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In this supplementary document, we provide i) derivations of the optimization
on rigid transformation flow and optimal transport flow using Sinkhorn divergence,
and ii) additional morphing results rendered in different views.

1 Sinkhorn Divergence and Morphing Flows

Sinkhorn divergence [2, 3] is a popular metric for comparing distributions in the
form of regularized optimal transport. Given two positive, unit-mass measures
γ, β ∈ M+(X ) on some feature space X , the Sinkhorn divergence with parameter
ε is expressed as

SDε(γ, β) = OTε(γ, β)−
1

2
OTε(γ, γ)−

1

2
OTε(β, β) , (1)

where OTε is an entropy-regularized optimal transport [1, 4] that can be solved
using the famous Sinkhorn algorithm. The optimal transport OTε is defined as

OTε(γ, β) = min
π1=γ,π2=β

∫
X 2

Cdπ + εKL(π | γ ⊗ β) , (2)

where KL is the Kullback-Leibler divergence. The coupled measure π ∈ M+(X 2)
has two marginals (π1, π2), and the optimization is to find the the transport
plan π that moves all the mass of γ toward β, subject to the constraints on the
two marginals that π1 = γ and π2 = β. The distance function C is defined as
C(x, y) = ∥x− y∥p and often referred to as the p–Wasserstein distance. Eq. (2)
can be optimized by taking the Sinkhorn iterations with its dual form. For
discretely sampled measures, such as γ =

∑N
i=1 γi∆xi

and β =
∑M

j=1 βj∆yj
, the

optimized OTε can be expressed as

OTε ({(γi,xi)}, {(βj ,yj)}) =
N∑

i=1

γiui +

M∑
j=1

βjvj , (3)
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where (u,v) are the optimal dual vectors with

ui = −ε log

M∑
k=1

exp

(
log (βk) +

1

ε
vk − 1

ε
C(xi,yk)

)
,

vj = −ε log

N∑
k=1

exp

(
log (γk) +

1

ε
uk − 1

ε
C(xk,yj)

)
.

(4)

Therefore, the Sinkhorn divergence between γ and β in the discrete form can be
computed as

SDε ({(γi,xi)}, {(βj ,yj)}) =
N∑

i=1

γi (ui − ai) +

M∑
j=1

βj (vj − bj) , (5)

where ai, bj are the optimal dual vectors that yield optimal OTε(γ, γ) and
OTε(β, β), the regularization terms in Sinkhorn divergence. We can minimize
Sinkhorn divergence by moving mass from xi to yj . This is achieved by taking
the derivative ∂xi SDε = γi∇ (ui − ai) = γi∇Φ(xi), where Φ is defined as

Φ(x) =− ε log

M∑
j=1

exp

[
log (βj) +

1

ε
vj −

1

ε
C(x,yj)

]

+ ε log

N∑
i=1

exp

[
log (γi) +

1

ε
ai −

1

ε
C(x,xi)

]
.

(6)

Based on Eqs. (4) and (5), if we plug xi into Eq. (6) we can get Φ(xi) = ui − ai
as expected.

In our experiment, the source and target shape representations S and T are
the collections of their opacity information and the coordinates of the respective
voxels. The representations can be expressed as sums of weighted Dirac masses

S =

NS∑
i=1

ωS
i ∆xS

i
, T =

NT∑
j=1

ωT
j ∆xT

j
, (7)

where ωS
i and ωT

j represent the normalized opacity collections α derived from VS
α

and VT
α . We aim to minimize Sinkhorn divergence SDε

(
{(ωS

i ,x
S
i )}, {(ωT

j ,xT
j )}

)
between S and T using the rigid transformation flow and the optimal transport
flow.

