referred to as “w/o
LM
adv” in Table 3. We can see that the diversity and fidelity of generated images

are compromised without LM
adv, because LM

adv can bridge the gap between real
delta and fake delta.
Without real delta: To investigate the necessity of enforcing generated fake
deltas to be close to real deltas, we cut off the links between real delta and fake
delta by removing the reconstruction subnetwork and adversarial delta match-
ing loss (i.e., removing {LM

adv,L1,Lfm}), which is referred to as “w/o real delta”
in Table 3. Compared with DeltaGAN, both diversity and realism are signifi-
cantly degraded, because generation subnetwork fails to generate meaningful
deltas without the guidance of reconstruction subnetwork and adversarial delta
matching loss. Thus, we conclude that mode seeking loss needs to cooperate
with our framework to produce realistic and diverse images. Another observa-
tion is that “w/o LM

adv” is better than “w/o real delta”, which can be explained
as follows. Even without using adversarial delta matching loss, since the recon-
struction subnetwork and the generation subnetwork share the same Ec and G,
generated fake deltas have been implicitly pulled close to real deltas.
Sample-specific delta: To corroborate the superiority of sample-specific delta,
we directly use random vectors to generate deltas, which is referred to as “Global
delta” in Table 3. It can be seen that our design of sample-specific deltas can
benefit the quality of generated images. Besides, with our trained DeltaGAN
model, we exchange sample-specific deltas within images from the same category
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(resp., across different categories) to generate new images, which is referred to
as “SC delta” (resp., “DC delta”) in Table 3. Compared with “SC delta” and
“DC delta”, our DeltaGAN achieves the best performance on all metrics, which
verifies our assumption that delta is sample-specific and exchangeable use of
deltas may lead to performance drop. We also visualize some examples generated
by “SC delta” (resp., “DC delta”) in Supplementary.
Delta matching discriminator: In Section 3.2, we use conditional image,
sample-specific delta, and output image as input triplet {D̂I(x1),∆x1

, D̂I(x2)}
for our delta matching discriminator DM , which judges whether the conditional-
output image pair matches the corresponding sample-specific delta. To evaluate
the effectiveness and necessity of this input format, we explore different types
of inputs for delta matching discriminator. As shown in Table 3, we use {∆x1

}
(resp., {D̂I(x1),∆x1

}, {D̂I(x2),∆x1
}) as inputs of DM , which is referred to as

“Simple D1” (resp.,“Simple D2”,“Simple D3”). We can see that “Simple D1” is
the worst, which demonstrates that only employing adversarial loss on delta does
not work well. Besides, both “Simple D2” and “Simple D3” are worse than our
DeltaGAN, which demonstrates the effectiveness of matching conditional-output
image pair with the corresponding sample-specific delta.
Linear offset delta: To evaluate the effect of the learned non-linear “delta”,
we replace the non-linear “delta” with linear “delta”, which is referred to as
“Linear delta” in Table 3. In the reconstruction subnetwork, we set ∆r

x1
=

E∆(x2)−E∆(x1), and x̂2 = G(∆r
x1
+Ec(x1)), which means that we simply learn

linear offset “delta” from same-class pairs of training data. In the generation
subnetwork, we apply the generated fake “delta” ∆f

x1
to conditional image x1

to generate new image x̃2 = G(∆f
x1

+ Ec(x1)). Based on Table 3, the FID gap
between “Linear delta” and “DeltaGAN” indicates that complex transformations
of intra-category pairs cannot be well captured by linear offset.

5 Conclusion

In this paper, we have explored applying sample-specific deltas to a conditional
image to generate new images. Specifically, we have proposed a novel few-shot
generation method DeltaGAN composed of a reconstruction subnetwork and a
generation subnetwork, which are bridged by an adversarial delta matching loss.
The experimental results on six datasets have shown that our DeltaGAN can
substantially improve the quality and diversity of generated images compared
with existing few-shot image generation methods.
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