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A Overview

This supplementary material is organized as follows. Sec. B describes the imple-
mentation details of our DepthGAN, including the network structures and the
training configurations. Sec. C introduces the datasets we used for experiments.
Sec. D provides the implementation of our baseline approaches. Sec. E introduces
the rotation consistency loss used for training. Sec. F discusses how we use the
synthesized RGBD images for 3D visualization. Sec. G evaluates our switchable
discriminator on the task of depth estimation. Sec. H discusses the out-of-
distribution generation of our method. Sec. I provides more qualitative results to
demonstrate the continuous 3D control achieved by our DepthGAN.

B Implementation Details

B.1 Network Architectures

Dual-path Generator. We use the generator of StyleGAN2 [5] as the backbone
of the depth generator and the appearance renderer, which produce the 1-channel
depth and the 3-channel image, respectively. The path length regularization is
removed from both of them.
Switchable Discriminator. The switchable discriminator follows the structure
of the discriminator in StyleGAN2 [5]. Given an image, the native discriminator
employs an input layer, Γ0, to project it to the feature space. We supplement
Γ0 with an additional layer, Γ1, for the toggle between the RGB image and the
depth image. Γ1 takes in a depth image and outputs the same number of channels
as Γ0. In this way, if the input is an RGB image, only Γ0 will be activated. If
the input is an RGBD image, the outputs of Γ0 and Γ1 are aggregated using
element-wise sum. On the other hand, the architecture of depth prediction branch
is shown in Fig. S1. It uses the features at resolutions 162, 322, and 642 as
the inputs. Starting from the lowest resolution (i.e., 162) each feature is first
transformed using a small network with skip connection, then upsampled to
double the resolution, and finally concatenated onto the feature from the next
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Fig. S1. Depth prediction branch in the proposed switchable discriminator

stage. Finally, this branch outputs a k-channel probability map, formulating
depth prediction as a classification problem [3].
Codebase. Our implementation is based on Hammer [13].

B.2 Training Configurations

All the components of our proposed DepthGAN are trained in turn. When only
one part is trained, the gradients of other parts will be turned off. Our training
process is as follows: (1) The dual-path generator is updated with adversarial
loss Lg

adv. (2) The depth generator is updated with rotation consistency loss Ld
rot.

(3) The appearance renderer is updated with rotation consistency loss Lrgb
rot and

depth prediction loss Lf
dp. (4) The discriminator is updated with adversarial loss

Ld
adv, depth prediction loss Lr

dp and R1 regularization [6]. We train with Adam
optimizer and use a batch size of 64. The learning rate for both the generator
and the discriminator is 1.5e-3. The weight of the R1 regularization is 0.3 for
resolution 1282 and 0.5 for resolution 2562. {λi}4i=1 are set to 50, 0.3, 1e-3 and
0.8 at resolution 1282. At resolution 2562, {λi}4i=1,i̸=2 are set to 50, 0.001, and
0.8, while λ2 is 0.5 for LSUN bedroom and 0.4 for LSUN kitchen. The focal
length is fixed to 26mm. The angles are uniformly sampled from -15◦ to 15◦. The
whole network is trained from scratch. All the experiments run on 8 Tesla V100
GPUs for about 2-3 days.

C Datasets

We use LSUN bedroom and kitchen datasets [18] for all experiments, which
contain about 3M and 2M RGB images, respectively. Compared with object

https://github.com/bytedance/Hammer
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datasets used in prior arts [1, 8, 11], indoor scenes are far more challenging due
to their high diversity. We take the last 50k images from each dataset as the
validation set, while the rest are used for training. We utilize the pre-trained
model from [17] to predict the depth for each RGB image. The images are resized
and center-cropped to the resolutions of 128 and 256.

D Baselines

All the baselines are trained from scratch and we ensure that all the training of
baselines is converged. The field of views are the same as ours. When testing,
the range of azimuth is set to 30 degrees and the elevation is fixed to the frontal
view. The details for each baseline are as follows:
SeFa [14]. We factorize the weights in the first three layers of StyleGAN2 [5] and
find the most relevant direction that affects the pose of the bedroom or kitchen.
The pre-trained models can be found in GenForce [12]. When editing the pose,
the truncation is set to 0.8, and FID is computed on the edited images. We use
the pre-trained model [17] to estimate a depth map from the generated image
first, and then calculate the RP and RC using the predicted depth.
HoloGAN [7]. We fail to reproduce HoloGAN with the official implementation,
hence we do not report the quantitative results. The qualitative results of
bedrooms are borrowed from the original paper [7], while those of kitchens
are generated by our poorly reproduced model.
GRAF [11]. We use the official implementation of GRAF. Since we observe that
a slightly larger range of azimuth produces better results, we set the range of
azimuth to 0◦-60◦ and the elevation to 80◦-95◦ in the training phase. However,
when testing, we randomly sample the azimuth from the 30 degrees in the middle
and fix the elevation to 90◦. White background is set to false. Others are kept as
the default ones.
GRAF(D). We modify the official implementation of GRAF by adding an
extra discriminator to lead the learning of depth image generation. The new
discriminator shares the same architecture as the original one, except that the
input is changed to the one-channel depth image. We obtain the depth image
by accumulating the depth with the help of sigma value. Other configurations
are the same as those we used for GRAF. Depths are rendered from the learnt
radiance field, and then normalized to [0, 1] to match the range of ground-truth
depth.
GIRAFFE [8]. We use the official implementation of GIRAFFE. The settings
are kept the same as those for LSUN church. The depth image is obtained on the
feature volume before 2D neural rendering by accumulating the depth with the
help of sigma value. Since the output depth map is of resolution 162, we then
upsample it to the size of the input image through bi-linear interpolation.
π-GAN [1]. We use the official implementation of π-GAN. The range of azimuth
is set to −30◦-+30◦, and the elevation is fixed to 90◦. During testing, the azimuth
is sampled from the 30 degrees in the middle, and the elevation is set to 90◦.

