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Abstract. Remote estimation of human physiological condition has at-
tracted urgent attention during the pandemic of COVID-19. In this pa-
per, we focus on the estimation of remote photoplethysmography (rPPG)
from facial videos and address the deficiency issues of large-scale bench-
marking datasets. We propose an end-to-end RErPPG-Net, including a
Removal-Net and an Embedding-Net, to augment existing rPPG bench-
mark datasets. In the proposed augmentation scenario, the Removal-
Net will first erase any inherent rPPG signals in the input video and
then the Embedding-Net will embed another PPG signal into the video
to generate an augmented video carrying the specified PPG signal. To
train the model from unpaired videos, we propose a novel double-cycle
consistent constraint to enforce the RErPPG-Net to learn to robustly
and accurately remove and embed the delicate rPPG signals. The new
benchmark “Aug-rPPG dataset” is augmented from UBFC-rPPG and
PURE datasets and includes 5776 videos from 42 subjects with 76 dif-
ferent rPPG signals. Our experimental results show that existing rPPG
estimators indeed benefit from the augmented dataset and achieve signif-
icant improvement when fine-tuned on the new benchmark. The code and
dataset are available at https://github.com/nthumplab/RErPPGNet.

Keywords: Remote Photoplethysmography, Data Augmentation,
Double-Cycle Consistency, Remote Heart Rate Measurement

1 Introduction

Contactless and video-based methods for heart rate (HR) estimation have at-
tracted enormous research interests. Especially, remote photoplethysmography
(rPPG), which analyzes the subtle chrominance changes reflected on skin, cap-
tures the heart rate related information [3, 4]. Recent learning-based methods
for rPPG estimation fall into two categories. The first category [8, 10, 17, 22] in-
volved a number of preprocessing steps, such as facial landmark detection or
regions-of-interest detection, to obtain a spatial-temporal representation as the
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Fig. 1. The proposed scenario of rPPG data augmentation.

input to the CNN-based model. The second category [2, 3, 5, 13, 14, 16, 23] fo-
cused on training an end-to-end architecture to directly estimate either rPPG
signals or HR from an input facial video.

There remain a number of challenges in developing robust rPPG or HR esti-
mation. First, since the success of deep learning-based methods heavily relies on
large-scale supervised datasets, there are unfortunately only few datasets pub-
licly available for rPPG or HR estimation. In addition, the ground truth labels
of these datasets are not always accurate and thus usually lead to unstable es-
timation. Finally, because of the lack of large-scale dataset, previous methods
tend to overfit to a certain dataset but poorly generalize to others.

In this paper, to tackle the aforementioned issues, we propose the RErPPG-
Net to augment existing rPPG datasets. As shown in Fig. 1, the RErPPG-Net
consists of a Removal-Net and an Embedding-Net. We first use the Removal-Net
to erase any possible rPPG-relevant signals in the input video and then use the
Embedding-Net to embed a PPG signal into the resultant video.

However, training the Removal-Net and Embedding-Net is highly challeng-
ing, because no paired videos (i.e., facial videos from the same subject with and
without PPG signals) are available for model training. Inspired by the success of
cycle consistency learning [25] from unpaired data, we propose a novel double-
cycle consistent constraint into our model training. We use Fig. 2 to illustrate the
idea of single cycle consistent and the proposed double-cycle consistent learning.
In Fig. 2, when given an input X and two translators T1 and T2, the original
single cycle consistency [25] enforces X ′ to be consistent with X. In our case,
because the rPPG signals are extremely delicate in comparison with the facial
content, we found this single cycle consistency between X ′ and X tends to focus
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Fig. 2. Illustration of the double-cycle consistency.

on facial contents instead of the rPPG signals. Therefore, we adopt an additional
cycle consistent constraint on Y and Y ′ to ensure that rPPG-related information
in X ′ and X are well preserved. In addition, we also refer to the background
signals of the input videos to guide the model training.

Our contributions are summarized below:

1) We propose the RErPPG-Net to generate an augmented rPPG estimation
dataset: Aug-rPPG dataset, for public use on research of rPPG estimation.

2) We devise a novel double-cycle consistent constraint into the learning of
RErPPG-Net and successfully generate high-quality videos with specified
PPG signals.

