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In these supplementary materials, we provide additional experiments and visual ex-
amples that show the performance of our proposal. First, in Sec. 1, we provide exper-
iments to illustrate the DEX-Face++ age misalignment mentioned in the main paper.
Second, in Sec. 2, we further describe our proposed architecture. Third, in Sec. 3, we
describe the user study in detail. In Sec. 4, we provide additional qualitative examples,
including failure cases and a discussion of examples to complete the ablation study of
the main paper. Then, in Sec. 5, we complete our comparison with the State of the Art,
including additional results. Finally, in Sec. 6, we list the licenses of the datasets used
in our experiments.

1 Age estimation correction

Our evaluation protocol uses Face++ to estimate the person’s age in the generated im-
age. However, as mentioned in the main paper, the misalignment of DEX and Face++
classifiers may bias evaluation. In this section, we illustrate how the DEX-Face++ mis-
alignment can bias evaluation.

As in previous approaches [6, 7], DEX is used at training time on the FFHQ-RR
dataset. Thus, the aging task consists in generating images that match DEX predictions.
The DEX-Face++ discrepancy may bias evaluation since an aging method that fails in
generating images corresponding to the target age could be favored if the method is
biased in the same direction as the Face++ classifier.

To visualize this discrepancy, we plot in Fig 1 the distribution of the DEX-Face++
predictions on the FFHQ-RR dataset. In the case of perfect agreement, all the blue
points would be located on the orange identity line. We also report the mean age of each
age group according to DEX (red horizontal lines). A vertical dotted line represents the
amplitude of the discrepancy. In this case, the discrepancy is especially noticeable in
older groups.

Therefore, in our evaluation protocol, we estimate the age of the original images
with Face++ and compute the mean for each group. Age MAE is then computed as the
distance between the mean group predicted age and the transformed image predicted
age.

https://orcid.org/0000-0003-3366-6047
https://orcid.org/0000-0001-6927-8930


2 Gomez-Trenado et al.

Fig. 1: DEX classifier and Face++ distribution discrepancy by age group on FFHQ-RR
test set. Color intensity denotes distribution density. The red horizontal lines represent
the mean age of each age group according to DEX.

2 Age modulation architecture
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Fig. 2: Illustration of the decoder blocks used in G . B denotes the noise broadcast
operation, and FC denotes a fully-connected layer. w1 and w2 are two learned scaling
parameters, while b1 and b2 are learned biases.

In the main paper, we describe our decoder architecture. Its architecture is based on
StyleGAN-2 [3], which achieves state-of-the-art performance in unconditional image
generation. In addition, we provide several modifications to adapt it to the aging task.
These are the use of skip connections, the active manipulation of the skip connection
through our CUSP module, and the use of two different inputs in each generator block.
The former two are thoroughly discussed in our main work. We now further discuss the
latter.



Custom Structure Preservation in Face Aging 3

An illustration of our decoder block can be found in Figure 2. Unlike [3], our de-
coder block takes three inputs: the former block output, the style embedding, and the
age embedding. Each decoder block outputs an image twice the size of its input and is
composed of two consecutive sub-blocks: the style sub-block and the age block. In the
style sub-block, the input is upscaled through bilinear interpolation. Then the upscaled
input is transformed through weight demodulation (w1) based on a linear combination
of the style embedding (si). In the second sub-block, the age embedding ãt and w2 are
used for transforming the former sub-block output. Both si and ãt are shared by every
block. After each step, 0-centered random noise B is added to the output.

3 User study

We now provide some details regarding the user study reported in the main. Each test
consisted of 48 random questions on four different topics. In total, 72 users were eval-
uated. Similarly to [4] approach this is the description prompted to the users.

In this study, you will be presented with several sets of images to choose from. We will com-
pare several AI solutions to transform a person’s age in an image, similar to widely known
apps like FaceApp. There are four kinds of questions, you’ll have to click on your chosen
image, there are no correct answers:

1. Age accuracy: From the images displayed, which one better depicts a person from the
target age group? An actual person’s picture (not shown) has been transformed to a target
age with different mechanisms. We want to know which one you think is more accurate.

2. Identity preservation: From the images displayed, which one better transforms the
shown original picture to the target age group while reasonably maintaining the per-
son’s identity? You’ll have to judge which result seems more reasonable, attending to age
transformation and identity preservation.

3. Overall better: From the images displayed, which one is overall better transforming the
age of the person depicted in the picture? Which one do you prefer? Which image seems
more pleasing?

4. Whole age progression: From the different shown age progressions, which seems more
natural and reasonable?

In case of doubt, choose the image you subjectively prefer.