https://github.com/genforce/genforce
https://github.com/thunguyenphuoc/HoloGAN
https://github.com/autonomousvision/graf
https://github.com/autonomousvision/giraffe
https://github.com/marcoamonteiro/pi-GAN
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White background is set to false. Other settings follow the configuration for
CARLA dataset provided by the authors.

π-GAN(D). We make modifications on the original implementation of π-GAN.
To incorporate the depth information into training, the input of the discriminator
is changed from the three-channel RGB image into the four-channel RGBD image.
Other hyper-parameters are kept the same as those we used for π-GAN. Depths
are rendered from the learnt radiance field, and then normalized to [0, 1] to
match the range of ground-truth depth.

RGBD-GAN [9]. We use the official implementation of RGBD-GAN. The range
of azimuth is set to −30◦-+30◦, while rotation angles around x-axis and z-axis
are set to zero. During testing, the azimuth is sampled from the 30 degrees in
the middle. Other settings are kept the same as the official configuration.

StyleNeRF [4]. We use the official implementation of StyleNeRF. During training,
the azimuth is randomly sampled from −30◦ to +30◦, and the elevation is fixed
to 90◦. When testing, we sample the azimuth from the middle 30 degrees. Other
settings follow the configuration provided by the authors. Due to the limited
time, we report results on LSUN bedroom [18] only.

VolumeGAN [16]. We use official implementation of VolumeGAN. The range
of azimuth is set to −30◦-+30◦, and the elevation is fixed to 90◦. During testing,
the azimuth is sampled from the 30 degrees in the middle. Other settings follow
the configuration provided by the authors. Due to the limited time, we report
results on LSUN bedroom [18] only.

E Rotation Consistency Loss

In this section, we discuss the implementation details of rotation consistency
loss. The images Ifrgbd,1 and Ifrgbd,2 are generated under angles θ1 and θ2. I

f
rgbd,2

will first be projected to the 3D space as a point cloud using the fixed camera
intrinsic parameter K. Then we rotate the point cloud around the central axis,
which passes through the center point of xz-plane and is parallel to y-axis. The
rotation angle is the difference between θ1 and θ2. The rotation axis and the
rotation angle form the rotation matrix R, which is then used to transform the
points accordingly. After the rotation, we get the new coordinates for each pixel
in Ifrgbd,2. Then, we use the grid_sample function in PyTorch to query the RGB
value in Ifrgbd,1 according to the new coordinates from Ifrgbd,2, which gives us
the rotated image If,rotrgbd,1. We get a mask M through coordinate comparison
to filter out the out-of-boundary regions simultaneously. Therefore, the output
image If,rotrgbd,1 should be the same as Ifrgbd,2 in the valid regions. The rotation
consistency loss is then calculated between If,rotrgbd,1 ◦M and Ifrgbd,2 ◦M, where ◦
denotes element-wise multiplication.

https://github.com/nogu-atsu/RGBD-GAN
https://github.com/facebookresearch/StyleNeRF
https://github.com/genforce/volumegan
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Fig. S2. Estimated depth by our switchable discriminator on the Replica dataset [15]

−15° 0° 15° 30°−30° −22.5° 22.5°

Fig. S3. Out-of-distribution generation. Recall that our model is trained by
setting the rotation range as −15◦ ∼ 15◦. At the inference stage, our approach allows
to synthesize a sample from a novel viewpoint

F 3D Visualization

To visualize the point clouds of each synthesized scenes, we first project each
generated RGBD images the 3D space as point clouds using a fixed camera
intrinsic parameter K. Then, we use ICP registration [10] implemented in
Open3D [19] for point cloud registration. Finally, we fuse these point clouds into
one point cloud and show it from different viewpoints in Fig. 1 of the submission.

G Depth Estimation

Though depth estimation is not under the main scope of this work, we evaluate
the switchable discriminator on Replica dataset [15] to validate its transferability.
We get 2.36 for 10-class cross-entropy error over 10K samples provided by [2].
Some examples are visualized in Fig. S2.

H Out-of-Distribution Generation

During training, we sample the angle of rotation from −15◦ to 15◦. When
extrapolating the angle outside of that range, as shown in Fig. S3, the model can
generate the rotated geometry but lacks the 3D consistency as expected.

I More Results

More qualitative results are shown in Fig. S4 and Fig. S5. A demo video is also
available to show the continuous 3D control achieved by our DepthGAN.

https://youtu.be/RMmIso5Oxno
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Fig. S4. Qualitative results on LSUN bedrooms [18]
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Fig. S5. Qualitative results on LSUN kitchens [18]
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