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Abstract. Identity swapping and de-identification are two essential ap-
plications of identity-disentangled face image generation. Although shar-
ing a similar problem definition, the two tasks have been long studied
separately, and identity-disentangled face generation on megapixels is
still under exploration. In this work, we propose StyleFace, a unified
framework for 10242 resolution high-fidelity identity swapping and de-
identification. To encode real identity while supporting virtual identity
generation, we represent identity as a latent variable and further utilize
contrastive learning for latent space regularization. Besides, we utilize
StyleGAN2 to improve the generation quality on megapixels and de-
vise an Adaptive Attribute Extractor, which adaptively preserves the
identity-irrelevant attributes in a simple yet effective way. Extensive ex-
periments demonstrate the state-of-the-art performance of StyleFace in
high-resolution identity swapping and de-identification.

1 Introduction

A face image can be semantically separated into two parts, including the iden-
tity that contains the identifiable characteristics, and the identity-irrelevant at-
tributes, such as pose, expression, background, etc.. Although many works are
devoted to disentangling and editing the facial attributes, identity-disentangled
face generation is still not well investigated.

Identity-disentangled face generation constrains the generation randomness
on the identity property with conditioned attributes. It has two important ap-
plications, including Identity Swapping and De-identification (De-ID). Identity
swapping changes the identity in the original image to that of a specific person,
while De-ID changes it to a nonexistent one. Most identity swapping meth-
ods [22, 5, 38, 42, 9] learn by maximizing the identity similarity to a specific iden-
tity and maintaining the attributes in the original image, which formulates an
effective semi-supervised learning scheme. On the contrary, due to the ambiguity
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Fig. 1. This paper presents StyleFace, the first unified framework for high-fidelity
identity swapping (col 3) and de-identification (col 4) on megapixels. Both the em-
bedded and sampled identities are visually realistic, and the attributes (e.g., lighting,
occlusion, expression, etc.) are faithfully preserved.

of anonymization, De-ID methods modify the original identity by feature-level
repulsion [8], representation manipulation [3], or indirect identity guidance [24].
These methods often suffer from poor anonymization diversity [8] and lack su-
pervision on attribute retention, leading to unrealistic visual effect [8, 24, 3].

Identity swapping and De-ID have been treated as two independent tasks for
a long time. Nevertheless, both tasks require the generated faces to faithfully
preserve the identity-irrelevant attributes in the original image, differing only
on the generated identity. Therefore, we wonder if it is possible to unify the two
tasks in one framework and promote the De-ID performance with the supervision
signals in the identity swapping scheme.

In addition, high-fidelity identity-disentangled face generation on megapixels
is still an unresolved problem, albeit the rapid improvement of generative tech-
niques [17, 18]. Existing De-ID methods [8, 27, 10, 39, 24] are mostly cursed with
limited resolution and poor fidelity. Early identity swapping methods utilize fea-
ture matching [5] or self-supervised refinement [22, 21] to improve the fidelity, but
mainly focus on 2562 resolution generation or need extra super-resolution [38,
21]. Currently, MegaFS [42] and InfoSwap [9] make early attempts on megapixel-
level identity swapping, but they produce visible artifacts and have difficulty in
detailed attributes recovery.

In this paper, we propose a novel framework StyleFace, which unifies identity
swapping and de-identification in one model and renders identity-disentangled
face images on mega-pixels. To bridge the gap between identity swapping and
De-ID, we first design a Variational Auto-Encoder (VAE)-based projector, which
encodes the identity priors from the face recognition model as a latent variable.
On this basis, we can embed the identity of a real person for identity swapping and
sample virtual identities for de-identification. We apply a hierarchical augmenta-
tion on the identity latent space to improve the effectiveness on different scales.
Moreover, we introduce contrastive learning [11] to promote the uniformity in
the intermediate latent space and improve the quality of de-identification.

With the unified framework design, we can train the model by the iden-
tity swapping objectives but directly apply it to de-identification at test time.
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Thanks to the effective supervision signals on attribute retention and identity
distinctiveness from the identity swapping scheme, the fidelity and realism of
de-identified faces are largely promoted. Also, the diversity of de-identified faces
is improved with the infinite sampling power of the latent identity space.