3) Experimental results on UBFC-rPPG and PURE datasets show that existing
rPPG estimators substantially improve the estimation accuracy and achieve
state-of-the-art performance when fine-tuned on Aug-rPPG dataset.

2 Related Work

2.1 Remote Photoplethysmography Estimation

The goal of rPPG estimation is to remotely measure the heart rate from facial
videos. Traditional approaches [4, 7, 12, 18, 20, 21] focused on separate physiolog-
ical signals from facial videos under different prior assumptions. These methods
generally perform well on videos recorded under controlled environment but may
not generalize well to other scenarios. Many learning-based methods [2, 3, 5, 8,
10, 13, 14, 16, 17, 23] have also been developed for rPPG estimation. In [8], the au-
thors proposed a Dual-GAN framework to learn a noise-resistant mapping from
input spatial-temporal maps to ground truth blood volume pulse signals. In [3],
the DeepPhys framework was proposed to simultaneously generate an attention
mask for RoI detection and to recover rPPG signals using the convolutional at-
tention network. In [23], the authors proposed a STVEN network to enhance
hidden rPPG information from highly compressed videos and an rPPGNet to
predict rPPG signals.
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2.2 Data Augmentation

Data augmentation has been widely adopted to alleviate the shortage of well-
labeled training data. Traditional augmentation methods include image flipping,
rotating, cropping, scaling, shifting, and so on. With the success of Generative
Adversarial Networks (GANs) [6, 19, 25] and autoencoder [16] in generating high
fidelity data, many methods are proposed to use generators to automate the data
augmentation. In [6], the authors used conditional GANs to achieve both age
progression and regression. In [9], the authors utilized 3D avatars to synthesize
facial videos with blood flow and breathing patterns. In [25], the authors pro-
posed an unsupervised method with cycle-consistency to solve image-to-image
translation from unpaired data. In [16], the authors proposed a multi-task frame-
work to predict rPPG signals and to augment data simultaneously.

Fig. 3. The proposed RErPPG-Net, which consists of a Removal-Net GR and an
Embedding-Net GE . The rPPG-removed video xr is expected to carry no rPPG signal;
whereas the rPPG-embedded video xt is expected to carry the specified signal st.

3 Proposed Method

3.1 Overview

In this paper, we propose a RErPPG-Net to augment existing rPPG datasets
by embedding ground-truth PPG signals into any existing facial videos. As
shown in Fig. 3, the proposed RErPPG-Net consists of a Removal-Net GR and
an Embedding-Net GE and aims to remove any inherent rPPG signals exist-
ing in the input videos and then to embed the specified PPG signals into the
rPPG-removed videos. To train the model from unpaired videos, we propose a
novel double-cycle consistent learning to enforce the Embedding-Net GE and
the Removal-Net GR to learn to robustly and accurately embed and remove the
delicate rPPG signals.

3.2 RErPPG-Net

Fig. 3 illustrates the proposed RErPPG-Net. Let xi ∈ RH×W×C×T be an input
facial video; st ∈ RT denote the specified PPG signal, and xt ∈ RH×W×C×T
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denote the generated facial video, where H, W , C, and T denote the height,
width, the number of channels, and the length of the video, respectively. ErPPG

denotes an off-the-shelf rPPG estimator.
Note that, the input facial video may come from different sources, e.g., broad-

cast videos, video-to-video translated results, spoof videos, or temporally dupli-
cation of static images. Therefore, we first need to ensure that its inherent rPPG
signals (if any) are completely erased before we embed another PPG signal. How-
ever, because we do not know whether the input video xi carries rPPG signals
or not, training the Removal-Net GR is not a trivial task. Hence, we assume
that the background region of any input video should carry no rPPG informa-
tion and propose to use the signal estimated from the background region as the
pseudo ground truth of “no rPPG signal”. As shown in Fig. 3, we crop the upper
left corner of each video frame as the reference background and let sbg ∈ RT

denote the signal predicted by the rPPG estimator ErPPG from the background
region. Given the input xi, we refer to sbg to remove the rPPG signals by the
Removal-Net GR:

xr = GR(xi, sbg), (1)

where xr ∈ RH×W×C×T .
Next, we embed the specified PPG signal st into the rPPG-removed video

xr by the Embedding-Net GE :

xt = GE(xr, st). (2)

