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Abstract. Despite the recent advancement of Generative Adversarial
Networks (GANs) in learning 3D-aware image synthesis from 2D data,
existing methods fail to model indoor scenes due to the large diversity
of room layouts and the objects inside. We argue that indoor scenes do
not have a shared intrinsic structure, and hence only using 2D images
cannot adequately guide the model with the 3D geometry. In this work,
we fill in this gap by introducing depth as a 3D prior.1 Compared with
other 3D data formats, depth better fits the convolution-based generation
mechanism and is more easily accessible in practice. Specifically, we
propose a dual-path generator, where one path is responsible for depth
generation, whose intermediate features are injected into the other path as
the condition for appearance rendering. Such a design eases the 3D-aware
synthesis with explicit geometry information. Meanwhile, we introduce a
switchable discriminator both to differentiate real v.s. fake domains and
to predict the depth from a given input. In this way, the discriminator
can take the spatial arrangement into account and advise the generator
to learn an appropriate depth condition. Extensive experimental results
suggest that our approach is capable of synthesizing indoor scenes with
impressively good quality and 3D consistency, significantly outperforming
state-of-the-art alternatives.2

Keywords: 3D-aware image synthesis, scene synthesis, depth priors

1 Introduction

Generative Adversarial Networks (GANs) [12] have enabled high-fidelity 2D
image synthesis, but how to make a GAN model aware of 3D information remains
unsolved. Along with the recent advent of Neural Radiance Field (NeRF) [22] for
3D scene reconstruction, some attempts [4,5,13,27,35,41] propose to incorporate
NeRF into GANs to learn a 3D-aware image generator from a 2D image collection.
Instead of using 2D convolutional layers, the generator is asked to learn a point-
wise implicit function, which maps the 3D coordinates to volume densities and
colors [22,35].
1 Depth is essentially a 2.5D prior, but in this paper we use 3D for simplicity
2 Project page can be found here.

https://vivianszf.github.io/depthgan
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Fig. 1. Photo-realistic 3D-aware synthesis results on bedrooms and kitchens.
Left: Two sets of synthesized depth maps and their corresponding rendered images
from three different viewpoints. Right: Visualization of the 3D reconstruction results
(using [32] and [45]) from the synthesized samples

Although existing methods show promising results in learning 3D-aware
object synthesis, such as human faces and cars, they exhibit severe performance
degradation on indoor scene datasets, such as bedrooms and kitchens. There are
mainly two reasons. First, objects normally have a shared intrinsic structure, which
eases the difficulty of modeling 3D geometry from 2D images only. For instance,
human heads share similar shapes, and each face consists of two eyes located at
relatively defined positions. On the contrary, indoor scenes have much higher
diversity, considering the complex room layout and the interior decoration [42].
Second, existing methods assume the distribution of camera poses [26,35]. Such
an assumption is sound under the case of object synthesis because objects are
commonly placed at the center of a 2D image. Indoor scene images are usually shot
from far more diverse viewpoints, making it too challenging for the NeRF-based
approaches to handle.

In this work, we propose a new paradigm for 3D-aware image synthesis by
explicitly introducing a 3D prior into 2D GANs. Compared with the volume
renderer equipped with Multi-Layer Perceptron (MLP) [4, 27,35], GANs built on
Convolutional Neural Network (CNN) achieve much more appealing synthesis
performances [17–19], especially from the image quality and the image resolution
perspectives. Among numerous 3D data formats, such as point cloud [33, 34],
voxel [2, 7], and implicit surface [21, 29], we choose depth as our prior as it is
defined in the 2D domain and hence naturally suitable for the convolution-based
generator. In addition, there are many publicly available depth datasets [8,20,23]
and depth predictors [31,43], making depth data easily accessible in practice.