Next, to achieve megapixel-level generation, we utilize StyleGAN2 [18] as
the generator. We formulate the projected identity as style and the identity-
irrelevant attributes extracted by a carefully devised Adaptive Attribute Ex-
tractor (AAE) as noise input. Unlike [9] that erases redundant information with
mutual information compression, which is time-consuming and often fails to
maintain the details, AAE adaptively preserves desired attributes under simple
constrain. We show that AAE is explainable and can effectively preserve even
the fine-level facial details (e.g., hair and wrinkles).

With the disentangled latent representation of identity, StyleFace unifies
identity swapping and de-identification in one framework and conducts megapixel-
level generation (see Fig. 1). Experiments on high-resolution identity swapping
show the superiority of our model in synthesizing high-fidelity face images with
precise identity control. Besides, StyleFace achieves state-of-the-art performance
for de-identification and the de-identified faces are realistic and diverse.

In summary, our main contributions include:

– We represent identity as a latent variable and introduce contrastive learn-
ing for latent regularization. In this way, we propose StyleFace, to our best
knowledge, the first unified high-fidelity face generation framework for both
identity swapping and de-identification.

– We devise an attribute extractor to cooperate with a powerful generator
(StyleGAN2) and achieve high-fidelity generation on megapixels.

– Extensive experiments show that the proposed model can generate visually
appealing results with both real and virtual identities, achieving state-of-
the-art performance in identity swapping and de-identification, respectively.

2 Related Works

Identity Swapping. Identity swapping is a long researched task. Early meth-
ods [22, 5] mainly focus on 256-res face swapping or need extra super resolu-
tion [38, 21], therefore cannot meet the requirement in a real-world application.
Recently, InfoSwap [9] leverages the information-bottleneck principles and pro-
poses an identity contrastive loss to promote the disentanglement. MegaFS [42]
proposes a Face Transfer Module to modify identity by latent code manipula-
tion. These methods achieve precise identity control with the carefully designed
supervision objectives but are not satisfactory in maintaining the attributes.

Following this line, we train the model with the identity swapping objective
but have mainly two differences. Firstly, we do not directly use the determin-
istic identity representations of the FR model but embed the identity priors
into a latent distribution. Secondly, we preserve the attributes and details with
a carefully designed feature extractor. Therefore, our model can generate new
identities and have better fidelity on megapixels.
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Face De-identification. Conventional de-identification methods use pixe-
lation, blurring, or masking to conceal identifiable characteristics, which harm
the original facial attributes. Current methods attach more importance to the
quality and realism of the anonymized face but are still far from satisfactory. The
faces generated by [8] and [27] are not natural enough and lack diversity. CIA-
GAN [24] shows better diversity but cannot handle complicated facial attributes
and has poor fidelity. Currently, [10, 39, 3] focus on recoverable de-identification,
but still produce visible artifacts. In this work, we attempt to increase the fidelity
of anonymized faces with the help of identity swapping supervisions.

Face Identity Embedding with GANs. GAN has been widely used in
face image manipulation. [1, 2, 33] propose to enlarge the latent space for bet-
ter editing or transferring. For manipulating facial semantics, most works fo-
cus on changing the attributes [36, 32, 14]. [23] provides inspirational findings
in learning identity-distilled and identity-dispelled features, but it focuses more
on attribute editing and is usually applied at regular resolution. For editing the
identity, SD-GAN [7] trains with a pair of images of the same identity and dis-
entangles identity and attributes with the specialized discriminator. Recently,
DiscoFaceGAN [6] embeds the 3D prior into adversarial learning with several
VAE-based encoders. These methods conduct identity-specific generation but
do not precisely disentangle identity from the other image content (e.g., back-
ground, haircut, etc.). In this work, we follow [6] to embed identity to the latent
space but focus on the fine-grained control of the identifiable characteristics.

