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Abstract. In this work, we propose a novel architecture for face age editing that
can produce structural modifications while maintaining relevant details present
in the original image. We disentangle the style and content of the input image
and propose a new decoder network that adopts a style-based strategy to combine
the style and content representations of the input image while conditioning the
output on the target age. We go beyond existing aging methods allowing users to
adjust the degree of structure preservation in the input image during inference. To
this purpose, we introduce a masking mechanism, the CUstom Structure Preser-
vation module, that distinguishes relevant regions in the input image from those
that should be discarded. CUSP requires no additional supervision. Finally, our
quantitative and qualitative analysis which include a user study, show that our
method outperforms prior art and demonstrates the effectiveness of our strategy
regarding image editing and adjustable structure preservation.
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1 Introduction

Face age editing [7, 17, 39], or aging, consists in automatically modifying an input
face image to alter the age of the depicted person while preserving identity. Over the
last few years, this problem has attracted a growing interest because of its numerous
applications. In particular, it is used in the movie production industry to edit actors’
faces or in forensic facial approximation to reconstruct the faces of missing people. The
advances in deep learning methods unlock the development of fully automatic edition
algorithms that avoid hours of makeup and post-production retouching.

Recent deep learning approaches adopt an encoder-decoder architecture [3, 8, 23,
26, 39, 40, 43, 45]. The image is encoded in a latent space that can be modified de-
pending on the target age and fed to a decoder that generates the output image. The
overall network is usually trained using a combination of losses that assess image qual-
ity, identity preservation, and age matching. However, despite the success of all these
approaches, face editing remains challenging, and current methods usually fail when
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Fig. 1: The user can choose the degree of structure preservation at inference time. Facial
morphology transformations are more profound as we move to the right (lower structure
preservation).

faced with sizeable differences between the age of the person displayed in the input im-
age and the target age. Indeed, most approaches [3, 8, 39, 40, 43, 45] only superficially
modify the skin’s texture while the face’s shape is kept unchanged. These approaches
fail with significant age gaps since face shape can change significantly during a life-
time. Few methods try to go beyond some limited age gaps, but they either consider
only a tightly cropped face region [17, 39] or require specific pre-processing involving
an image segmentation step [26].

This work proposes a novel framework that allows profound structural changes in
facial transformations. This framework achieves a realistic image transformation with
age gaps that imply changes in head shape or hair growth. In addition, we argue that the
face editing task is an ill-posed problem because every person gets older in a different
and non-deterministic way: some people drastically change, while others are easily rec-
ognizable in old photographs. In this sense, we propose a methodology that allows the
user to adjust, at inference time, the degree of structure preservation. Thus, the user can
provide an image and obtain different transformations where the structure (i.e., face
shape or hair growth) is preserved at different levels. Fig. 1 shows some qualitative
results obtained with our method. Furthermore, the user can choose different degrees
of structure preservation: with high preservation, the model only changes the texture,
while with lower preservation, the shape of the face is also modified.

The contributions of this paper can be summarized as follows:

– We propose a novel architecture for face age editing that can produce structural
modifications in the input image while maintaining relevant details present in the
original image. We take advantage of recent advances in image-to-image (I2I)
translation [10, 20] and unconditional image generation [12] to design our architec-
ture. We disentangle the style and content of the input image, and we propose a new
decoder network that adopts a style-based strategy to combine the style and content
representations of the input image while conditioning the output on the target age.

– We go beyond existing aging methods allowing the user to adjust the degree of
structure preservation in the input image at inference time. To this aim, we intro-
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duce a masking mechanism, through a so-called CUstom Structure Preservation
(CUSP) module, that identifies the relevant regions in the input image that should
be preserved and those where details are irrelevant to the task. Importantly, our
mechanism for adjustable structural preservation does not require additional train-
ing supervision.

– Experimentally, we show that our method outperforms existing approaches in three
publicly available high-resolution datasets and demonstrate the effectiveness of our
mechanism for adjusting structure preservation.3

2 Related Work

Most recent approaches for face aging adopt a similar strategy based on an encoder-
decoder architecture [3, 8, 23, 26, 39, 40, 43, 45]. In these methods, the input image is
projected onto a latent space where content is manipulated before decoding the output
image. Some methods [40, 2] add an identity term to the total loss to better ensure the
preservation of the identity during the translation process. These methods principally
differ in the choice of the network architecture and the manner the latent representation
is manipulated. For instance, Wang et al. [39] introduce a recurrent neural network to
iteratively alter the image, while in [43], the latent image representation is modified us-
ing a simple affine transformation. Re-AgingGAN [23] employs an age modulator that
outputs transformations that are applied then to the decoder, and Or-El et al. [26] adopt
a multi-domain translation formulation, showing that segmentation information can be
leveraged to improve aging. In our work, we adopt an encoder-decoder framework sim-
ilar to [8, 43]. However, our approach goes beyond existing methods that generate a
single image for a given image-target age pair. Indeed, we offer the user the possibility
to adjust the degree of structure preservation during translation, and, in this way, we can
output a set of plausible resulting facial images.