To sufficiently leverage the depth prior, we re-design the objectives of both
the generator and the discriminator in a conventional GAN. For one thing, we
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ask the generator to synthesize a 2D image accompanied by its corresponding
depth. To meet this goal, we carefully tailor a dual-path architecture, where
the appearance-path takes the multi-level feature maps from the depth-path as
the input conditions. Through such a design, we manage to explicitly inject the
geometry information into the generator. For another, unlike the conventional
discriminator that makes the real/fake decision from the 2D space, we learn a
3D-aware switchable discriminator. Specifically, it is asked to distinguish the
real and synthesized samples based on the image-depth joint distribution and,
simultaneously, predict the depth from an input image. The depth prediction is
trained on real data and further used to supervise the fake data. In this way, the
discriminator is able to gain more knowledge on the spatial layout and better
guide the generator from the 3D perspective.

We evaluate our approach, termed as DepthGAN, on a couple of challenging
indoor scene datasets. Both qualitative and quantitative results demonstrate
the sufficient superiority of DepthGAN over existing methods. For example,
we improve Fréchet Inception Distance (FID) [15] from 15.560 to 4.797 on the
LSUN bedroom dataset [44] in 256× 256 resolution. 3D visualization on a set of
synthesized images is shown in Fig. 1.

2 Related Work

GAN-based Image Synthesis. With the advent of Generative Adversarial
Networks (GANs) [12], a large number of works have been proposed to generate
high-quality photorealistic images [3, 16,18, 19]. To gain explicit control of the
images, researchers study the disentanglement of different properties such as
poses. Supervised methods [36] leverage off-the-shelf attribute classifiers or image
transformations to annotate the synthesized data and use the labeled data to
guide the subspace learning in the latent space. Unsupervised methods [14,37,46]
learn the control by analyzing the statistics or the model weights. While these
works can control the poses with the azimuth and elevation angles, the changes
may violate the consistency in the 3D space since there is no such constraint.
3D-aware Image Synthesis. Realizing that previous image synthesis methods
do not consider 3D geometry, a large number of works have started to add 3D
constraints for image synthesis. Voxel-based methods [24,25] learn low-dimensional
3D representations with deep voxels, followed by a learnable 3D-to-2D projection.
Inspired by NeRF [22], some works [4, 5, 9, 13, 27, 30, 35, 41] incorporate neural
radiance fields for 3D-aware image generation and render more consistent images.
RGBD-GAN [28] synthesizes RGBD images under two views and warps them
to each other to ensure 3D consistency. In contrast, we synthesize RGB images
conditioned on depth images with carefully designed architectures, which models
the geometry-appearance relationship better. All the works mentioned above learn
geometry and appearance from 2D RGB images alone. Due to the complexity
of 3D geometry modeling and the lack of explicit 3D information, they target
objects or well-aligned scenes and fail to generate high-quality 3D-aware images
for complex scenes like bedrooms and kitchens. On the contrary, some other
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Fig. 2. Framework of DepthGAN, consisting of a dual-path generator that takes in
two latent codes to generate the RGBD image with the appearance conditioned on
the geometry, and a switchable discriminator that produces the realness score from an
RGBD image and predicts the depth map from an RGB image. Black arrows indicate
the forward computation, while dashed arrows under different colors stand for the
back-propagation regarding different objective functions

works utilize 3D prior knowledge to facilitate the learning of 3D consistency.
Some researchers [6,40,47] select shape as the 3D prior and use the expensive 3D-
conv-based GAN to learn the geometry information, which is costly and unable
to model fine details of the shape. Others [1, 6] utilize more than one 3D prior,
such as albedo maps and normal maps, resulting in multiple 2D GANs to learn
all the 3D attributes. Instead of generating objects only, S2-GAN [39] synthesizes
indoor scenes with the help of normal maps, but it adopts the two-stage training
to learn geometry first and the appearance next. All these works either have
separate 3D and 2D discriminators to learn geometry and texture distributions
independently, or use 2D discriminators only to make the real/fake decision on
one 3D attribute or the appearance. In contrast, our discriminator is endowed
with 3D and 2D knowledge simultaneously. GSN [10] follows the NeRF rendering
structure and adds another depth channel in the discriminator to incorporate
3D priors, but it fails to generate images with a large diversity and reasonable
fidelity due to the complex rendering process, the special requirements of training
data, and the inadequacy of its discriminator.

