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Abstract. We present a deep neural network for removing undesirable
shading features from an unconstrained portrait image, recovering the
underlying texture. Our training scheme incorporates three regulariza-
tion strategies: masked loss, to emphasize high-frequency shading fea-
tures; soft-shadow loss, which improves sensitivity to subtle changes in
lighting; and shading-offset estimation, to supervise separation of shad-
ing and texture. Our method demonstrates improved delighting quality
and generalization when compared with the state-of-the-art. We further
demonstrate how our delighting method can enhance the performance of
light-sensitive computer vision tasks such as face relighting and semantic
parsing, allowing them to handle extreme lighting conditions.
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1 Introduction

Image delighting is a form of image manipulation that aims to remove unwanted
lighting features from images to recover the underlying texture. Recovering this
underlying texture benefits many light sensitive computer vision tasks such as
face recognition, parsing and relighting. Delighting has seen much research within
these application areas, but they have only addressed the delighting problem
implicitly in their pipeline. None of them have a dedicated delighting solution
independent from their application. For example, the relighting application area
has seen rapid progress with deep neural networks able to render convincing non-
lambertian shading effects [19,31,32,41,44,48]. However, the delighting phase is
often abstracted. As a consequence, shading features present in the input image
often propagate into the output as distortions. In extreme cases, they can alter
the identity and perceived structure of portraits, affecting face recognition [3,12].

The portrait delighting problem is inherently more difficult due to the am-
biguous combination of lighting and reflectance determining the colour of any
pixel. Theoretically, supervised image-to-image translation pipelines can learn
this problem given enough labeled image pairs, but acquiring a representative
dataset for this task is laborious and expensive. As a result, most researchers are
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Fig. 1: Given a portrait image (top row), we perform delighting (bottom row):
removing undesirable lighting characteristics and reconstructing the image under
uniform lighting.

dependant on 3D renderings of scanned human subjects [21,23,36], which conse-
quently leads to poor generalization to real-world images due to oversimplified re-
flectance and geometry modelling. On the other hand, real human image datasets
available to the public suffer from either lighting or subject under-representation.
The CMU Multi-PIE dataset [14] for instance, records only 19 lighting condi-
tions for over 300 individuals, while the Extended Yale-B dataset [25] provides
64 lightings for only 38 individuals.

Even with high-quality data [32,41], many challenges still persist, particularly
for images exhibiting complex lighting features like reflections and hard shadow
boarders; these features have small pixel densities, making common pixel-wise
loss functions like ℓ1 and ℓ2 ineffective; also, these features are highly embedded
in the underlying texture we wish to preserve, making them difficult to remove
without losing high-frequency details such as freckles and facial hair. Most recent
relighting methods that utilize a delighting phase usually incorporate standard
network architectures and loss functions which do not directly address the prob-
lems of dataset sparsity or non-lambertian lighting.

We present a fully-supervised portrait delighting method that takes an upper-
body portrait lit under an arbitrary illumination, and outputs its reconstruction
under uniform white lighting (see Fig. 1).

We localize high-frequency lighting effects in our training data using a guided-
filter technique, and incorporate these into our training pipeline using a masked
loss function inspired by [19] to emphasize small but visually significant regions
of the image.

We estimate a shading offset image, which is the difference between the input
image and the ground-truth de-lit image. This facilitates learning of lighting
features directly, and greatly improves colour consistency. We also synthesize
soft-shaded images from our training data and utilize them in training, applying
a small regularization loss to their outputs. This alleviates our dataset bias
toward directional lightings, allowing us to remove both hard and soft shadows.
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We demonstrate how our framework benefits the applications of semantic parsing
and relighting.

To summarize, our main contributions are as follows:

– A novel portrait delighting method that can recover the underlying texture of
portraits illuminated under a wide range of complex lighting environments.

– Three novel loss functions: shading-offset loss, soft-shadow loss and masked
loss that improve our models robustness to unseen lighting environments
while preserving image detail.

– Our delighting method can serve as a data normalization tool for improving
light-sensitive computer vision tasks such as face relighting and semantic
parsing.