From FFHQ-RR, 50 images were selected for each group (20-29, 30-39,40-49,50-
69) and transformed to target ages 25, 35, 45, 60 with each comparing method (HRFAE
[6], LATS [4], and ours), resulting in 200 original images and 2400 transformed images.
Every image from our method was obtained with CP configuration (σm, σg) = (8, 1.8).
Age translations were done from 20-29 and 30-39 to 50-69 (young to old) and from 40-
49 and 50-69 to 20-29 (old to young).

In Question-Kind 1 (QK 1) and QK 3, three randomly ordered transformed images
were presented next to a target age group. In QK 2, the original image is included.
Finally, in QK 4, besides the original image, four images showing age progression (25,
35, 45, and 60) are presented for each method.
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Fig. 3: Example outputs of the CUSP module. From left to right: 1) Input image, 2)
Matrix |B|, the absolute value of the guided backpropagation output averaged over the
RGB dimension, 3) Mask M predicted by the CUSP module.

4 Ablation Study

4.1 CUSP processing

We now provide some visualizations that motivate the proposed computation for the
mask M. Figure 3 shows the output B of the Guided backpropagation algorithm for
two input images (2nd column). We see that B is very sparse. Therefore, we apply
blur before normalization and clipping to enlarge the activated regions. In this way,
we obtain the mask in the last column. We see that the high values of the masks are
primarily located in the eye and mouth regions, while the background is associated
with very low values. This visualization shows that our CUSP module can act only on
the relevant regions in the foreground.

Furthermore, we compared our CUSP module with supervised alternatives such as
segmentation-based masking [2, 4]. Even though our predicted mask is not always accu-
rate, it has several advantages: (i) It rules out the need for extra supervision (e.g., land-
marks); (ii) CUSP with the Custom Preservation (CP) setting targets only age-specific
regions while face segmentation uniformly blurs the whole face area; (iii) When we
evaluated a segmentation model (BiSeNet trained on CelebAMask-HQ) as the CUSP
mask, it showed that the segmentation-based mask introduces new artifacts (see left ear
on Fig. 4) probably due to mask inaccuracies. Regarding CUSP, Low Preservation (LP)
setting losses background details, but CP manages to preserve the background despite
the inaccurate mask.
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Fig. 4: Qualitative evaluation of segmentation-based masking.

4.2 Architecture ablation

Figure 5 introduces the corresponding images for the qualitative ablation study made
in our main work for the architecture design. It can be observed that the final archi-
tecture (Full) retains identity, details, and gender better than the alternatives, even in
challenging examples such as the second image.

On the other hand, in Figure 6, the images corresponding to the masking strategy
ablation are shown. Even though the differences are subtle, the class-independent ap-
proach presents fewer artifacts while preserving details and identity better.
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Fig. 5: Ablation study: impact of the skip connections (SC.) and the style encoder
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Fig. 6: Ablation study: impact of the masking strategy used in CUSP.
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4.3 Additional quantitative results

In this section, we quantitatively study the impact of the blurring approach. We compare
four approaches: the three masking configurations employed in the experiments of the
main paper (HP, CP, and LP) and a Global blur approach that uniformly blurs all images
during training. This Global blurring approach is equivalent to setting σm to 0 and σg

to 9. Qualitative results are reported in Table 1.

Table 1: Blurring approach ablation on the FFHQ-RR test set. CUSP HP (High preser-
vation), CP (Custom preservation), and LP (Low preservation) are run with (σm, σg) =
(0, 0), (σm, σg) = (8, 1.8) and (σm, σg) = (8, 4.5) respectively. Global blur is trained
and run with (σm, σg) = (0, 9).

Reconstruction Age translation
LPIPS (×10) Age MAE Mean FID

Global blur 1.56 5.84 109.03
CUSP - LP 1.09 6.07 104.44
CUSP - CP 0.78 6.29 104.63
CUSP - HP 0.71 9.05 106.78

It shows that the two models with lower structure preservation (Global blur and
LP) obtain the best age translation scores, while their high reconstruction error (i.e.,
LPIPS) shows that the details of the images are not preserved. On the contrary, CUSP-
HP achieves better reconstruction at the cost of worse age translation scores. Our CUSP
model with Custom blur parameters leads to a satisfying trade-off between reconstruc-
tion and age translation.

These experiments again justify the usefulness of letting the user the possibility to
choose its own trade-off at inference time, as well as the use of different values for σm

and σg .

4.4 Additional qualitative results

We now qualitatively evaluate the three masking configurations employed in the exper-
iments of the main paper (HP, CP, and LP). Results on the FFHQ-RR dataset are shown
in Figs. 8 and 7 for two different settings, old to young and young to old respectively.
Similar to the main paper, these results show that the high structure preservation variant
preserves the face shape and hair growth. Meanwhile, the lower structure preservation
allows stronger modifications of the face. We can see that the intermediate model with
custom preservation achieves a satisfying trade-off.