3 Method

In this work, we propose a new paradigm for 3D-aware image synthesis via
introducing depth as a 3D prior into 2D GANs. To adequately use the depth prior,
we re-design both the generator and the discriminator in conventional GANs [12].
Concretely, we propose a dual-path generator and a switchable discriminator
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based on the recent StyleGAN2 [19] model. The overall framework is shown in
Fig. 2. For simplicity, we denote the RGB image, RGBD image, and depth image
with Irgb, Irgbd, and Id, respectively.

3.1 Dual-Path Generator

To make the generator become aware of the geometry information, we ask it to
synthesize the RGB image conditioned on the depth image. For this purpose,
we tailor a dual-path generator, consisting of a depth generator Gd and an
appearance renderer Grgb. Two latent spaces, Zd and Zrgb, are introduced to
enable the independent sampling of depth and appearance. To make sure the
appearance is properly rendered on top of the geometry, we feed the intermediate
feature maps of Gd into Grgb as the condition.
Depth Generator. To control the viewing point of the generated depth, we
uniformly sample an angle θ from [θL, θR]. Since networks tend to learn better
information from high-frequency signals [38], we encode θ with

γ(θ, t) = h(sin(θ), cos(θ), ..., sin(tθ), cos(tθ)), (1)

where t determines the maximum frequency. h : R2t → Rm stands for a non-linear
mapping, which is implemented by a two-layer fully-connection (FC) and a Leaky
ReLU activation in between. Like StyleGAN2 [19], the raw depth latent code
zd ∈ Zd is projected into a more disentangled latent space, resulting in wd ∈ Rm.
The angle information is then injected to wd through

w′
d = wd ◦ γ(θ, t), (2)

where ◦ denotes the element-wise multiplication. w′
d guides Gd on synthesizing

the depth image, Ifd , via layer-wise style modulation [19]. Note that only the first
two layers of Gd employ w′

d while the remaining layers still use wd, because only
early layers correspond to the viewing point of the output image [42].
Depth-Conditioned Appearance Renderer. Grgb shares a similar structure
as Gd with three modifications. First, the number of output channels is 3 (Ifrgb)
instead of 1 (Ifd). Second, Grgb does not take the angle θ as the input. Third, most
importantly, Grgb takes the intermediate feature maps of Gd as the conditions to
acquire the geometry information. Specifically, we first concatenate the per-layer
feature Ψi of Gd with that of Grgb, Φi. Here, i denotes the layer index. We then
transform the concatenated result with

Φ′
i = f(Ψi ⊕Φi), (3)

where ⊕ stands for the concatenation operation, and f is implemented with a
two-layer convolution. Φ′

i has the same number of channels as Φi.

3.2 Switchable Discriminator

Unlike the discriminator in conventional GANs that simply differentiates the
real and fake domains from the RGB image space, we propose a switchable
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discriminator to compete with the generator by taking the spatial arrangement
into account. This is achieved from two aspects. On one hand, D makes the
real/fake decision based on the joint distribution of RGB images and the
corresponding depths. In other words, D takes an RGBD image as the input and
outputs the realness score. On the other hand, to better capture the relationship
between the image and the depth, we ask D to predict the depth from a given RGB
image. Concretely, we introduce a separate branch on top of some intermediate
feature maps of D for depth prediction. Detailed structure of the depth prediction
branch can be found in the Supplementary Material.

To summarize, D switches between the 4-channel RGBD inputs (i.e., for
realness discrimination) and the 3-channel RGB inputs (i.e., for depth prediction).
To achieve this goal, we come up with a switchable input layer that adaptively
adjusts the number of convolutional kernels.