2 Related Work

Much work has been made towards removing disrupting light features (e.g. dark
shadows, specularities) from faces primarily to enhance face recognition sys-
tems [6, 13], and to increase image quality [5, 30, 50]. Pioneering works in this
field propose optimization methods using Morphable Face models [2,4,7,11,43].
However, relying on parametric models limits their ability to capture non-facial
or high-frequency details. Recent deep-learning methods tackle this problem us-
ing feature-wise perceptual losses [26] or closed-loop GANs [15] to recover facial
details. A drawback of all these methods however is that they either focus ex-
clusively on face regions, perform only one aspect of the delighting process (e.g.
shadow removal [50], camera-flash removal [5]), or use front-facing illumination
as the ground-truth [15,30], ignoring the sharp reflections this causes.

GAN inversion methods [1, 10, 27, 46] enable face editing by projecting im-
ages into the latent space of a pre-trained GAN, disentangling lighting, identity,
pose and expression attributes such that they can be independently manipu-
lated. These methods can effectively remove sharp shadows and specular reflec-
tions, but their reconstructions don’t often preserve image content that isn’t
constrained by editing attributes, particularly high-frequency details such as
freckles, and non-face components like clothing.

Intrinsic decomposition methods delight by disentangling face [34, 36, 37] or
full-body [21, 23] images into geometry, albedo, and lighting via separate con-
volutional neural networks, where relighting can be performed by re-rendering
with modified lighting. Estimation errors usually occur, such as when specular-
ities become embedded in the albedo, or when hard shadows are predicted as
geometry features. This becomes a bigger problem when relying on synthetic
training data with simplified reflectance models, so Sengupta et al. [36] pro-
posed a semi-supervised learning framework using reconstruction loss on real
images, but conflation between shading, geometry and texture is still present
when there’s a significant domain-gap between the real and synthetic data.

Other deep learning methods perform portrait relighting directly [19, 40, 41,
48, 51] by co-opting standard encoder-decoder architectures like U-Net [35]. In
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this manner, both the delighting and relighting processes are a black box repre-
sented by network activations, with supervision applied only to the re-lit image.
While this generally leads to more stable and expressive relightings than intrin-
sic decomposition [41], the neural representation of the delighting task lacks any
meaningful form to facilitate supervision. Some researchers attempt to supervise
the delighting process by imposing feature-space losses on the network bottle-
neck [48,51]. While this helps recover global details such as colour and identity,
it often preserves local artifacts such as those caused by facial shadows.

The most recent relighting methods utilize an explicit delighting phase as a
preliminary step [31,32,44], which is the inspiration for our work. Pandey et al.
[32] use a least-squares GAN [28] with VGG-perceptual loss [20] in their albedo
prediction for accurate detail reconstruction, but colour inconsistencies arise
when presented with data unseen in training (e.g. different clothing patterns).
Wang et al. [44] supervise the delighting process by predicting the source light-
ing and a face-parsing map for more robust texture recovery, but their method
struggles to remove high-frequency shading artifacts caused by strong directional
light.

3 Method

This section overviews how we synthesize training images (Sec. 3.1), and inte-
grate them into our delighting pipeline (Sec. 3.2 to Sec. 3.5).

3.1 Data Processing

We modify the Multi-PIE dataset [14] to synthesize our training data for portrait
delighting. We chose this dataset as it is the largest publicly available dataset
of real subjects. While other datasets capture more lighting directions [13, 38],
they lack diversity in terms of pose, expression, and clothing. Fig. 2 illustrates
our full data processing pipeline.

Each static image in the Multi-PIE database was captured under 19 illumi-
nations; 18 directional flashes, and one non-flash image (room lights only). We
first remove the effects the room lights have on our flash images (details are
described in the supplementary document), resulting in 18 one-light-at-a-time
(OLAT) images [41] (see Fig. 2 (b)), where the target de-lit image (Idlt) is the
average over all our OLAT images, with added luminance from our non-flash
image. From this, we perform foreground masking and face-parsing. (see Fig. 2
(e)).

We stress that the de-lit image Idlt is different from an albedo image. The
difference is that the de-lit image contains subtle light occlusions on non-convex
geometric areas such as the ears, nose, and clothing.

To render input images, other learning based methods [32, 41, 44, 48] used
Image Based Lighting (IBL). But the mostly front-facing point lights used in
Multi-PIE prevent us from adequately sampling 360◦ environment maps. We
instead approximate environment illuminations using a weighted average of two
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Fig. 2: Our data processing pipeline

OLAT images, each tinted with different colour temperatures (see Fig. 2 (d))
similar to the VIDIT dataset [18]. This colour assumption in reasonable, as it
covers the majority of light found in the real world. High-intensity light images
were generated in the same manner by increasing the image brightness, and
colour adjusted versions of the de-lit, and room-light-only images were also added
to the dataset.

