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A Architecture Details

The architecture used for the MPI encoder is specified in Table 1.

Input k c Output Input k c Output

Concat(It−1, It) 7 32 down1 down1 7 32 down1b
MP2(down1b) 5 64 down2 down2 5 64 down2b
MP2(down2b) 3 128 down3 down3 3 128 down3b
MP2(down3b) 3 256 down4 down4 3 256 down4b
MP2(down4b) 3 512 down5 down5 3 512 down5b
MP2(down5b) 3 512 down6 down6 3 512 down6b
MP2(down6b) 3 512 mid1 mid1 3 512 mid2

Up2(mid2) + down6b 3 512 up6 up6 3 512 up6b
Up2(up6b) + down5b 3 512 up5 up5 3 512 up5b
Up2(up5b) + down4b 3 256 up4 up4 3 256 up4b
Up2(up4b) + down3b 3 128 up3 up3 3 128 up3b
Up2(up3b) + down2b 3 64 up2 up2 3 64 up2b
Up2(up2b) + down1b 3 64 post1 post1 3 64 post2

post2 3 64 up1 up1 3 64 up1b
up1b 3 64 x D conv1 Reshape(conv1) 3 64 conv2
conv2 7 7 conv3 ReshapeBack(conv3) - - output

Table 1: MP2 is max pooling with stride 2, Up2 is nearest-neighbor upsampling with
scale 2, + is concatenation. Reshape transforms a tensor with C ×D channels into C
channels, and D is merged to the batch dimension, and ReshapeBack is the reverse
operation. All layers up till up1b use ReLU activation and the layers for conv1, conv2
and conv3 use LeakyReLu with a negative slope 0.2. There is no activation following the
very last layer. All layers use Instance Norm for activation normalization and Spectral
Norm for weight normalization.

B Implementation details

To have a better gradient flow, similar to Tucker et al. [4], we add a harmonious
bias 1/i to the alpha channel prediction, so that wi from Equation (12) becomes
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D
Extrapolation in Space Extrapolation in Time

LPIPS↓ PSNR ↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM↑

4 0.0987 19.3453 0.7180 0.0792 22.9415 0.7880
8 0.0874 20.5795 0.7881 0.0784 23.1073 0.7922
16 0.0786 21.1889 0.8188 0.0757 23.3812 0.7971
32 0.0762 21.2279 0.8207 0.0726 23.7882 0.8083

Table 2: Ablation on the number of MPI planes D. Increasing the plane count improves
the performance but also increases the training time. We adopt D = 16 in the main
paper since further increasing D results in diminishing returns.

uniformly 1/D during initialization. We also add an identity bias to fθ such that
each MPI plane is associated with zero motion during initialization.

In all experiments, we set the number of MPI planes to be D = 16. The depth
values for MPI planes are linear in the inverse space, with d1 = 1000 and dD = 1.

C Training details

C.1 KITTI

Since videos from KITTI are taken by stereo cameras with fixed relative poses,
the depth scale is consistent across scenes and therefore we set it to be a constant
σ = 1. We use λspace

1 = 1000, λspace
spec = 100, λtime

1 = 1000, and λtime
perc = 10. We use

Adam Optimizer [3] with an initial learning rate 0.0002, which we exponentially
decrease by a factor of 0.8 for every 5 epochs. We train our model for 200K
iterations on two NVIDIA TITAN RTX GPUs for about two days. During
training, we apply horizontal flip with 50% probability and apply color jittering
as data augmentation.

C.2 RealEstate10K

We train our model for 200K iterations on one NVIDIA GeForce RTX 3090 GPU,
which takes about one day. We use Lspace

1 = 10,Lspace
perc = 10,Ltime

1 = 10,Ltime
perc = 0.

We use Adam Optimizer [3] with a constant learning rate 0.0002.

C.3 Ablations on the number of MPI planes

To study the effect of the number of MPI planes, we perform an ablation study
on the KITTI [1] dataset with resolution 128× 384. As shown in Table 2, a small
number of MPI planes (D = 4 or 8) results in degraded model performance.
Further increasing the number of planes from 16 to 32 results in marginal
performance gain, with a cost of 2.1× slower training time. Therefore, we use
D = 16 for all other experiments.
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Method LPIPS↓ PSNR↑ SSIM↑

PredRNN [5] 0.0600 37.02 0.9643
Ours 0.0122 42.58 0.9762

Table 3: Results of next-frame prediction on CATER [2]. Our model achieves better
performance compared to PredRNN [5].

(a) Input 𝑡 − 1 (c) Prediction 𝑡 + 1 (d) GT 𝑡 + 1(a) Input 𝑡

Fig. 1: Model prediction on an example scene with occlusion. (a) and (b) are two
historical frames as model inputs, (c) and (d) are the predicted and ground truth next
frame, respectively. Top-left corners of subfigures are zoomed-in views for occluded
regions.

C.4 Modeling dynamic scenes

To test whether our method is able to model more dynamic scenes, we test our
method on CATER [2], a dataset of scenes with 5-10 individually moving objects.
We show a quantitative comparison with a video prediction baseline PredRNN [5].
As shown in Table 3, our model achieves better performance across all three
metrics.

Qualitatively, our method makes temporal prediction consistent with the
ground truth object motions on this dataset. In Fig. 1, the model correctly
recovers the purple object and the gold object occluded by the blue cone. Our
model effectively handles object occlusions by warping from neighboring pixels
with similar RGB values.

C.5 Discussions

While we focus on demonstrating the possibility of simultaneous extrapolation in
both space and time, specific modules can be further optimized for each task.
For example, it is possible to improve the dynamic scene representation to better
handle video prediction with long horizons or highly complex motion, or to
synthesize novel views with a large viewpoint change.

In the meantime, while our method is designed for natural scenes with
many potential positive impacts such as interactive scene exploration for family
entertainment, like all other visual content generation methods, our method
might be exploited by malicious users with potential negative impacts. We expect
such impacts to be minimal as our method is not designed to work with human
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videos. In our code release, we will explicitly specify allowable uses of our system
with appropriate licenses. We will use techniques such as watermarking to label
visual content generated by our system.
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