3.3 Training Objectives

Adversarial Loss. We adopt the standard adversarial loss for GAN training:

Ld
adv = −E[log(D(Irrgbd))]− E[log(1−D(Ifrgbd))], (4)

Lg
adv = −E[log(D(Ifrgbd))], (5)

where Irrgbd represents the real RGBD data, and Ifrgbd concatenates the generated
RGB image Ifrgb and the conditioned depth Ifd .
Rotation Consistency Loss. We design the rotation consistency loss [28] to
enhance the consistency between the synthesis from different viewpoints, i.e., θ.
Specifically, two angles, θ1 and θ2, are randomly sampled, leading to two samples,
Ifrgbd,1 and Ifrgbd,2 with the same latent codes, zd and zrgb. We fix the camera
and rotate the scene around its central axis. We assume an underlying camera
intrinsic parameter, K, which is fixed in the training process. After rotating
Ifrgbd,1 from θ1 to θ2, we will get

P (If,rotrgbd,1) = KR(θ1, θ2)K
−1P (Ifrgbd,1), (6)

where R(·, ·) denotes the rotation operation based on the depth image, Ifd,1, and
P (·) represents the coordinates of the pixels. More details are available in the
Supplementary Material.

The rotation consistency losses Ld
rot and Lrgb

rot for the dual-path generator are
then defined as

Ld
rot = ∥If,rotd,1 − Ifd,2∥1, (7)

Lrgb
rot = ∥If,rotrgb,1 − Ifrgb,2∥1, (8)

where ∥ · ∥1 denotes the ℓ1 norm.
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Depth Prediction Loss. As discussed above, besides differentiating real and
fake data, our switchable discriminator is also asked to predict the depth from
a given RGB image. Such a prediction is trained on real image-depth pairs,
and further used to guide the synthesis. Following [11], our depth prediction is
learned with a k-class classification. Thus, the depth prediction branch of D,
Dd(·), produces a k-channel output map, indicating the class probability for each
pixel. The loss function is formulated as

Lr
dp = H(Dd(I

r
rgb), I

r
d), (9)

where H(·, ·) denotes the pixel-wise cross-entropy loss. Irrgb and Ird stand for the
ground-truth pair.

In order to help the generated appearance, Ifrgb, better fit the geometry, Ifd , we
also predict the depth from the synthesized image to in turn guide the generator
with

Lf
dp = H(Dd(I

f
rgb), I

f
d). (10)

Full Objectives. In summary, the dual-path generator (i.e., Gd and Grgb) and
the switchable discriminator (i.e., D) are jointly optimized with

LGd
= Lg

adv + λ1Ld
rot, (11)

LGrgb
= Lg

adv + λ2Lrgb
rot + λ3Lf

dp, (12)

LD = Ld
adv + λ4Lr

dp, (13)

where {λi}4i=1 are loss weights to balance different terms.

4 Experiments

Datasets. We conduct experiments on LSUN bedroom and kitchen datasets [44].
Details are available in the Supplementry Material.
Metrics. We use the following metrics for evaluation: Fréchet Inception Distance
(FID) [15], Chamfer Distance (CD), Rotation Precision (RP), and Rotation
Consistency (RC). FID evaluates the quality of both the generated RGB images
and depth images. FID for depth images is obtained by repeating the one-channel
depth image to a three-channel image as input. CD measures the 3D consistency
in 3D space, which computes the cross-view distance via warping point clouds. In
addition, we propose another two metrics for evaluation. (1) Rotation Precision
(RP) is aimed to measure the accuracy of the angle of rotation given two generated
images from different views of the same scene. The formulation is the same as
Eq. (7), and it evaluates depths in the range [0, 1]. (2) Rotation Consistency
(RC) targets at the rotation consistency evaluation and has the same format as
Eq. (8). It evaluates RGB images with pixel range normalized to [-1, 1]. Since
our discriminator can be the role of depth estimator, in ablation studies, we also
report the depth prediction accuracy DP (Real) on real images from the test set.
Besides, we predict the depth for the synthesized RGB image by the pre-trained
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Table 1. Quantitative comparisons with existing 3D-aware image synthesis models
on the LSUN bedroom and kitchen datasets [44] under both 128× 128 and 256× 256
resolutions. FID [15] regarding RGB images and depths, rotation precision (RP), rotation
consistency (RC) and Chamfer distance (CD) are used as the metrics to evaluate the
synthesis quality and the 3D controllability. CD is reported in the order of 10−3. ↓
means lower value is better