To ensure that the rPPG-removed video xr carries no rPPG signal and that
the rPPG-embedded video xt carries the signal st, we formulate the rPPG loss
Lre
rPPG as:

Lre
rPPG = Lnp(sbg, ErPPG(xr)) + Lnp(st, ErPPG(xt)), (3)

in terms of the negative Pearson correlation loss Lnp defined by

Lnp(s, s
′) = 1− (s− s̄)t(s′ − s̄′)√

(s− s̄)t(s− s̄)
√
(s′ − s̄′)t(s′ − s̄′)

, (4)

where s ∈ RT and s′ ∈ RT .

3.3 Double-Cycle Consistent Learning for Embedding-Net

Nevertheless, training RErPPG-Net in terms of only the rPPG loss Lre
rPPG is far

from enough. Specifically, there is no guarantee that the output video xt is per-
ceptually satisfactory and that xt carries only the specified signal st. Therefore,
we devise a double-cycle consistent learning to constrain the Embedding-Net to
learn to generate perceptually plausible results embedded with only the specified
PPG signals.
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Fig. 4. (a) Double-cycle consistent learning for Embedding-Net GE ; and (b) double-
cycle consistent learning for Removal-Net GR.

As shown in Fig. 4 (a), we illustrate the double-cycle consistent learning with
three stages. Here we assume the input video xi and its ground truth PPG signal
si are available during this training stage. First, we obtain the rPPG-removed
video xr by Equ. (1). Second, we embed the original PPG signal si of xi back
into xr and obtain x′

i by

x′
i = GE(xr, si), (5)

where x′
i ∈ RH×W×C×T .

Third, we input x′
i into the Removal-Net GR to obtain its rPPG-removed

video x′
r by

x′
r = GR(x

′
i, sbg), (6)

where x′
r ∈ RH×W×C×T .

From Equs. (5) and (6), we expect that the rPPG-carrying videos x′
i should

be consistent with xi and that the rPPG-removed videos x′
r should be consistent

with xr. Thus, we formulate the double-cycle consistent loss Lembed
dc by

Lembed
dc = ||xi − x′

i||1 + ||xr − x′
r||1. (7)

In addition, to ensure the predicted signals from x′
i and x′

r are highly corre-
lated with si and sbg, respectively, we define an rPPG-embedding loss term by:

Lembed
rPPG = Lnp(si, ErPPG(x

′
i))

+ Lnp(sbg, ErPPG(x
′
r)). (8)

To constrain the perceptual consistency between x′
i and xi in the feature

space, we further include a multi-layer perception loss [24] by

Lembed
p =

∑
k

||Ek
rPPG(xi)− Ek

rPPG(x
′
i)||1, (9)

where Ek
rPPG(·) is the feature of the k-th layer of the rPPG estimator ErPPG.
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3.4 Double-Cycle Consistent Learning for Removal-Net

To train the Removal-Net GR, the major difficulty lies in the lack of a paired
video without rPPG signals. Therefore, we randomly select one frame from the
input video xi and temporally duplicate this frame to create a static video xs ∈
RH×W×C×T as the reference ground-truth of rPPG-removed video. In addition,
because there exists no chrominance change on the facial skin of the static video
xs, we assume xs carries only a flat DC signal sh.

By referring to the static video xs and its ground truth signal sh, we then
devise a double-cycle consistent learning to train the Removal-Net GR. As shown
in Fig. 4 (b), we illustrate the training with three stages. First, we embed the
PPG signal st into the static video xs by

xe = GE(xs, st), (10)

where xe ∈ RH×W×C×T .
In the second and third stages, similarly to the case in Section 3.3, we remove

the rPPG signal from the rPPG-embedded video xe to obtain x′
s and then again

embed st back to x′
s to obtain an embedded video x′

e by:

x′
s = GR(xe, sh), (11)

and

x′
e = GE(x

′
s, st), (12)

respectively.
Similar to Equ. (7), we again impose the double-cycle consistent constraints

between x′
s and xs and between x′

e and xe and define the loss by

Lremove
dc = ||xs − x′

s||1 + ||xe − x′
e||1. (13)