High-resolution Face Generation. The image quality of generative meth-
ods, particularly Generative Adversarial Networks (GAN), have improved rapidly.
StyleGAN [17] adopts a novel intermediate latent space and a style ingcon-
trol mechanism, which allows more disentangled and scale-specific control. Be-
sides, it facilitates stochastic variation by providing additional random noise
maps and further improves the generation fidelity. Recently, StyleGAN2 [18]
and StyleGAN3 [16] fix some characteristics artifacts in [17] and yield the state-
of-the-art generation quality. In this work, we utilize the powerful StyleGAN2
network and devise a new attribute extractor to improve the image fidelity.

3 Approach

We train StyleFace with the identity swapping scheme: Given the source image
Xs and the target image Xt, we change the identity of Xt to that of Xs while
preserving all the identity-irrelevant attributes, thus producing image Ys,t. Once
trained, we can anonymize the identity in imageXt by directly sampling a virtual
identity. As presented in Fig. 2 (a), we utilize the StyleGAN2 model for high-
resolution generation, with the identity as style and attribute as noise input. To
construct the latent identity space and improve the generation fidelity, we devise
the Identity Projector and the Adaptive Attribute Extractor (AAE). Next, we
will explain the proposed framework in detail.
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Fig. 2. The architecture of StyleFace. (a) The generation pipeline for identity swap-
ping (with embedded zreal) and de-identification (with sampled zgen). (b) Illustration
of the contrastive loss. (c) Detailed structures of the GAN Block and the AttrInjection
module. Please refer to [18] for details of the GAN block.

3.1 Identity Projector

To unify identity swapping and de-identification in one framework, we desire
to represent identity as a latent variable to embed real identity and generate
virtual identities. Inspired by DiscoFaceGAN [6], we devise a Variational Auto-
Encoder (VAE)-based projector to project the identity prior from a pretrained
Face Recognition (FR) network to the latent space of the StyleGAN2 model.

Z+ Space. The original latent space Z of StyleGAN is a standard Gaussian
distribution. Inspired by [1, 2, 33] that enlarge the latent space to increase the
model’s expressiveness, we expand Z by adopting three different latent codes
from Z in the low (42-162), middle (322-1282), and high-level (2562-10242) layers.
This is equivalent to sampling from a Z+ space that consists of three versions
of Z. We empirically find that Z+ provides a hierarchical identity control and
increases the distinctiveness of identity change (Sec. 4.4).

To embed identity to the Z+ space, we regard deep features from the pre-
trained FR model [13] as identity priors and devise a simple VAE-based projec-
tor. The projector is implemented as a one-layer MLP, which maps the features
to the means and covariances of the Z+ space. We regularize the latent space
by the Kullback-Leibler divergence loss Lkl:

Lkl =
1

2

∑
i

(µ2
i + σ2

i − log σ2
i − 1), (1)

where µi, σi ∈ R1×512 and i ∈ {l,m, h}. For simplicity, we use l, m, h to denote
the low, middle, high-level layers, respectively. We do not add an extra recon-
struction task as the typical VAE does but use the identity preserving objective
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Fig. 3. Distributions of wreal and wgen without/with the contrastive loss. ‘.’ and ‘+’
denote wreal and wgen, respectively. Different identities are marked by different colors.
Examples of generated identity are shown on the right.

to guarantee that the valid identity information is not lost. In the following
sections, z = {zi}, i ∈ {l,m, h} is used to represent the latent code in Z+ space.

Non-uniformity in the W+ Space. There are two latent spaces in Style-
GAN: the original latent space Z, and the less entangled intermediate latent
space W. W is produced from Z by a non-linear mapping f . With identity
embedded to the Z+ space, we subsequently map z to w and compose the inter-
mediate latent spaceW+. The w vectors modulate the weights of corresponding
convolution layers in the generator to control the generated identity.

Denoting the latent identity code embedded from a real image as zreal and
that randomly sampled from the Gaussian distribution N (0, I) as zgen, we find
that zreal can recover the corresponding identity for identity swapping, but zgen
fails to produce a feasible identity for de-identification. To figure out the reason,
we use t-SNE to visualize the distribution of wreal and wgen vectors. We ran-
domly pick 100 identities from the training dataset and get 626 wreal vectors.
Then we randomly sample 200 zgen vectors from N (0, I) and map them to wgen.