(a) Evaluation on bedrooms

Method 128 × 128 256 × 256
FID↓ FID (D)↓ RP↓ RC↓ CD↓ FID↓ FID (D)↓ RP↓ RC↓ CD↓

2D-GAN SeFa [37] 8.650 - 0.572 1.027 - 7.190 - 0.401 1.110 -
RGBD-GAN [28] 28.694 370.526 - - - 59.026 360.858 - - -
GRAF [35] 63.940 184.379 0.218 1.149 44.321 66.856 188.368 0.219 0.880 66.702
GRAF(D) [35] 158.503 107.653 0.135 1.108 17.590 194.260 156.081 0.154 1.193 52.176
GIRAFFE [27] 48.412 422.634 - - - 44.232 420.681 - - -
π-GAN [4] 28.128 201.722 0.033 0.572 0.744 48.926 174.744 0.052 0.597 3.403
π-GAN(D) [4] 30.932 101.739 0.022 0.420 0.355 49.640 94.196 0.036 0.510 1.201
StyleNeRF [13] 13.675 284.088 0.140 1.026 0.841 15.560 288.379 0.159 1.055 2.352
VolumeGAN [41] 18.121 175.963 0.088 0.707 1.599 17.345 164.190 0.110 0.672 4.038
DepthGAN (Ours) 4.040 18.874 0.040 0.530 0.461 4.797 17.140 0.025 0.456 0.339

(b) Evaluation on kitchens

Method 128 × 128 256 × 256
FID↓ FID (D)↓ RP↓ RC↓ CD↓ FID↓ FID (D)↓ RP↓ RC↓ CD↓

2D-GAN SeFa [37] 11.530 - 0.748 1.115 - 10.850 - 0.480 1.163 -
RGBD-GAN [28] 33.425 267.036 - - - 51.044 392.126 - - -
GRAF [35] 86.920 239.657 0.224 1.326 48.265 94.095 204.050 0.227 0.928 72.472
GRAF(D) [35] 139.902 157.801 0.110 0.970 19.237 244.480 142.436 0.133 0.966 52.775
GIRAFFE [27] 42.923 307.233 - - - 50.256 370.760 - - -
π-GAN [4] 29.790 398.146 0.028 0.702 0.832 41.178 398.946 0.051 0.726 3.833
π-GAN(D) [4] 46.332 112.171 0.025 0.482 0.258 77.066 104.865 0.039 0.566 1.092
DepthGAN (Ours) 5.068 17.655 0.038 0.551 0.468 6.051 25.335 0.028 0.502 0.329

depth prediction model [43], and compare it with the generated depth to form
the evaluation metric DP (Fake).
Baselines.3 We compare against seven state-of-the-art methods for 3D-aware
image synthesis: HoloGAN [24], RGBD-GAN [28], GRAF [35], GIRAFFE [27],
π-GAN [4], StyleNeRF [13] and VolumeGAN [41]. For a fair comparison, we
also incorporate depth information into existing methods by either employing
another discriminator for depth learning or changing the input/output from RGB
to RGBD image, which result in the two variants, GRAF(D) and π-GAN(D).
Another baseline is a 2D-based approach named SeFa [37], which can rotate the
scenes through interpolation in the latent space.

4.1 Quantitative Results

Tab. 1 reports the quantitative comparisons. Since RGBD-GAN does not learn
geometry at all as shown in Fig. 3 and Fig. 4, it makes no sense to evaluate it with
RP, RC, and CD. GIRAFFE fixes the background and rotates objects only, and
thus we do not report RP, RC, and CD on it. We show significant improvement
3 More details of the baselines can be found in the Supplementary Material.
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Fig. 3. Qualitative comparisons on LSUN bedroom [44] with existing 3D-aware
image synthesis models. Left: RGB images. Right: The corresponding depths. Each
scene is evenly rotated by 30 degrees to generate five samples. Zoom in for details

of image quality compared with 3D-aware image synthesis baselines in terms
of FID scores on both RGB images and depth images. When 3D-aware image
synthesis methods are given with the depth information for training, the quality
of the geometry generally improves, but the quality of the appearance decreases.
While maintaining the high quality of images, ours ensures the 3D consistency
as well. Note that while π-GAN has lower RP, RC, and CD values than ours, it
produces depth maps with simple geometry reflected by FID on depth images
and the qualitative results, which makes it easier to maintain consistency.
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Fig. 4. Qualitative comparisons on LSUN kitchen [44] with existing 3D-aware
image synthesis models. Left: RGB images. Right: The corresponding depths. Each
scene is evenly rotated by 30 degrees to generate five samples. Zoom in for details