Our method also leverages recent advances from the I2I translation research area.
I2I translation consists in learning a mapping between two visual domains. In the pio-
neering work of Isola et al. [11], an encoder-decoder network is trained using a dataset
composed of image pairs from the two domains. Later, many works addressed I2I trans-
lation in an unpaired setting, assuming two independent sets of images of each do-
main [6, 21, 46]. These works, of which cycleGAN [46] is a paradigmatic example,
mainly focus on introducing regularization mechanisms when training the I2I transla-
tion models. Another research direction is designing more advanced architectures to
improve image quality or obtain several possible outputs for a given input [10, 20, 47].
Disentangling style and content information has led to both higher image quality and
diversity [10, 28]. We adopt a similar strategy in order to allow custom structure preser-
vation. Thanks to this strategy, our CUPS module can act on the spatial information
passing through the content branch while preserving style information.

3 Code and pretrained models are available at https://github.com/
guillermogotre/CUSP.

https://github.com/guillermogotre/CUSP
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Style-based architectures recently attracted much attention for the problem of un-
conditional image generation. In particular, StyleGAN2 [12] is now used in many face
manipulation tasks [30, 42]. In the case of face aging, [2] uses a pretrained StyleGAN2
model [12] equipped with a pSp encoder [30], and an age classifier [32] to tailor an age
editing model with unlabeled data. In StyleGAN2, a network maps a Gaussian latent
space onto style vectors; these vectors are later combined via a convolutional network
to produce the output image. Finally, the synthesis network aggregates the style vectors
through modulation operations. We take inspiration from the StyleGAN2 generator to
design a novel decoder that combines the input style and the target age with the content
representation via weight demodulation.

Regarding the more general image editing problem, our method shares similarities
with several approaches employing masking mechanisms or attention maps to preserve
relevant parts in the input image [1, 18, 29, 38]. For instance, mask consistency is em-
ployed in [18] to improve multi-domain translations. As in our approach, masks are
estimated using the guided backpropagation (GB) algorithm [36]. In the case of facial
images, a mask is employed in GANimation [29] to different regions that should be pre-
served and those that should be modified to change the facial expression. In GANima-
tion, masks are predicted by the main network, while we employ an auxiliary network
and GB [36] to obtain the mask.

3 Proposed Method

In this work, we address the face age editing problem. Therefore, our goal is to train a
network able to transform an input image X, such that the person depicted looks like
being of the target age at. At training time, we assume that we have at our disposal a
dataset composed of I face images of resolution H ×W , such that Xi∈RH×W×3, i =
1, ..., I with their corresponding age label ai ∈ {1, ..N}. Note that the age labels
are automatically obtained using a pre-trained age classifier. Similar to previous ap-
proaches [43, 45], we employ the DEX classifier [33].

One of the main difficulties lies in modifying the relevant details in the input image
while preserving non-age-related regions. To this aim, we introduce a style-based ar-
chitecture detailed in Sec.3.1. In contrast to previous works, the CUSP module allows
the user to indicate the desired level of structure preservation through two parameters:
σm > 0 and σg > 0. These parameters act locally and globally, respectively, as de-
tailed later. The proposed CUSP module is described in Sec. 3.2. Finally, we present
the whole training procedure in Sec. 3.3.

3.1 Style-based Encoder-decoder

As illustrated in Fig. 2, our architecture employs five different networks: (1) A style
encoder Es extracts a style representation si of the input image Xi. Es discards any
spatial information via global-average-pooling at the last layer. The use of a style en-
coder allows global information to be used at any location in the decoder. (2) A content
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Fig. 2: Illustration of the proposed approach. A style encoder Es extracts a style rep-
resentation of the input image Xi. A content encoder Ec encodes spatial information.
Target age at is embedded using a multi-layer perceptron Ea. Our generator G outputs
the image X̂i by combining the input style and content representations conditioned on
the target age. Our CUSP module predicts a blurring mask M applied to the skip con-
nections to allow the user to choose a CUstom level of Structure Preservation.

encoder Ec outputs a tensor c describing the content of the input image. Contrary to Es,
the content encoder preserves spatial and local information. In our case, the use of sepa-
rated style and content encoders is justified by the fact that our CUSP module should not
affect the image style si but only the structure of the image. (3) An 8-layers fully con-
nected network, Ea, embeds the target age at: ãt = Ea(at). (4) An image generator G
estimates the output image X̂i by combining the style and content representations with
the target age embedding ãt. (5) Finally, our CUSP module allows the user to choose
the level of structure preservation. This module predicts a mask M used to act on the
skip connections between the content encoder and the decoder. More precisely, we blur
the regions indicated by the mask M to propagate only the non-age-related structural
information to the decoder.