1.1 Rigid transformation flow

The rigid transformation flow produces an as-rigid-as-possible visual effect for
morphing. Without a definite pose between two unrelated objects, the flow
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estimates an optimal 6D transformation Ψ ∈ SE(3), with rotation R and transla-
tion z, that best aligns the shapes of the two objects. The optimization can be
formulated as

Ψ̂ = argmin
Ψ

SDε

({(
ωS
i , Ψ(x

S
i )
)}

, {(ωT
j ,xT

j )}
)
, (8)

which is optimized through gradients descent. Considering Eq. (5), the differenti-
ation of SDε with respect to Ψ is

1

ωS
i

∂Ψ SDε

({(
ωS
i , Ψ(x

S
i )
)}

,
{(

ωT
j ,xT

j

)})
= ∇Φ

(
Ψ(xS

i )
)
· ∂Ψ(x

S
i )

∂Ψ
, (9)

where Φ(·) is defined in Eq. (6) with specialization on
{(

ωS
i , Ψ(x

S
i )
)}

and{(
ωT
j ,xT

j

)}
. Using the above equations, we can update every component of

Ψ . In our experiment, we use GeomLoss [2] to calculate the Sinkhorn divergence,
and Pytorch to compute the gradient and the partial differentiation in Eq. (9).
Since the update on the rotation matrix R does not guarantee to be a rota-
tion matrix, we use singular value decomposition to normalize the updated R
in every iteration. After K iterations, we obtain an estimate Ψ̂ and the rigid
transformation flow f :

f(t) = t · (Ψ̂(S)− S) . (10)

Ψ̂(S) is also used for computing the optimal transport flow.

1.2 Optimal transport flow

The optimal transport flow deforms the source shape to the target shape using
the gradient of Sinkhorn divergence. Consider a Dirac mass located at xi, with
weight ωS

i and belonging to the transformed source shape Ψ̂(S), the optimal
transport flow related to xi can be written as

gi(t) = −t · ∂xi
SD(Ψ̂(S), T ) , (11)

for some blending weight t ∈ [0, 1]. In our experiment, the flow deforms from
rigidly-transformed source shape to target shape. The setting constrains the
deformation to happen between aligned objects, instead of deforming directly
from source to target that leads to a shattered shape. Therefore, we can formulate
Eq. (11) as

gi(t) = −t · ∂xi SDε

({(
ωS
i , Ψ̂(x

S
i )
)}

,
{(

ωT
j ,xT

j

)})
= −t · ∇Φ

(
Ψ̂(xS

i )
)
,

(12)

which can be computed by Eq. (6) with specialization on
{(

ωS
i , Ψ̂(x

S
i )
)}

and{(
ωT
j ,xT

j

)}
. The flow component gi moves xS

i from Ψ̂(S) to close to T .
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2 Morphing Results

We show in Figs. 1 to 4 more morphing results on different combinations of sources
and targets rendered in different viewing angles. For more results and multiview-
consistent visualizations please see the video. Fig. 1 shows the transition from
‘Chair’ to ‘Mic’, rendered in three different views. Fig. 2 shows morphs between
‘Lego’ and ‘Materials’ in three different views. Fig. 3 renders more views of
morphing with Synthetic–NSVF shown in the main paper. Fig. 4 demonstrates
more morphing results of scenes from Synthetic–NSVF.

Fig. 1. The morphing shows the transition from ‘Chair’ to ‘Mic’. From left to right,
the morphs have blending weights t = {0, .2, .4, .6, .8, 1}. From top to down, the images
are rendered with azimuth θ = {30°, 150°, 270°} and elevation ϕ = 30°. Note that the
weight t, the azimuth θ, and the elevation ϕ are chosen randomly and can be replaced
with different values.
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Fig. 2. The morphing shows the transition from ‘Lego’ to ‘Materials’. From left to right,
the morphs have blending weights t = {0, .2, .4, .6, .8, 1}. From top to down, the images
are rendered with azimuth θ = {30°, 150°, 270°} and elevation ϕ = 30°. Note that the
weight t, the azimuth θ, and the elevation ϕ are chosen randomly and can be replaced
with different values.
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Fig. 3. Rendering in more views of morphing results of Synthetic-NSVF shown in the
main paper. Each row presents the morphing process as in Fig. 1, but with different
azimuths. In the first and the second canvases, the rows are rendered with azimuth
θ = {30°, 150°, 270°}, from top to bottom. While in the third canvas, the rows are
rendered with θ = 60° and 240°.
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Fig. 4. More morphing results between scenes from Synthetic-NSVF. Each row presents
the morphing process as in Fig. 1, but with different azimuths. In the first and the
second canvases, the rows are rendered with azimuth θ = {30°, 150°, 270°}, from top to
bottom. While in the third canvas, the rows are rendered with θ = 60° and 240°.
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