To ensure that xe and x′
e indeed carry the signal st and that x′

s carries a flat
signal, we define the rPPG-removal loss by

Lremove
rPPG = Lnp(st, ErPPG(xe))

+ Lnp(st, ErPPG(x
′
e))

+ Lvar(ErPPG(x
′
s)), (14)

where we use the signal variance Lvar to measure whether x′
s carries a DC signal

or not, because the negative Pearson correlation coefficient is inapplicable in this
case. Lvar is defined by

Lvar(s) = (s− s̄)t(s− s̄). (15)

Here, we again adopt the multi-layer perception loss to ensure the consistency
between x′

s and xs in the feature space by

Lremove
p =

∑
k

||Ek
rPPG(xs)− Ek

rPPG(x
′
s)||1. (16)



8 C. Hsieh et al.

3.5 Loss function

Finally, we include the rPPG loss, the double-cycle consistent loss, and the per-
ceptual loss to define the total loss for training GE and GR by:

Ltotal = λ1LrPPG + Ldc + Lp, (17)

where

LrPPG = Lre
rPPG + Lembed

rPPG + Lremove
rPPG , (18)

Ldc = Lembed
dc + Lremove

dc , and (19)

Lp = Lembed
p + Lremove

p , (20)

and λ1 is a hyper-parameter and is empirically set as 0.01 in all our experiments.

4 Experiments

4.1 Datasets

The UBFC-rPPG dataset [1] contains 42 RGB videos, each is recorded from
a single individual. All the videos are recorded by Logitech C920 HD Pro with
resolution of 640 × 480 pixels in uncompressed 8-bit format and 30 fps. CMS50E
transmissive pulse oximeter is used to monitor the PPG signals and correspond-
ing heart rates.

Because there is no pre-defined data split for training and testing on UBFC-
rPPG dataset, previous methods did not all follow the same setting for evalua-
tion. In [8, 10, 13], the training and the testing sets contain the first 30 subjects
and the rest 12 subjects, respectively. In [16], the training and testing sets con-
tain 28 and 14 subjects, respectively. In [2, 5], no description about the data
split is given. In our experiment, to have a balanced rPPG distribution within
the training and testing sets, we include 35 subjects and the rest 7 subjects in
the training and testing sets. In addition, to have a fair comparison with [8, 10,
13], we also conduct experiments using their setting with 30 and 12 subjects in
training/testing sets. More detailed description and results are given in Sec. 4.5.

The PURE dataset [15] contains 10 subjects performing six different and
controlled head motions in front of the camera. The six setups include: (1) sitting
still, (2) talking, (3) slowly moving the head, (4) quickly moving the head, (5)
rotating the head with 20◦ angles, and (6) rotating the head with 35◦ angles.
All the videos are recorded by evo274CVGE camera with resolution of 640 ×
480 pixels and 30 fps. Pulox CMS50E finger clip pulse oximeter is adopted to
capture PPG signals with sampling rate of 60 Hz. The PPG signals are reduced
to 30 fps with linear interpolation to align with the videos. We follow [16] to split
the dataset into the training and testing sets with videos from 7 and 3 subjects,
respectively.

The VIPL-HR dataset [11] contains 2378 RGB videos of 107 subjects cap-
tured with 9 scenarios and recorded by 3 different devices. Because the sampling
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rates between videos and PPG signals are different, similar to [8], we addition-
ally resample the PPG signals to the corresponding video frame rates by cubic
spline interpolation.

4.2 Implementation Details

We develop the proposed Removal-Net GR and Embedding-Net GE using the
generator proposed in [6]. As to the rPPG estimator ErPPG, we adopt the rPPG
model in [16] and then follow [23] to aggregate the features in the middle layer to
predict the rPPG signals. We train the RErPPG-Net (i.e., GR and GE) and the
rPPG estimator ErPPG with Nvidia RTX 2080 and RTX 3080 for 900 and 500
epochs, respectively, and use Adam optimizer with the learning rate of 0.001.
The RErPPG-Net is trained with batch size 1 and ErPPG is trained with batch
size 3. In each epoch, we randomly sample 60 consecutive frames from each
training video to train RErPPG-Net and ErPPG.