We chose a sample of 140 subjects (70 male, 70 female) under two arbitrary
poses, expressions and clothing, producing 240 unique images (220 for training,
20 for testing). We use 1,293 lighting conditions for the training set, and 1,180
for the test set, producing 284,460 images for training, and 25,860 for testing.
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Fig. 3: Overview of our network structure. We predict a shading-offset via a
separate decoder during training. All convolutions have a kernel size of 3, and
are followed by Instance normalization [42] and PReLU activation [17]. Tanh
activations are used to produce final outputs.
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3.2 Basic Architecture

We train a U-Net [35] based CNN to estimate the ground-truth de-lit image Idlt
from a foreground-masked upper-body portrait Isrc by minimizing a perceptual
loss term Lperc, which based on previous works [20, 29, 32] has been shown
to recover sharp details at multiple scales. This is computed as the ℓ1 distance
between the activations of the VGG-16 network [39] pre-trained on ImageNet [9].
We also apply a small ℓ1 loss to speed up color convergence:

Lperc(A,B) =

5∑
i=1

[ 1

Ni
∥V GGi(A)− V GGi(B)∥1

]
+

0.2

M
∥A−B∥1, (1)

where A and B are images of the same subject with M number of foreground
pixels, V GGi andNi are the outputs and sizes respectively of the final activations
before the ith max-pooling layer in VGG-16. We apply this function to our de-lit
output D1(Isrc) as:

Ldlt = Lperc(Idlt,D1(Isrc)). (2)

This loss alone motivates a direct style transfer from Isrc to Idlt without neces-
sarily learning a physical separation of shading and texture, which consequently
leads to increased over-fitting to certain modalities of our training data (i.e.
lighting distribution, clothing patterns) not fully represented in real-world por-
traits. Shortcomings of this basic architecture are mitigated via our proposed
contributions in Sec. 3.3, 3.4 and 3.5

3.3 Shading Offset

We add a separate decoder branch D2 to our network to learn the difference
between Isrc and Idlt in the form of a shading-offset image: Ioff = Isrc − Idlt.
These two images differ only in their shading, so learning the difference between
them allows our encoder to learn a meaningful separation of shading and texture.
Different from some prior works that obtain their results by subtracting the
estimated offset image from the input [5, 30], we produce our result directly
via our delighting decoder D1 as this makes our model less susceptible to small
estimation errors in our shading-offset. Our network pipeline is shown in Fig. 3.

We apply perceptual loss to our offset output D2(Isrc) as:

Loff = Lperc(Ioff ,D2(Isrc)). (3)

3.4 Soft Shadowed Images

Since the light capture setup of our dataset is too sparse to represent non-
directional lighting characteristics such as soft-shadows, we approximate these
effects using a guided filter [16] technique to smooth the source image, while
preserving edges in the ground-truth image (see Fig. 2 (f)).
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Isoft =Mnose ⊙Ω(Isrc, Idlt, ϵ)+

Mmouth ⊙Ω(Isrc, Idlt, ϵ)+

Mother ⊙Ω(Isrc, Idlt, κ),

(4)

where Ω(I,R, r) is the guided filter function (I is the input image, R is the edge
reference, and r is the window radius). To preserve morphological features of the
face, we use smaller sized filters for the nose and mouth regions (ϵ ≤ κ). This
is done using the masks Mnose and Mmouth extracted from face parsing. The
resulting image approximates the effect of increasing the area of all lights in the
input image, softening sharp shadow boarders and specular highlights.

To regularize the strong influence of Ldlt and Loff , we apply a small ℓ1 loss
to the outputs of Isoft as:

Lsoft-dlt =
0.6

M
||Idlt −D1(Isoft)||1, (5)

Lsoft-off =
0.6

M
||Isoft-off −D2(Isoft)||1, (6)

where Isoft-off = Isoft − Idlt.

3.5 High-frequency Mask

Similar to [19], We emphasize sharp lighting discontinuities (e.g. shadow board-
ers, reflections) in our loss function via a weight mask W, which we generate
using the gradient difference between Isrc and its soft-shadowed version (see
Fig. 2 (g)).

a = 10 ∗max(∆Isrc −∆Ω(Isrc, Idlt, 15), 0)

b = median(a)

W = min(b+ gauss(b), 1),

(7)

where ∆ represents the sum of directional gradients along the vertical and hor-
izontal axes. For high-frequency shading features, the gradient of Isrc should be
higher than its filtered counterpart, which we store in a. Afterwards, we apply
a median filter to remove noise, and add a small Gaussian blur to increase its
receptive field to neighbouring pixels.

