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1 Network Architecture

1.1 Geometry Module

Given an input image I, our geometry module performs image-to-image transla-
tion of the input image to its corresponding normal map N̂ and ambient occlusion
map ÂO using a U-Net architecture similar to pix2pixHD [11]. We empirically
found that training geometry networks separately produces more accurate re-
sults than joint training. The losses for geometry estimation can be expressed as
follows:
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where LN is the normal loss, LAO is the ambient occlusion loss and V gg is the
Vgg loss. AO is the ground truth of ambient occlusion map and N is the ground
truth of normal map. λgeo is the weight factor and λgeo = 5. Note that we
add skip connections for the ambient occlusion map inference network to restore
more details.

1.2 De-lighting Network

Fig. 1 shows the architecture of the de-lighting network. We remove the the down-
sampling operations of the first stage in HRNet [10] directly (which also avoid
skip connections) to fuse multiscale features while maintaining high-resolution
representations. Our de-lighting network contains 6 stages and the number mod-
ules of last five stages are [1,2,2,2,2]. The “NUM BLOCKS” is set to 2 for the
last five stages and the last layer is followed by an extra 1× 1 convolution layer
to generate output. The convolution stride of the first stage is set to 1 and the
upsample mode is set to bilinear. “Ours(5 stages)” only contains 5 stages and
the rest of the network is the same as “Ours”. “HRNet(w extra parameters)” is
adpated from HRNet-W32 [10] and owns 6 stages (the number modules of last
five stages are [1,4,3,2,1]). The “NUM BLOCKS” is set to 4.
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Fig. 1. The architecture of the de-lighting network. The de-lighting network takes the
input image and inferred normal map as input, and outputs albedo at the layer with
the highest resolution of the final stage and light at the layer with the lowest resolution
of the final stage.

1.3 Full-body Refinement Network

Fig. 2 shows the architecture of the full-body shading refinement network. The
network is modified from MIMO-Unet [3] and is deepen to 4 downsampling
operations. It takes multi-scale input images as input and outputs multi-scale
refined full-body shading maps. We concatenate the ray-traced shading map
Sbody
coarse and inferred ambient occlusion map ÂO as the input to the highest-

resolution convolution layer and the downsampled ambient occlusion maps are
used as the inputs to low-resolution convolution layers. The FAM, SCM and
AFF modules are the same with the MIMO-UNet [3].

1.4 Face Refinement Network

Fig. 3 shows the architecture of the face shading refinement network. The net-

work takes the cropped face from the refined full-body shading map Ŝbody
fine and

ray-traced face shading map Sface
coarse as input, and outputs the refined face shad-

ing map. The input is resized to 128× 128. The network has 8 encoder-decoder
layers and skip connections and each layer is run through 3 × 3 convolutions
followed by LeakyReLU activations and BatchNorm (7× 7 convolutions for the
first and last layer, and the last layer is followed by an extra 3 × 3 convolu-
tion layer to generate output). The number of filters are 64,128,256,512 for the
encoder,512 for the bottleneck, and 256,128,64,64 for the decoder respectively.
Each convolution layer except the last layer is followed by a residual block and
there are 3 residual blocks in the bottleneck.
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Fig. 2. The architecture of the full-body shading refinement network.

Fig. 3. The architecture of the face shading refinement network.

2 Implementation Details

2.1 Data

We use Cycle rendering engine in Blender [1] and a Principled BSDF shader
to render dataset. For each model collected from Twindom [2], we set the pitch
angle in [0,10,20,30], yaw angle in [-32,-24,-16,-8,0,8,16,24,32], and model scale in
[0.8,1,1.1] and render the model under two different random lighting conditions
for every setting. As shown in Fig. 4, each model can produce 216 sets of images
where each set consists of the rendered image, albedo map, normal map, ambient
occlusion map and corresponding mask. The human models are collected with
well-behaved lighting conditions and the color of the texture is treated as ground
truth albedo. To obtain the ambient occlusion map, we add extra output node in
Cycles engine [1] and enable “AO pass” during rendering. In total, we generate
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Fig. 4. Examples from our human image dataset. For each human model, from left
to right are the rendered image, mask, albedo map, shading map, normal map and
ambient occlusion map.