As shown in Fig. 3 (a), the wreal codes are clustered to different centers
and there is no overlap between wgen and wreal. Accordingly, the generated
virtual identities are not feasible, indicating the wgen codes are lying out of the
reasonable intermediate space. We think the reason for the non-uniformity of
W+ is mainly two-fold: i) W+ space is a complex non-Gaussian distribution
that has no constrain on the uniformity. ii) The amount of different IDs in the
training dataset is limited, thus wreal may not span the whole W+ space but
only a small subspace. Hence, we try to resolve this issue via contrastive learning.

Contrastive Constrain. Currently, [37] points out that the contrastive loss
optimizes the alignment of features from positive pairs and the uniformity of the
induced distribution. To generate reasonable identities from randomly sampled
latent code, we desire the intermediate identity representation w to meet the
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following requirements: i) The w codes for samples of the same identity gather
together. ii) All the w codes distribute uniformly in the W+ space. To this end,
we introduce a contrastive constrain on w.

We parameterize the process of embedding an image X to the intermediate
identity representation w as an Identity Projector Pθ:

w = Pθ(X) = f (ϕ(ω(FR(X)))), (2)

where FR is the fixed FR net, ω is the VAE-based projector, ϕ is the reparam-
terization process, f is the non-linear mapping from Z+ to W+, and θ denotes
the learnable parameters in ω and f . Inspired by MoCo [11] that facilitates un-
supervised contrastive learning with a large and consistent queue and a moving-
averaged encoder, we build a dynamic list K = [ki]

N
i=1,ki ∈ R1×512, where N is

the amount of distinct identity in the training set. Note that we build a dynamic
list Ki for each wi ∈ w, i ∈ {l,m, h} and omit the subscript i for simplicity.

Fig. 2 (b) illustrates the contrastive constrain. We create another encoder
Pθ′ , which has the same structure with Pθ. Given image Xj with the identity
label j, we randomly pick another image Xj′ of the same person to compose a
positive pair. Then, we update Pθ′ by a momentum-based moving average of Pθ

so that θ′ ← mθ′ + (1−m)θ, where m ∈ [0, 1) is the momentum coefficient. We
encode Xj and Xj′ with the projector Pθ and the moving-averaged projector
Pθ′ , respectively. In this way, we get wj = Pθ(X

j) and wj′ = Pθ′(Xj′).
Unlike MoCo, which updates the dynamic queue by replacing the oldest

sample in an unsupervised manner, we update the j-th item in K by K[j]← wj′.
With wj as the query, we regard K[j] as the positive key and the other items
in K as the negative keys. Then, we normalize all the vectors to the unit space
and measure the similarity between the query wj and the dynamic list K by the
InfoNCE [25] loss. In this way, the contrastive constrain Lc is formulated as:

Lc = − log
exp(wj ·K[j]/τ)∑N
k=1 exp(w

j ·K[k]/τ)
, (3)

where τ is the temperature. Lc encourages the w codes of the same identity to
be similar to each other and dissimilar to those of other identities. Note that we
empirically set m = 0.999 and τ = 0.07.

As shown in Fig. 3 (b), with the intermediate representations constrained
by the contrastive loss Lc, the wreal codes uniformly distribute throughout the
whole space and overlap with the wgen codes. In this way, we can generate
realistic identities with the randomly sampled latent codes.

3.2 Adaptive Attribute Extractor

A critical issue in megapixel-level face generation is to faithfully preserve the
identity-irrelevant attributes and facial details, which is crucial for face real-
ism and image quality. In this subsection, we introduce the Adaptive Attribute
Extractor (AAE), which adaptively preserves the necessary information.
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Multi-level Attribute Encoding. The attributes of a face image often span
a large range of spatial resolution, such as the global-level position, the middle-
level expression, and the fine-level details. Early work [22] demonstrates that
multi-level features better preserve the image details than compressed single
vectors. Therefore, we devise a lightweight U-shape DNN to extract features in
various resolutions. Inspired by [40], we carefully design the DNN so that the
feature map fatti in the i-th layer has the same shape as that in the i-th GAN
block. Unlike [22] that injects attributes in a SPADE [26]-like design, we treat
fatti in the i-th layer as the noise input of the corresponding i-th GAN block. In
this way, we name the module as AttrInjection.