Our method is different from Hou et al. [19], who fit a morphable model
to the face, estimate the lighting, and perform ray-casting to produce a shadow
mask. Their method is more useful for relighting than delighting, since estimation
errors could cause the shadow mask to miss the true shadow boarder. Ours is
less vulnerable to estimation errors, and can target areas outside the face.

We compliment the high-level feature activations of Ldlt with this importance
mask:
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Lmsk =

3∑
i=1

1

Si
∥Wi ⊙

(
V GGi(Idlt)− V GGi(D1(Isrc)

)
∥1, (8)

where Wi is the high-frequency shading mask resized to fit the dimensions of
V GGi, and Si is the sum of Wi.

Our full pipeline is illustrated in Fig. 3, where the final loss is the sum:

L = Ldlt + Loff + Lsoft-dlt + Lsoft-off + Lmsk. (9)

4 Results

 (a) Input  (b) Ground-
truth

 (c) Ours  (d) TR [32]
(retrained)

 (e) EMR [44]
(retrained)

 (f) TR [32]  (g) EMR [44]

Fig. 4: Evaluation on our testing dataset. Notice how our method is the
only one to remove the scarf shadow in the middle row. A different crop of this
subject was used for EMR since their method was trained on only face regions.

4.1 Implementation and Data Setup

We implement our model in PyTorch [33], and train for 4 epochs with a learning
rate of 0.0002 using the Adam optimizer [22]. All images are resized to 256×256
resolution, with pixel values normalized to [−1, 1]. The average running time
of our network for delighting (without shading-offset prediction) is 25ms on a
NVIDIA GTX 1080 GPU.

To prepare the training data in our experiments, we apply random flips along
the vertical axis, and random cropping with window sizes chosen uniformly from
[280, 480], where 480 covers the entire image. When generating soft-shadow im-
ages in Eq. 4, the large filter radius κ is chosen randomly from [7, 35] to increase
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Fig. 5: Evaluations on in-the-wild images. Red boxes emphasize areas in
previous works improved by our method. Notice how our method provides the
most consistent results in terms of delighting and texture preservation.

robustness to different penumbra sizes, while the nose and mouth radius ϵ is
fixed at 7.

Prior Work. We compare our method with the albedo prediction modules of
two state-of-the-art methods: Explicit Multiple Reflectance Channel Modeling
(EMR) [44] and Total Relighting (TR) [32], which have demonstrated superior
performance over previous related works. TR apply VGG-perceptual loss (see
Eq. 1) on the estimated albedo, along with a Least-Squares GAN [28] discrim-
inator to remove high-frequency shading. EMR use only ℓ1 loss on the albedo,
and estimate the source illumination and a face parsing map as auxiliary tasks
to improve training stability.

Retrained models. Besides the pretrained models from prior work, we re-
trained EMR and TR on our dataset, denoted EMR (retrained) and TR (re-
trained) respectively. We based our implementations of their models on the
albedo prediction networks and loss functions described in their papers [32,44].
For EMR (retrained), We use our segmentations in Fig. 2 (e) as the ground-truth
for face parsing. and since our pipeline doesn’t utilize 360o environment maps,
we use our shading-offset decoder D2 as a substitute for their source lighting esti-
mator. This allows us to use the lighting information found in our shading-offset
images to perform this task, just as we do in our method (see Fig. 3).
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4.2 Qualitative Evaluations

In Fig. 4, we compare our results qualitatively against these two methods on our
testing dataset. From the results, we can see that our method outperforms both
EMR and EMR (retrained) in terms of shadow and specular removal (middle
and bottom rows). Our method also recovers large-scale textures, whereas TR
and TR (retrained) are prone to incorrect colour estimations as can be seen with
the magenta shirt in the top row. Although TR handles most shading effects on
the face, it still leaves shadow boarders in some extreme cases (bottom row,
(f)), while our proposed method can remove them effectively, indicating that
our method is generalized to harsh cases.