150k sets of images for training and 20k sets of images for testing. The resolution
of the rendered images is 512 × 512. All training data are augmented using
random blur, noise and color enhancement. The Twindom dataset we used is
restricted to make public and we will release pretrained model based on the
THUman 2.0 dataset [12] for research purposes.

2.2 Training and Testing Details

We train geometry networks, de-lighting nerwork and shading refinement net-
works separately in PyTorch. For all models that require training, we use the
Adam optimizer and set learning rate to 1e-5. The learning rate for all dis-
criminators is set to 1e-6. The size of inputs for geometry networks, de-lighting
network and full-body shading refinement network is 512 × 512. For the face
refinement network, all inputs are resized to 128× 128.

All the training processes are conducted on a 4-RTX2080Tis-Server, which
consists of: 1) 3D reconstruction using PIFuHD [9], 3DMM fitting [5] and ray-
tracing take 2 days in total and 2) Training of Geometry Module, Albedo Module
and Shading refinement module (body/face) takes 2 days, 4 days and 2 days
respectively. The testing (on a single RTX2080Ti PC) efficiency is 17s per image
which includes: 120 ms for estimating albedo, 14s for 3D reconstruction, 3s for
ray-tracing and 50 ms for shading refinement.

For every 3D human model, there are two sets of rendered images under dif-
ferent lighting conditions for every pose. When testing, we use one set of images
as input and predict the relit image under the lighting condition of another set.
Therefore, we can compare the difference between the inferred relit result and
the ground truth.
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Fig. 5. Ray tracing results under the target illumination condition for the 3D model
estimated from the input image. (a) Ray-traced shading map without smoothing (b)
Ray-traced shading map with smoothing (c) Refined shading map (d) Cropped face
from the ray-traced shading map without smoothing (e) Cropped face from the ray-
traced shading map with smoothing (f) Cropped face from the refined shading map
(g) ray-traced 3DMM face shading map

2.3 Ray-traced 3D Model Smoothing

The Fig. 5 shows the checkered artifacts mentioned in Section 5.1. The resolution
of the estimated 3D model by PIFuHD [9] is low, and direct ray tracing may
produce grid-like artifacts. We use Laplacian smoothing to smooth the surface of
the estimated full-body model and improve the quality of the ray-traced shading
map. The ray-traced 3DMM face shading map is shown in Fig. 5 (g). Compared
with cropped faces from the ray-traced full-body shading maps, it owns clear
facial geometry details and shadows.

2.4 Details of Comparisons with SOTA Methods [6, 4, 7]

All input images are resized to 512× 512. Since all three methods use spherical
harmonic lighting representation (but with different orders), we extract 25 SH
coefficients for every HDR environmental lighting map, and use the first 9 SH
coefficients for testing RH [6] and RHW [4] and all 25 SH coefficients for testing
SFHR [7].

For the comparison with RH [6], we re-render our dataset using spherical har-
monics lighting and pre-computed radiance transfer(PRT) to ensure that all the
3D models and lighting are the same as in our dataset. Experimentally we find
that the model of RH [6] retrained on our larger dataset demonstrates superior
performance. For a fair comparison, the qualitative results of RH [6] come from
both the retrained model and the official pretrained model. We directly test the
released models of RHW [4] and SFHR [7] on our testing dataset. Since these
three methods require the brightness of target lighting to lie within [0.7,0.9], the
relit results will fail under harsh illuminations and large areas of white pixels
appear in the relit shading map. Therefore, we scale the pixel values of their relit
shading to [0,1] by dividing the relit shading by its maximum value instead of
clipping it to [0,1].
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Fig. 6. Relit results on real-world images. ”Reference” are the rendered images of a
virtual 3D human model under the target lighting conditions and are used to indicate
the position of shadows. The target HDR environment map is placed under the refer-
ence image.

3 Comparison with TotalRelighting [8]

We show results in comparison with TotalRelighting [8], which is trained on real
OLAT dataset. As shown in Fig. 6, the TotalRelighting may produce patchy
shadows and inaccurate albedo inference for clothing. By contrast, our method
is able to generate photo-realistic relit results with high-frequency self-shadows
(including hard cast shadows).
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