Finally, both CP and LP are evaluated on six different target ages and two CUSP
configurations in Figs. 9 and 10 on the FFHQ-RR dataset. Again, we see that lower
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Fig. 7: Qualitative study of the impact of the kernel value in CUSP at test time on
young (lower than 30) to old (60). We compare images obtained with High, Low, and
Custom structure preservation (referred to as LP, HP, and CP). HP:(σm, σg) = (0, 0);
CP:(σm, σg) = (9, 0); HP:(σm, σg) = (9, 9). The second column shows the mask
estimated by our CUSP module with a color scale from blue (for 0) to yellow (for 1).
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preservation (i.e., LP) applies strong modifications to the images to match the target
age at the cost of lower preservation of identity (e.g., see hairs in the first row of 10)

4.5 Failure cases

In Fig. 11, we show some failure cases. These images present noticeable artifacts. We
observe that these artifacts appear mainly in the presence of white beards. The CUSP
mask does not entirely select beards (see the second row). This behavior might indi-
cate an inherited bias from IMDb-Wiki, where white beards can be rare in celebrities’
pictures.

In these images, we also see some saturation artifacts similar to those described in
[3]. Even though we employ Weight demodulation [3] that is aimed at solving this issue,
we observe that some artifacts remain.

5 Comparison with State-of-the-Art

We now report additional qualitative comparison with State-of-the-Art. We report sep-
arate comparisons with HRFAE and LATS as in the main paper.

5.1 Comparison with HRFAE

In Fig. 12, we show some additional comparisons with HRFAE on the FFHQ-RR
dataset using the CUSP CP setting. These results are in line with the results reported
in the main paper. In addition, we observe that our approach is able to apply more
substantial modifications to the image to better match the target age.

We complete this comparison by showing the results obtained with our method on
the same examples previously used in [6] and using their qualitative evaluation. We
generate images varying the target age from 20 to 69. Our results are smooth, and we
observe that our proposed method is able to apply more profound changes in the case
of extreme ages.

5.2 Comparison with LATS

In Fig. 14, we show a complementary qualitative comparison with LATS on several
images. Similar to the results in the main paper, we observe that our method is on par
with LATS while having the numerous advantages detailed in the main paper.
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Pending comparison

Posteriorly to the submission of this work, [1] was published. The authors propose a
new method for age editing built upon a collection of pretrained networks and custom-
trained modules (methodology described in our main paper). Even though they inherit
the same flaws pretrained StyleGAN2 and pSp [5] have (i.e., blurry backgrounds and
low structural and identity preservation), they achieve promising deep structural age-
related transformations. For this, comparing both methods in the future should be inter-
esting.

6 Datasets licenses

Both CelebA-HQ and FFHQ are publicly available and widely used datasets. CelebA-
HQ is openly available for its use in research but has some rights reserved. FFHQ
is made available under the Creative Commons BY-NC-SA 4.0 license. Thus every
derivative (e.i., FFHQ-RR and FFHQ-LS) have the same license.
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Fig. 8: Qualitative study of the impact of the kernel value in CUSP at test time on old
(between 50 and 60) to young (25). We compare images obtained with High, Low, and
Custom structure preservation (referred to as LP, HP, and CP). HP:(σm, σg) = (0, 0);
CP:(σm, σg) = (9, 0); HP:(σm, σg) = (9, 9). The second column shows the mask
estimated by our CUSP module with a color scale from blue (for 0) to yellow (for 1).
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Fig. 9: Qualitative study of the impact of kernel values in CUSP at test time on
the FFHQ-RR test set. For each rows pair, the first corresponds to Custom struc-
ture preservation or CP (σm, σg) = (0.9, 7.2), the second to Low preservation, LP
(σm, σg) = (8.6, 7.2).
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Fig. 10: Qualitative study of the impact of the kernel value in CUSP at test time on the
FFHQ-RR test set. For each rows pair, the first corresponds to Custom structure preser-
vation (σm, σg) = (0.9, 7.2), the second to Low preservation (σm, σg) = (8.6, 7.2).
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Fig. 11: From left to right: Input image, M Mask, and target age 25. The resulting im-
ages are obtained with the CUSP CP setting (σm, σg) = (8, 1.8) on FFHQ-RR.
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Fig. 12: Qualitative comparison with HRFAE for different age targets on FFHQ-RR.
The used setting is CUSP CP (σm, σg) = (8, 1.8). The images corresponding to the
target ages are highlighted with red frames.
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Fig. 13: HRFAE comparison on FFHQ-RR for smooth progression. The target age goes
uniformly from 20 to 69.
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Fig. 14: Qualitative comparison with LATS on FFHQ-LS test set for different age tar-
gets.
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