4.3 Evaluation Metrics

To assess how the proposed data augmentation improves the rPPG estimation,
we follow [13] to derive heart rate (HR) from the predicted rPPG signals and then
evaluate the results in terms of the following metrics: (1) Mean absolute error
(MAE), (2) Root mean square error (RMSE), (3) Pearson correlation coefficient
(R), (4) Peak signal-to-noise ratio (PSNR), and (5) Structural similarity (SSIM).

Fig. 5. Visualized examples of ablation study on UBFC-rPPG dataset, when training
GR and GE using: (b) Lre

rPPG; (c) L
re
rPPG with double-cycle consistent loss and rPPG

loss on Embedding-Net; (d) Lre
rPPG with double-cycle consistent loss and rPPG loss on

Embedding-Net and Removal-Net; and (e) the proposed total loss.
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Table 1. Ablation study on UBFC-rPPG dataset.

Lre
rPPG Lembed

dc Lremove
dc Lembed

rPPG Lremove
rPPG Lp MAE↓ RMSE↓ PSNR↑ SSIM↑

✓ 44.79 48.53 5.11 0.1642
✓ ✓ ✓ 4.14 9.51 49.72 0.9995
✓ ✓ ✓ ✓ ✓ 2.30 5.63 51.08 0.9997
✓ ✓ ✓ ✓ ✓ ✓ 0.71 1.48 52.71 0.9998

4.4 Ablation Study

We conduct several ablation studies on UBFC-rPPG dataset and show the results
in Table 1 and Fig. 5. First, to evaluate how the rPPG estimator ErPPG may
benefit from the proposed RErPPG-Net, we train ErPPG using the augmented
data from UBFC-rPPG training set and then test on the UBFC-rPPG testing
set. Next, to evaluate the perceptual quality of the augmented videos, we embed
the original PPG signals into the rPPG-removed videos and then measure the
PSNR and SSIM between the augmented videos and the input videos.

In Table 1, the first column Lre
rPPG indicates that the RErPPG-Net is trained

using only the rPPG loss Lre
rPPG but without the double-cycle consistent learning

or the perceptual loss. We first evaluate the effectiveness of the double-cycle con-
sistent loss. When including the loss terms Lembed

dc and Lembed
rPPG, we significantly

reduce MAE by about 91% and RMSE by about 80%. As shown in Fig. 5 (b) and
(c), the visual quality of Fig. 5 (c) is greatly improved with PSNR increased from
5.11 to 49.72 and SSIM from 0.1642 to 0.9995. This improvement comes from
that the double-cycle consistent loss on the Embedding-Net effectively constrains
the generated video to be consistent with the input on the pixel level. Next, when
including the loss terms Lremove

dc and Lremove
rPPG , we further reduce MAE by about

44% and RMSE by about 41% and also increase PSNR and SSIM with 1.36
and 0.0002, respectively. These results again verify that double-cycle consistent
learning effectively constrains the RErPPG-Net to learn to remove and embed
rPPG signals as well as to generate photo-realistic facial videos. Finally, when
including the perception loss Lp in the training stage, we enforce the augmented
videos to be consistent with the input videos in the feature space and achieve
the best performance among all settings.

In Fig. 5, we show the visual comparisons of videos generated by RErPPG-
Net trained using different losses. In each setting, the first row shows the aug-
mented video and the second row shows the residual between the augmented
video and the input video. The residual results are intensity enhanced by gamma
transformed with γ = 3 to highlight the differential areas. As shown in Fig. 5 (c),
(d), and (e), the major differences in the residual videos locate around the face
area; these results show that RErPPG-Net indeed learns to erase and embed the
rPPG information on the facial regions.

In Table 2, we compare the performance of using single-cycle and double-
cycle consistent learning. To train the single-cycle framework, we remove all the
loss terms related to x′

r and x′
e in Equs. (7) (8) (13) and (14). The results show
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Table 2. Comparison of single-cycle and double-cycle framework on UBFC-rPPG
dataset.