We show results on in-the-wild images in Fig. 5. Here, we see that our method
is able to delight subjects under a wide range of complex illuminations, while
also preserving important details such as clothing patterns and facial hair. Our
method handles variant conditions more gracefully than other works. For exam-
ple, TR (retrained) often removes important content details such as beards ((b)
and (d)), while EMR (retrained) preserves shadow boarders and sharp reflections
((b) and (c)), and is unstable when images contain large non-face components
(f). In (a), we demonstrate another failure case of TR (retrained) where light
is coming from behind the subject. Although this lighting condition is missing
from our dataset, our model generalizes to this case very well by the contribution
of our soft-shadow loss (see Sec. 4.4 for further insight).

4.3 Quantitative Evaluations

Table 1: Results of delighting on our testing dataset. Arrows indicate whether
loss is minimized (↓) or maximized (↑). Our method outperforms prior works on
all metrics.

Metric

Method RMSE↓ SSIM↑ li-SSIM↑ LPIPS↓
EMR (retrained) 0.047 0.940 0.949 0.047

TR (retrained) 0.056 0.934 0.948 0.048

Proposed 0.044 0.946 0.955 0.037

Quantitative evaluations on our testing dataset are shown Tab. 1, where we
compare our delighting performance with TR (retrained) and EMR (retrained)
using the following metrics: root mean squared error (RMSE), structural simi-
larity (SSIM) [45] luminance-invariant SSIM (li-SSIM) and learned perceptual
image patch similarity (LPIPS) [49] (version 0.1). Our li-SSIM is like traditional
SSIM with luminance parameter α = 0. This is meant to avoid biases to large-
scale colour variations, penalizing contrast and structural errors only. From the
results we can see that our method outperforms other works across all metrics.
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Notably, TR gains a significant improvement on the li-SSIM metric over SSIM,
but is still behind our method. These results reflect consistent improvements in
most of our qualitative images. More of our results can be found in the supple-
mentary document.

4.4 Ablation study

Our baseline model consists of our network trained using only the basic loss Ldlt

(see Eq. 2). We add each of our proposed losses onto this model to evaluate their
contributions. Quantitative results of all our ablations using our testing dataset
are shown in Tab. 2.
Shading-offset loss. We show the benefits provided by our offset decoder D2

by training an additional model with shading-offset loss Loff (see Eq. 3) added
to our baseline. Qualitative results in Fig. 6 (c) demonstrate more stable texture
recovery and light removal when using offset loss. The likely reason is that it
could make the learned latent features more discriminative between different
colour variations caused by shading and texture. In Tab 2 (Testing Dataset
block), we see that our model with offset loss performs better than our baseline
across all metrics, especially RMSE and LPIPS, indicating improved large-scale
texture recovery.

Shading-offset loss Soft-shadow loss Masked loss

(a) Input (b) w/o offset (c) w/ offset (d) Input (e) w/o soft (f) w/ soft (g) Input (h) w/o mask (i) w/ mask

Fig. 6: Ablation study on (a, b, c) shading-offset loss, (d, e, f) soft-shadow loss
and (g, h, i) masked loss. Red boxes in (h) highlight shadows.

Soft-shadow loss. We add the soft-shadow loss Lsoft-dlt + Lsoft-off (see Eq. 5
& 6) to our shading-offset ablation. While our perceptual loss in Ldlt allows
for stable delighting under harsh illumination, it can lead to over-fitting due
to the mostly front-facing directional lights from our training data, and can’t
cope with diffuse illuminations very well. From the results in Fig. 6 (f), we can
see that adding our soft-shadow regularization not only improves performance
on diffuse illumination conditions (bottom row), but also enables our model to
recognize rare edge cases such as in the top row, where we observe that strong
light diffractions through the hair and around the left cheek are removed.

To better quantify the benefits of our soft-shadow regularization, we create a
new testing dataset (dubbed as Alt. Lighting) using the face relighting method
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of Hou et al. [19] to obtain sufficiently variant testing samples. The de-lit images
from our original testing dataset were relit under 13 lighting conditions from a
wide range of angles not seen in our training dataset. Quantitative results in
Tab. 2 (Alt. Lighting block) demonstrates how our soft-shadow loss improves
robustness to these conditions, particularly on the RMSE and LPIPS metrics.
Masked loss. We add our masked loss Lmsk (Eq. 7) to our soft-shadow abla-
tion. As the results in Fig. 6 (i) show, our masked loss improves the removal
of complex shadows that are intertwined with clothing features. It is notewor-
thy that although the model without Lmsk can handle a wide-range of harsh
illumination conditions situated around the face area, abnormal cast shadows,
particularly around the torso are often preserved. By adding extra importance
to these regions via Lmsk, our model reduces the rate at which they get pre-
served in the result. Quantitative results in Tab. 2 show that our model without
Lmsk outperforms our proposed method on most metrics, although we can see
the benefit of Lmsk in our testing cases visually. This could mean the weighted
mask creates a bias towards these relatively small regions in the loss function,
at the expense of larger image structures.