4.2 Qualitative Results

The generated images from each baseline and our DepthGAN are shown in
Fig. 3 and Fig. 4. 2D-GANs can generate RGB images of high quality. However,
interpolation in the latent space does not guarantee 3D consistency, and thus both
the geometry and appearance can be changed during rotation. Though 3D-aware
image synthesis methods can synthesize RGB images of discernible scenes, they
generally fail to learn a reasonable geometry unsupervisedly for both the bedrooms
and the kitchens. This indicates that in the previous works, generating a visually-
pleasing RGB image does not require a good understanding of the underlying 3D
geometry. Besides, the image quality degrades significantly compared with that
of 2D GANs. With the help of ground-truth depth information, GRAF(D) and
π-GAN(D) can generate geometries of higher quality but sacrifice the quality of
the appearance. In contrast, our DepthGAN can generate images with reasonable
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Fig. 5. Geometry visualization. Left: (a, b) Original syntheses (i.e., depth and
RGB on the top row) from two different views by our dual-path generator, as well as
the extracted geometry (i.e., point cloud and rendered appearance on the bottom row).
(c, d) Two novel views through rotating (a, b). Right: Overlaying the two synthesized
geometry and visualizing them from four different views (same as those on the Left).
Zoom in for details

geometries and photo-realistic appearance simultaneously, which mitigates the
gap between the 3D-aware image synthesis and 2D GANs and surpass the recent
3D-aware image synthesis methods on scene generation as well.

We also analyze the consistency by visualizing the geometry learnt by
DepthGAN in Fig. 5, where we drag point clouds from two RGBD images
to the same view and overlay them. The overlapped point clouds on the right side
demonstrate geometry rendered from two views are consistent with each other
(see pillow, lamp, and edge of bed). Besides, they complement each other for a
more complete point cloud (i.e., fewer holes on the overlapped point clouds).

4.3 Ablation Study

We analyze the effectiveness of each component of DepthGAN. Evaluation results
are shown in Tab. 2. There is a discrepancy between the generated depth and
RGB images if there is no depth prediction loss. As such, the discriminator
struggles to lead the generator to capture a coherent relationship between the
geometry and the appearance, and all the metrics drop significantly. Without
the rotation-consistency loss on RGB images, the RGB consistency completely
depends on the conditioning and the discriminator, which forces the network to
figure out the consistency on RGB images by itself. While the network is working
hard to learn such consistency, it hinders other aspects of learning to some extent.
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Table 2. Ablation study conducted on LSUN bedroom dataset [44] under 128× 128
resolution. FID [15] regarding RGB images and depths, rotation precision (RP) and
rotation consistency (RC), depth prediction (DP) on real and fake samples are used as
the metrics to evaluate the synthesis quality and the 3D controllability. ↓ means lower
value is better

FID↓ FID (D)↓ RP↓ RC↓ DP (Real)↓ DP (Fake)↓
w/o Lr

dp, L
f
dp 4.882 26.518 0.067 0.711 - 0.317

w/o Lf
dp 5.441 24.633 0.066 0.683 1.334 0.318

w/o Lrot
rgb 5.038 24.834 0.067 0.716 1.303 0.315

w/o Lrot
d 4.504 8.315 0.152 1.196 1.279 0.311

w/o condition 24.062 119.917 0.097 1.443 1.242 0.343
w/o condition, rotation 2.793 21.225 - - 1.205 0.312
Ours-full 4.040 18.874 0.040 0.530 1.201 0.310