Adaptive Attribute Disentangle. The extracted multi-level features contain
redundant information, such as the identity information of the target image. We
desire to preserve just the least sufficient information of the target attributes.
Therefore, we predict a control mask Mi,j ∈ [0, 1] for the corresponding AttrIn-
jection module, where Mi,j has the same shape as fatti :

Mi,j = σ(Conv(hi,j ◦ fatti )). (4)

hi,j is the output of the j-th modulated convolution in i-th GAN block, σ is the
Sigmoid(·) function and ◦ is the channel-wise concatenation. We compress the
extracted attribute features fatti with the control mask Mi,j by

h′
i,j = hi,j +Mi,j × fatti . (5)

As shown in Fig. 2 (c), we incorporate the distilled attribute information into
the generation process without modifying the GAN structure.

Recent work [9] supervises the information compression by mutual informa-
tion, but we observe that the imperfect information compression harms both
the identity and attributes. Differently, we simply constrain the control mask by
minimizing the activation in Mi,j :

Lmask =
∑
i,j

||Mi,j ||1. (6)

In this way, the multi-level information and spatial correspondence in the target
image are maintained, and the redundant information is filtered.

3.3 Loss Function

Attribute Preserving Loss. When the source image Xs and the target image
Xt have the same identity, we expect the output Ys,t to be identical with Xt,
thus define the pixel-wise reconstruction loss as,

Lrec = ||Ys,t −Xt||1 if ID(Xt) = ID(Xs). (7)

Following [5], we define the feature matching loss by minimizing the L2 distance
between the multi-level features from the discriminator D for Xt and Ys,t. To
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eliminate the ghosting artifacts, we use a background mask Mbg from the seg-
mentation model [34] in the shadow layers:

Llow
FM =

m∑
i=1

Mbg · ||D(i)(Xt)−D(i)(Ys,t)||2. (8)

In deep layers, we match the features in the whole image:

Lhigh
FM =

M∑
i=m

||D(i)(Xt)−D(i)(Ys,t)||2. (9)

We define the total feature matching objective as the equally weighted sum:

LFM = Llow
FM + Lhigh

FM . (10)

Identity Preserving Loss. To encourage the swapped identity to be more
distinctive, we adopt the Identity Contrastive Loss (ICL) in [9]:

LICL =1− cos < zid(Ys,t), zid(Xs) >

+ (cos < zid(Ys,t), zid(Xt) > − cos < zid(Xs), zid(Xt) >)2,
(11)

where zid is the 512-dim vector extracted by the FR net.

Overall Loss. We adopt the same GAN loss LGAN for adversarial training as
StyleGAN2, and the total objective is formulated as:

Ltotal =LGAN + Lc + Lmask + LFM

+ λrecLrec + λICLLICL + λKLLKL,
(12)

where the contrastive loss Lc is defined in Eq. (3), the mask loss Lmask is defined
in Eq. (6) , and the KL-divergence loss is defined in Eq. (1), We train the whole
model end-to-end with Ltotal. Once the training is finished, the model can be
directly used for de-identification (see Fig. 2 (a)).

4 Experiments

4.1 Implementation Details and Protocols

We train the model on a combination of FFHQ [17], VGGFace2 [4], and Cele-
bAHQ [15], with all images aligned and cropped to 1024× 1024. We devise the
AAE (Sec. 3.2) to have the same spatial resolution as the StyleGAN2 model, but
only one layer in each resolution and 1/8 the channel dimension. We use a 1× 1
Conv to adjust the channel dimension of the DNN feature map before sending
it to the AttrInjection module. The VAE-liked projector is a one-layer MLP.
More details of the model’s architecture are provided in the supplementary.
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Fig. 4. Qualitative comparison with MegaFS [42] and InfoSwap [9] on FF++ [28]. Our
model maintains the (a) eye color and (b) face shape of source identity, and better
preserves target attributes, such as (c) expression and (d) skin color.

