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Layered Controllable Video Generation

Supplementary Material

This supplementary material is structured as follows. In Section A, we present
our architectural details of our models, and the implementation details of our
training/ testing procedures. In Section B, we show visual results of the frames
generated by our model under di↵erent conditions. In Section C, we show addi-
tional ablation results to prove the e↵ectiveness of our two staged training setup.
In Section D, we show soft masks could lead to degenerated results. Our video
results can be found at this website.

A Implementation Details

Architecture details. Our model consists of four main modules: the Mask Net-
work M, the Encoder E , the learnable discrete code book Z, and the Decoder D.
We summarize the details in Table 3. In total, our model has 47.8 M parameters,
and takes about 191.2 MB to store on disk.

Training Details. In all our experiments, we use the Adam Optimizer with a
fixed learning rate of 4.5⇥ 10�6, which we found empirically.

– Initial training for mask-based generation: For this stage, we train all models
for 10, 000 iterations. For experiments on the BAIR dataset, we initialize the
ratio between �bg : �fg to be 80 : 1, and reduce it by a factor of 2 for every
1, 000 iterations until this ratio becomes 5 : 1. For experiments on the Tennis
dataset, this ratio is initialized to 10 : 1 and reduced by half after 5, 000
iterations.

– Fine-tuning for controllability: In this stage of training, we drop all losses
related to the mask regularization as their gradient becomes zero (see Sec-
tion 3.2), except for Lbg. On the BAIR dataset, �bg is set to 5, and on the
Tennis dataset, it’s set to 0.5.

– Finding the “ground-truth” control signal: In Equation. 19, we use the fully
di↵erentiable transformation operation T (✓t) to approximate the mask of the
ground truth next frame using the mask of the current frame. For each frame,
we optimize the a�ne transformation matrix that’s been used to transform
m

t into m
t

c
, the optimization is performed by the ADAM optimizer for 1, 000

iterations with the learning rate of 0.1.
On the BAIR dataset, our model requires 80GB GPU memory and 40 hours
to train on 4⇥ RTX-6000 (24GB V-RAM per GPU) GPUs, and on the Tennis
daaset, the model takes 22GB GPU memory and 23 hours to train on a single
RTX-3090 (24GB V-RAM).

https://gabriel-huang.github.io/layered_controllable_video_generation/
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Table 3. Architecture details of the main modules of our model. The high-level design
follows the architecture presented in [15]. K denotes the number of entries in the code
book, nz is the dimension of each entry, h,w = (H,W )/4 and h

0
, w

0 = (H,W )/16. For
the discriminator C, we use the vanilla PatchGAN discriminator as described in [25].

Mask Network M

x 2 RH⇥W⇥3

Conv2D ! RH⇥W⇥64

2⇥{Residual Blocks + Downsample} ! Rh⇥w⇥256

9⇥ Residual Blocks ! Rh⇥w⇥256

2⇥{Upsample + Residual Blocks }! Rh⇥w⇥64

Conv2D + Sigmoid! RH⇥W⇥1

Encoder E

x 2 RH⇥W⇥3

Conv2D ! RH⇥W⇥256

4⇥{Residual Blocks + DownSample} ! Rh
0⇥w

0⇥64

Residual Block ! Rh
0⇥w

0⇥64

Attention Block ! Rh
0⇥w

0⇥64

Residual Block ! Rh
0⇥w

0⇥64

GroupNorm, SiLu, Conv2D ! Rh
0⇥w

0⇥nz

Code book Z

K = 1024
nz = 256

Decoder D

q(z) 2 Rh
0⇥w

0⇥nz

Conv2D ! Rh
0⇥w

0⇥64

Residual Block ! Rh
0⇥w

0⇥64

Attention Block ! Rh
0⇥w

0⇥64

Residual Block ! Rh
0⇥w

0⇥64

4⇥{Residual Blocks + DownSample} ! RH⇥W⇥256

GroupNorm, SiLu, Conv2D ! RH⇥W⇥3

B Additional qualitative results

Comparing with other baselines. In Figure 9 and Figure 10, we show the
comparison of the three variants of our model against other baselines that we
mentioned in the main text, on the BAIR and Tennis datasets respectively.
Noticeably on both datsets, our model achieves the most precise control over
the generated video (see how the generated motion corresponds to the ground
truth sequences), meanwhile generating one of the best frame-quality videos. For
example, CADDY fails to control the robot arm, SAVP+ controls it up to some
degree, but as shown in frames t=10 and t=15, their control is not as precise,
whereas all of our variants provide highly accurate control.
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Fig. 9. Comparing with other baselines on the BAIR dataset.
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Fig. 10. Comparing with other baselines on the Tennis dataset.

Generating videos conditioned on user inputs. In Figure 11 and Figure 12,
we show how the video generated by our model responds to the user inputs, on
the BAIR and Tennis datasets respectively. Here, for each sample, we keep
applying the same control signal (moving left/right/up/down) to the model so
that it can generate video sequences with single consistent motions.

Action mimicking. In Figure 13, we show that our method can be used to
extract the motion from a driving sequence and then apply onto di↵erent ap-
pearances (staring frames).

Control of Multiple Objects. In Figure 15, our method is able to generate
videos with multiple moving objects by overlaying individually controlled mask
sequences.

Video results. For more video results, please refer to the attached readme.html,
where we demonstrate all above mentioned results in video format, as well as
other applications of our method, such as generating videos of multi players,
real-time user controllable generation demo, and animating a single frame with
di↵erent motions.

C Additional Ablation results - Single Stage Training

As mentioned in our main text, breaking down our training procedure into two
stages is a crucial design in our setup. In stage I, our model focuses on generating
a FG/BG segmentation mask, and in stage II, we make edits to this mask to
finetune the network for controlled generation. Training the model in one single
stage wouldn’t allow us to introduce controllability, without stage II finetuning,
the model is extremely vulnerable to any changes to the mask. As shown on
Figure 14, on the top row, the model is tested using ground truth masks to
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Fig. 11. Generating videos conditioned on user inputs, BAIR dataset.
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Fig. 12. Generating videos conditioned on user inputs, Tennis dataset.



6 J.Huang, et al.

W� �� W� �� W� �� W� ��� W� ���

Fig. 13. “Mimicking”. Our model can be used to extract the motion from a driving
sequence and then apply onto di↵erent appearances (staring frames). The mask se-
quence is extracted from the driving video (first row), then applied onto two other
staring frames (third, fourth row).

generate future frames (same as single stage training setup), and the model
performed well. However, on the bottom row, when we try to use pseudo control
signals to transform the mask, then use the transformed mask to condition the
generation (same as real-world testing for controlled video generation), the model
performs poorly.
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Fig. 14. Single stage training results in poor testing performance when control is in-
troduced. Green represents GT next frame mask, orange represents generated current
frame’s mask, and purple represents transformed mask. On the top row, the model is
tested using ground truth masks to generate future frames (same as how the model
was trained). On the bottom row, the model is tested using pseudo control signals
(same as real-world testing). The performance of the single stage trained model drops
significantly when there are edits to the mask.
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Fig. 15. Generating videos of multiple players, Tennis dataset.

D Additional Ablation results - Soft Masks

As shown in Fig. 16, without mask binarization, information is leaked through
the soft masks, shifting the mask will not only a↵ect the foreground, but the
entire scene, which results in degeneration of the frame.
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Fig. 16. Soft masks result in degenerated frames.
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