Method MAE↓ RMSE↓ R↑
Ours (single-cycle) 2.38 4.73 0.84
Ours (double-cycle) 0.71 1.48 0.96

Fig. 6. (a) An input video xi from UBFC-rPPG dataset; (b) The rPPG-removed video
xr; (c) The rPPG-embedded video xt; (d) The ground truth PPG signal si (blue) and
the predicted rPPG signal of xi (orange); (e) The background signal sbg (blue) and
the predicted signal of xr (orange); and (f) The specified PPG signal st (blue) and the
predicted rPPG signal of xt (orange).

that double-cycle consistent learning significantly reduces MAE by about 70%
and RMSE by about 69% over the single-cycle consistent constraint and verify
its effectiveness for generating photo-realistic augmented videos.

Finally, in Fig. 6, we give an example to visualize the rPPG-removed and
rPPG-embedded videos. As shown in Fig. 6 (b) and (c), both videos are visu-
ally indistinguishable from the input one. Moreover, in Fig. 6 (e) and (f), the
estimated rPPG signals from the rPPG-removed and rPPG-embedded videos
are highly correlated with the background signal and the ground truth signal,
respectively. These results verify that the proposed RErPPG-Net successfully
erases the rPPG signal from the input video and embeds the specified PPG
signal into the rPPG-removed video.
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Table 3. Comparison on UBFC-rPPG dataset.

Method MAE↓ RMSE↓ R↑
Meta-rPPG [5] 5.97 7.42 0.53
SynRhythm [10] 5.59 6.82 0.72
3D CNN [2] 5.45 8.64 -
PulseGAN [13] 1.19 2.10 0.98
Multi-task [16] 0.47 2.09 -
Dual-GAN [8] 0.44 0.67 0.99

rPPGNet [23] 0.72 1.47 0.96
rPPGNet (All) [23] 0.56 0.73 0.991

Ours* (Original) 0.64 0.95 0.94
Ours* (Aug) 1.84 3.81 0.85
Ours* (All) 0.75 1.05 0.94

Ours (Original) 0.66 1.40 0.96
Ours (Aug) 0.71 1.48 0.96
Ours (All) 0.41 0.56 0.994

4.5 Results and Comparison

In Table 3, we compare the HR predictions using our rPPG estimator ErPPG

with other methods [2, 5, 8, 10, 13, 16, 23] on the UBFC-rPPG dataset. The set-
tings “Original”, “Aug”, and “All” indicate that we train ErPPG using (1) only
the original training videos in UBFC-rPPG dataset, (2) only the augmented
videos, and (3) both the original training data and the augmented videos. The
methods: 3D CNN [2], Meta-rPPG [5], Multi-task [16], and rPPGNet [23] are de-
veloped with the end-to-end architecture; whereas the other three methods [10,
13, 8] need to compute the spatial-temporal maps before using convolutional neu-
ral networks. The result of “Ours (Aug)” shows that ErPPG, even only trained
with augmented data, performs pretty well. The setting “Ours (All)” achieves
the best performance with MAE 0.41, RMSE 0.56, and Pearson correlation co-
efficient (R) 0.994.

To have a fair comparison with [8, 10, 13], we follow the setting in [13] to
train our RErPPG-Net and rPPG estimator ErPPG and mark the results with
“*”. Although we observe degraded performance in “Ours* (Aug)” and “Ours*
(All)”, we believe the reason comes from the imbalanced HR distribution between
the training and testing sets adopted in [13]. As shown in Fig. 7 (a), the HR
distributions between the training and testing sets are very different; therefore,
this imbalanced issue may grow even worse in the augmented data. On the other
hand, in Fig. 7 (b), the data distribution in our setting is more balanced and
thus the augmented data serve a better training set.

Furthermore, to show that our augmented dataset can also boost the perfor-
mance of other rPPG estimators, we re-implement the rPPGNet [23] and show
the results in Table 3. In comparison with “rPPGNet”, the setting “rPPGNet
(All)” has MAE reduced by about 22% and RMSE reduced by about 50% when
training with both the original training data and the augmented videos. These
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Fig. 7. Heart rate distribution of the training/testing data split in UBFC-rPPG dataset
using (a) the setting in [13] and (b) our setting.

results verify that existing rPPG estimators can indeed benefit from the pro-
posed augmented dataset.

Comparisons with the methods [4, 7, 8, 14, 16, 21] on PURE dataset are shown
in Table 4, where 2SR [21], CHROME [4], and LiCVPR [7] are not learning-based
methods. The setting “Ours (All)” again outperforms the other rPPG estimation
methods with MAE 0.38 and RMSE 0.54.