Fig. 6. Diverse synthesis via varying the appearance latent code zrgb, with
the depth latent code zd fixed. We can tell that all samples are with the same geometry,
benefiting from our dual-path generator that conditions the appearance generation
branch on the depth branch

To test the performance of DepthGAN without rotation-consistency loss on
depth, we allow the rotation-consistency loss on RGB images to back-propagate
the gradients to Gd, which is different from our original design. Without the
consistency loss on the rotation of depth images, there are fewer constraints on
the depth generation, resulting in a lower FID score on the generated depth
images. However, the rotation precision and consistency measurements experience
a significant drop due to the lack of explicit supervision on the depth rotation.
We also report the result without conditioning appearance features on depth
features. For discriminator, the depth prediction from a real image is preserved to
enhance the 3D knowledge within it. When rotation consistency loss is included
for training, where the generator has the same structure as RGBD-GAN [28],
the network is unable to capture the correct depth-appearance pair. If rotation
consistency loss is removed, the generator is the same with that of StyleGAN2 [19].
Although the FID score on RGB images is lower, the network fails to view the
scene from different angles directly and thus lacks 3D knowledge.
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Fig. 7. Diverse geometries via varying the depth latent code zd, with the
appearance latent code zrgb fixed. We can observe the appropriate alignment between
the depth image and the corresponding appearance, where all RGB images are rendered
with the same style

4.4 Controllable Image Synthesis

Disentanglement. With the design of the dual-path generator, the latent spaces
of the two generators are separate and thus can be sampled independently. This
allows for clear disentanglement of the geometry and appearance. Fig. 6 shows
the cases where the latent codes for depth generation are fixed, and the latent
codes are changed for varying appearance. The underlying 3D geometries are the
same for all the images within the same row while the styles keep changing. On
the contrary, images in Fig. 7 share the same style but the geometries are various,
which is brought by a fixed latent code for Grgb and different latent codes for Gd.
Linearity. To demonstrate that two latent spaces learned by DepthGAN are
semantically meaningful, we linearly interpolate between two latent codes from one
latent space and fix the latent code from the other latent space. The interpolation
results are shown in Fig. 8.

4.5 Discussion

Rotation. Although the choice of rotation axis as the central one relieves the
constraint that the camera stays in the same sphere with all scenes located on
the center, it brings a large variety of rotation distributions. Thus, during the
rotation, the newly generated view may be out of the manifold learned during
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Fig. 8. Interpolation results regarding both the depth (i.e., the top two rows) and
the appearance (i.e., the bottom row). It it noteworthy that interpolation in the latent
space is different from rotating the viewpoint, as the two depth codes for interpolation
are not guaranteed to represent the same geometry. Instead, this figure only verifies the
continuity of the latent spaces in our learned model

training, resulting in unsatisfactory images. The access to the prior distribution
of the rotation axes from real data may ease the problem. As the current rotation
range is [−15◦, 15◦], we do not take special treatment for occlusion. However,
it is an inevitable problem if the angle range is required to be larger, which we
leave for future exploration.
Ground-Truth 3D Information. The quality of the generated 3D-aware images
highly relies on the performance of the pre-trained depth prediction methods.
We notice that for some objects such as light on the ceiling and some windows
or paintings on the wall, there is no depth information available (e.g., images in
Fig. 6 and Fig. 7). This is due to the fact that the pre-trained depth prediction
model fails to predict depths for such minute details. Introducing real depth
images collected by depth sensors into the training should alleviate this limitation.

5 Conclusion

In this work, we present DepthGAN, which can learn the appearance and the
underlying geometry of indoor scenes simultaneously. DepthGAN takes depth
as the 3D prior to facilitate the learning of 3D-aware image synthesis. A dual-
path generator and a switchable discriminator are carefully designed to make
sufficient use of the depth prior. Experimental results demonstrate the superiority
of our approach over existing methods from both the image quality and the 3D
controllability perspectives.
Acknowledgement. We thank Yinghao Xu and Sida Peng for their fruitful
discussions and valuable comments.
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