Fig. 5. Qualitative comparison about identity swapping on the CelebAMaskHQ
dataset. The first row shows source-target image pairs, and the last three rows show
the results of MegaFS, InfoSwap, and StyleFace (ours) from top to bottom.

At the start of training, we set the ratio of source-target pairs with the same
identity to 100% for a warm-up and linearly decrease it to 50%. Adam [19] is
used with β1 = 0, β2 = 0.99. We first pretrain the generator on FFHQ for 20K
steps and then train the whole model end-to-end. The learning rates of AAE
and the generator are 1e− 4, while that of the identity projector is 1e− 6. For
Eq. (12), we set λrec = 10, λICL = 5, and λKL = 1e − 4. The 10242-res model
is trained using 4 A100 GPUs for 2 days with a batch size of 4.

4.2 High-resolution Identity Swapping

In this section, we compare StyleFace with state-of-the-art high-resolution iden-
tity swapping methods, including MegaFS [42] and InfoSwap [9]. The public
model and processing scripts are used in the following experiments.
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Table 1. Quantitative test w.r.t.identity preserving, attribute preserving, and image
quality. Values underlined are from [42] due to lack of ground-truth segmentation of
FF++ [28]. Inference speed is tested on one V100 GPU over 1,000 independent runs.
For MegaFS, the time for segmentation is excluded.

Model ID↑ Shape↓ Pose↓ Exp.↓ FID ↓ Inference Speed (ms/10242 Image) User Study

MegaFS [42] 90.83 - 2.64 - 16.64 91 ± 1.7 6.7%
InfoSwap [9] 98.70 0.57 3.11 0.31 3.39 329 ± 0.7 18.7%

Ours 96.34 0.50 2.52 0.28 2.04 86 ± 1.8 74.6%

Fig. 6. Numbers in the bracket denotes the cosine similarity between the generated
identity and the source identity. Our model produces more natural and perceptually
similar faces than InfoSwap, though it has numerically lower scores.

Qualitative Comparison. We first compare on the FaceForensics++ (FF++)
[28] dataset. As shown n Fig. 4, MegaFS produces distinct face contour and
ignores the source face shape. Besides, InfoSwap produces visible skin artifacts
and inconsistent eye color. Both two methods cannot preserve the target skin
color. In contrast, our model maintains identity-level characteristics such as face
shape and eye color and faithfully preserves the target attributes like pose and
expression. In addition, the face images rendered by our model have distinctly
better quality and are more visually appealing.

For megapixel-level identity swapping, we randomly compose 30K pairs of the
source-target images from CelebAMaskHQ [20] and generate 10242 resolution
results in Fig. 5. We observe that MegaFS [42] occasionally fails (col 5) due to
unstable GAN-inversion. InfoSwap produces twisted hair (col 4), while our model
preserves the detailed hair strands. Our model can better retain the lighting (col
1), expression (col 2), the source face shape (col 3/4), and better handle the
occlusion (col 6/7). Besides, it produces fewer artifacts and maintains the image
details, showing superior fidelity on megapixels.

Quantitative Comparison. Following [22, 38, 5], we conduct quantitative
comparison on the FF++ [28] dataset on the following metrics: ID retrieval,
pose error, face shape error, and expression error. For the ID retrieval rate, we
use [35] to extract the identity embedding and report the Top-1 matching rate
of the swapped image and the source image. We estimate the 3D pose by [29],
and the expression and shape by [30]. We report the L2 distance between the
regressed coefficients of swapped image and the ground truth for these three met-
rics. To further evaluate image fidelity and model efficiency on high-resolution
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Fig. 7. (a) Examples of de-identified faces. (b) Comparison with CIAGAN [24]. Our
method better preserves the original attributes (e.g., lighting, expression, and occlu-
sion), and generates identities that are more realistic and diverse.

Table 2. Comparison with recent de-identification methods on LFW [12].

Method VGGFace2 [4]↓ CASIA [41]↓

Original 0.986±0.010 0.965±0.016
Gafni et al. [8] 0.038±0.015 0.035±0.011
CIAGAN [24] 0.034±0.016 0.019±0.008

Ours 0.013±0.006 0.012±0.008

generation, we compute the Fréchet Inception Distance (FID) score on the Celeb-
MaskHQ dataset and the inference speed of generating one 10242-res image.