Table 4. Comparison on PURE dataset.

Method MAE↓ RMSE↓ R↑
LiCVPR [7] 28.22 30.96 -0.38
2SR [21] 2.44 3.06 0.98
CHROME [4] 2.07 2.50 0.99
HR-CNN [14] 1.84 2.37 0.98
Dual-GAN [8] 0.82 1.31 0.99
Multi-task [16] 0.40 1.07 0.92

Ours (Original) 0.69 1.24 0.96
Ours (All) 0.38 0.54 0.96

Finally, we conduct a cross-dataset validation to evaluate the generalization
capability of the rPPG estimator when fine-tuning ErPPG on our augmented
videos. In Table 5, the settings “UBFC”, “UBFC + Aug-U”, “PURE”, “PURE
+ Aug-P”, “UBFC + PURE”, and “UBFC + PURE + Aug-rPPG” indicate
that the rPPG estimator ErPPG is obtained by (1) training on UBFC-rPPG
dataset, (2) training on the UBFC-rPPG dataset and then fine-tuning with the
augmented videos of UBFC-rPPG dataset, (3) training on PURE dataset, (4)
training on PURE dataset and then fine-tuning with the augmented videos of
PURE dataset, (5) training on UBFC-rPPG and PURE datasets, and (6) train-
ing on both UBFC-rPPG and PURE dataset and then fine-tuning with our Aug-
rPPG dataset. When involving the augmented data in the training stage, the
results show that we reduce the MAE by about 69%, 41%, and 12% and RMSE
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Table 5. Comparison of cross-dataset testing.

Training Testing MAE↓ RMSE↓ R↑
UBFC PURE 14.18 20.20 0.34
UBFC+Aug-U PURE 4.36 6.69 0.60

PURE UBFC 3.78 6.69 0.71
PURE+Aug-P UBFC 2.23 4.66 0.78

UBFC+PURE VIPL-HR 28.94 33.73 0.18
UBFC+PURE+Aug-rPPG VIPL-HR 25.40 31.14 0.15

by about 67%, 30%, and 8% in cross-dataset testing on PURE, UBFC-rPPG, and
VIPL-HR datasets, respectively, Note that, because VIPL-HR is a much larger
dataset and includes various head movements and illumination conditions, the
cross-dataset testing on VIPL-HR usually results in poorer performance when
training on small-scale datasets (e.g. UBFC-rPPG and PURE). Nevertheless,
when fine-tuning ErPPG on the proposed Aug-rPPG, we show that the cross-
dataset testing on VIPL-HR indeed benefits from the proposed augmented data
and reaches a better generalization capability.

4.6 Aug-rPPG Dataset

To generate the Aug-rPPG dataset, we use all the 76 training videos and the
corresponding PPG signals from UBFC-rPPG and PURE datasets as the inputs
to the proposed RErPPG-Net. The 76 input videos are from 42 subjects, where
35 subjects are from UBFC-rPPG training set and 7 subjects are from PURE
training set. By running every possible combination of the videos and PPG
signals, we generate 762 = 5776 videos of resolution 200 × 200 pixels. Note
that, because we only include the facial region of 200 × 200 pixels in the data
augmentation, our generated videos are of the same quality as the two benchmark
datasets.

5 Conclusion

In this paper, we propose the RErPPG-Net to augment existing rPPG bench-
mark datasets. The proposed RErPPG-Net includes (1) a Removal-Net to erase
any inherent rPPG signals in facial videos and (2) an Embedding-Net to embed
the specified PPG signals into the videos. To train the model from unpaired
videos, we propose a novel double-cycle consistent constraint to enforce the
Embedding-Net and the Removal-Net to learn to robustly and accurately em-
bed and remove the delicate rPPG signals. The Aug-rPPG dataset is augmented
from UBFC-rPPG and PURE datasets and includes 5776 videos with the same
resolution as the original datasets. Experimental results on UBFC-rPPG, PURE,
and VIPL-HR datasets verify the effectiveness of the proposed RErPPG-Net and
also show that the augmented data indeed improve the estimation accuracy and
the generalization capability of existing rPPG estimators.
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