Table 2: Ablation results on our loss functions. Lsoft = Lsoft-dlt + Lsoft-off . We
evaluate against two datasets: Testing Dataset (left block) and Alt. Lighting
(right block), where our testing dataset is the same one used in Tab. 1.

Metric

Testing Dataset Alt. Lighting

Method RMSE↓ SSIM↑ LPIPS↓ RMSE↓ SSIM↑ LPIPS↓
(A) Ldlt 0.056 0.943 0.042 0.040 0.979 0.052

(B) (A)+Loff 0.046 0.949 0.035 0.041 0.979 0.052

(C) (B)+Lsoft 0.046 0.949 0.035 0.026 0.985 0.033

(D) (C)+Lmsk 0.044 0.946 0.037 0.026 0.984 0.037

4.5 Edge Cases

While the Multi-PIE [14] dataset exhibits much diversity in terms of clothing,
expression and identity, it nonetheless has significant domain biases such as a
95% European/Asian demographic captured under mostly front-facing direc-
tional lightings. This can lead to failure cases when presented with dark skin
albedos, and challenging illuminations such as light coming from extreme an-
gles or shadows cast by foreign objects. In this section, we offer a qualitative
evaluation on these under-represented cases.

We present our evaluation on people with dark skin in Fig. 7 (a-c). From the
results, we can see that our method is capable of recovering dark skin textures,
although noticeable lightening is observed.
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Dark skin-tone evaluation Challenging shading evaluation 

(a) (b) (c) (d) (e) (f)

Fig. 7: Edge cases: Our results on images under-represented in our training
data. Source images of (d) & (e) are from the evaluation dataset of [50].

In Fig 7 (d-f), we demonstrate our results on (d, e) irregularly shaped shad-
ows, and (f) lighting from predominantly behind the subject. While no such
images were present in our training data, our model nonetheless generalizes to
these cases surprisingly well with a few minor artifacts.

5 Applications

(a) Input (b) Relight 1 (c) Relight 2 (d) Relight 3

Fig. 8: Relighting. The results of face relighting [19] (top row) before and (bot-
tom row) after our delighting step.

Face Relighting. Fig. 8 illustrates the benefits of our delighting as a prepro-
cessing step for other relighting methods. Through our shadow removal and
colour normalization, we achieve more natural looking results on HDRI environ-
ments. Relighting is performed using the method of Hou et al. [19], which we
adapt for environment map renderings by taking a weighted sum of 512 unique
illuminations (similar to [8]).
Face Parsing. Fig. 9 illustrates the importance of delighting when performing
semantic segmentation on portraits. Our model offers significant performance
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(a) (b) (c) (d)
0, bck

1, skin

2, eyebrows

3, eyes

4, glasses

5, ears

6, earings

7, nose

8, mouth

9, lips

10, neck

11, neck_l

12, cloth

13, hair

14, hat

Fig. 9: Face Parsing: Here we show (a) the input image with (b) its semantic
parsing output, and (c) our de-lit image with (d) its semantic parsing output.

gains to this task by enhancing the visual clarity of glasses, eyes and mouth
regions. Also noteworthy is the neck shadow (middle-row, (a)), where without
delighting, the neck region outside is classified as clothing (middle-row, (b)).
The face parser used is a BiSeNet model [47] trained on the CelebAMask-HQ
dataset [24].

6 Conclusion

We propose a deep neural network for delighting portrait images under a wide
range of illumination conditions. Texture recovery and generalization is improved
via estimating shading-offset images, using soft-shadow variants of the input,
and our weighted loss function. Each contribution greatly improves delighting
performance over the previous work in terms of removing shading features and
preserving image content. We tested our model as a useful preprocessing tool for
other computer vision tasks.

Failure cases can arise due to biases in the training data as outlined in Sec.
4.5, so future work must consider fairness in terms of physical traits and lighting
variations when creating and using datasets. To prevent softening of dark tex-
tures (Fig. 7 (f)), future work can also focus on estimating global image statistics,
such as ambient light intensity, which will place a lower bound on the darkest
regions of the image caused by shading.
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