As shown in Table 1, our model has the lowest pose and expression error,
indicating that the target attributes are well maintained. Besides, the FID scores
imply that images generated by our model have high quality and fewer artifacts.
Fig. 6 shows that our model produces more natural and perceptually similar
faces, although it has a slightly lower ID retrieval rate than InfoSwap, Besides,
our model has the fastest inference speed, showing good efficiency. Moreover,
we conduct a user study among 20 users on 50 source-target pairs from the
CelebAHQ dataset, and each user selects the best one from three methods. As
reported in Table 1, our method significantly outperforms the other methods.

4.3 Face De-identification

Qualitative Comparison. In Sec. 3.1, we design an Identity Projector to
construct a latent identity space. Thus we can sample infinite virtual identities
from Z+ space for face de-identification. Here we present some examples of the
de-identified faces in Fig. 7 (a) and the qualitative comparison with the current
state-of-the-art method CIAGAN [24] in Fig. 7 (b). It can be observed that
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Fig. 8. Identity swapping results with Z and Z+ spaces.

Fig. 9. Visualization of the hierarchical identity control of the Z+ space. The brighter
pixel indicates a larger difference.

faces de-identified by our model are more diverse and realistic, showing better
preservation of the original attributes and better image quality.

Quantitative Comparison. Following [24], we anonymize the second image of
each positive pair in the LFW [12] dataset. We utilize two FaceNet [31] models,
which are pretrained on VGGFace2 [4] and CASIA-WebFace [41], respectively.
The true acceptance rate is reported in Table 2 that lower value indicates better
anonymization. We compare with the state-of-the-art De-ID methods, including
Gafni et al. [8] and CIAGAN [24]. As presented in Table 2, when the face is
anonymized by our model, the identification rate is lower than the other two
methods, showing better de-identification ability.

4.4 Analysis

Z+ Space. To verify the effectiveness of the Z+ space (Sec. 3.1), we train
another model with the original Z space. As shown in Fig. 8, the model with
Z space has lower identity similarity and fails to recover the gaze direction.
Furthermore, we analyze the hierarchical identity control of the Z+ space. With
Xt as the attribute reference, we change the identity code from zt to zs by
gradually replacing the low, middle, and high-level component of zt with those
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Fig. 10. Visualizing the control masks in AAE at different resolutions. The lighter
pixel indicates a higher weight for attribute preserving.

of zs, generating Y1, Y2 and Y3. Then, we compute the differences to show
the impact of each component in Fig. 9. The low-level code zl affects the coarse-
level attributes, such as the shape of face and eyebrow. The middle-level code zm

primarily affects the perceptual similarity, with the most facial attributes (e.g.,
eye color, lips, etc.) changed. Finally, the high-level codes zh further strengthen
some facial details, and the identity completely changes to Xs.

Control Mask Visualization. In Sec. 3.2, we predict a control mask Mi,j

(Eq. (4)) to select the identity-irrelevant information from feature maps. Here
we visualize the mean value of control masks at each resolution in Fig. 10. The
mask highlights the whole face region in the low-level layers, indicating that
the model learns to recover the global pose and facial layout. As the resolution
increases, it focuses more on the background and facial decorations (e.g., makeup
and glasses). In the highest layers, the activation becomes sparser that only
some edges and details are highlighted. The visualization shows that the AAE
adaptively preserves the desired attributes at different resolutions.

5 Conclusion

In this paper, we have proposed a novel framework StyleFace, which unifies
identity swapping and de-identification in one model and achieves high-fidelity
face rendering on megapixels. To bridge the gap between identity swapping and
de-identification, we embed identity prior into the latent space and introduce
a contrastive constrain for further regularization. We utilize the StyleGAN2 for
megapixel-level generation and devise an adaptive attribute extractor to preserve
the identity-irrelevant information. We show that the proposed model can gener-
ate high-fidelity results with both embedded real identities and sampled virtual
identities. Extensive experiments demonstrate the state-of-the-art performance
of StyleFace in identity swapping and de-identification.
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