Our image generator G is designed to combine the outputs of the style and content
encoders with the target age embedding. Its architecture is inspired by StyleGAN2 [16],
which achieves state-of-the-art performance in unconditional image generation. How-
ever, we provide several modifications to tailor the architecture to the aging task. G
comprises a sequence of elementary blocks (see Supplementary Materials for illustra-
tion). Differently from StyleGAN2, each block takes three inputs: the former block
output feature map, the style encoding si, and the class embedding ãt. Each block is
composed of two sub-blocks. In the first one, we use the style vector st to modulate
the convolution operations as in [16]. In the second one, the age embedding is used for
modulation. Up-sampling is applied to the input of the first sub-block. Similarly to [16],
random noise is summed to the feature maps between each sub-block, while scaling and
bias parameters (i.e., w and b) are learned for each sub-block.

Note that all blocks are combined following the input skips architecture of Style-
GAN2, where a layer named tRGB is introduced. Such layer predicts intermediate im-
ages at every resolution scaled and added to generate the final image. tRGB is also
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conditioned on the age embedding. A single skip connection is introduced before the
last block, contrarily to U-Net [31] that includes them in every layer.

3.2 CUSP Module

Skip connections (SC) [31] are efficient tools to provide high-frequency information
to the decoder allowing accurate reconstruction [11]. High frequencies carry accurate
spatial information that favors pixel-to-pixel alignment between inputs and outputs, as,
for instance, needed in segmentation. However, previous works [35] show they are not
suited for tasks where the input and output images are not pixel-to-pixel aligned. For
example, input and output images are aligned when the age gap is small in the aging
task. However, this assumption does not hold in every image region with significant
gaps. This misalignment is particularly predominant in areas other than the background
since facial morphology or hairstyle may change.

Therefore, we propose to control the amount of structural information that flows
through the SC. This control is obtained by blurring the feature maps going through
them. Nevertheless, every region should not be treated in the same way. For instance,
depending on the task, the user may prefer to preserve the background while blurring
the foreground to loosen conditioning on the input image in this region. Therefore, we
propose a specific mechanism to identify relevant image regions for the translation.

Mask Estimation. We employ an additional classification network C, pretrained to
recognize the age of the person depicted on an image. We use the DEX classifier [33]
again. Since DEX is pretrained on 224×224, the input image is rescaled to this resolu-
tion. Then, we apply the GB algorithm [36] to obtain a tensor B ∈ R224×224×3, where
locations with higher norm correspond to regions predominantly used by the classifier.
In other words, B pinpoints relevant regions for the age classification task. GB points
out the key areas to recognize the age and should, therefore, be modified by the aging
network. Importantly, GB is usually used to visualize the regions that influence one
specific network output (i.e., one specific class) [36]. In our case, we apply GB to the
sum of the classification layer before softmax normalization to obtain class-independent
masks. We select GB [36] over other approaches [34, 25, 37] since it is a fast, simple,
and strongly supported method for visualization.

We need to transform B to obtain a mask M∈ [0, 1]224×224. We proceed in several
steps. First, we average B over the RGB channels, take the absolute value, and apply
Gaussian blur to get smoother maps. In this way, we obtain a tensor B̃ ∈ R>0

224×224

that indicates relevant regions. To obtain values in [0, 1], we need to normalize B̃. Our
preliminary experiments showed that after normalizing by twice the variance σ of B̃
(over the locations), relevant areas for the aging task are close to 1 or above. We ap-
ply clipping to bring all those important regions to 1. Formally the mask values are
computed as follows:

M = min

(
B̃

2× σ
, 1

)
(1)
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where min denotes the element-wise minimum. Next, we detail how this mask is em-
ployed in our encoder-decoder architecture.

Skip connection blurring. Assuming a feature map Fc ∈ RH′×W ′×C provided by
the content encoder Ec, we resize M to the dimension of Fc obtaining a mask M̃ ∈
[0, 1]H

′×W ′
. We then blur Fc using two different Gaussian kernels with variance σm >

0 and σg > 0. The variance σm is applied in the region indicated by M, while σg is used
over the whole feature map. The motivation for this choice is that the user can choose
to alter structure preservation locally, globally, or both. At training time, σm and σg are
sampled randomly to force the generator G to perform well for any blur parameter. At
test time, both values might be provided by the user. Formally, the blurred feature map
is computed as follows:

F̃c = M̃ ◦ (Fc ∗ km) + (1− M̃) ◦ (Fc ∗ kg) (2)

where ∗ denotes the convolution operation, ◦ is the Hadamard product, and km and kg

are the Gaussian kernels of variances σm and σg .

3.3 Overall Training Procedure

Training facial age editing models is particularly challenging since paired images are
unavailable. Therefore, similarly to [23, 26, 43], our training strategy is either focused
on reconstruction (when the target age matches the input age) or I2I translation (when
the target age is different). Also, similar to [23, 26, 43], training is performed using a
set of complementary losses described below.

Reconstruction loss (Lr). When the target age at is equal to the image age ai, we
expect to reconstruct the input image. We, therefore, adopt an L1 reconstruction loss:

Lr = ∥T (Xi, ai)− Xi∥1 (3)

where T denotes the whole aging network, which output is the scaled addition of every
tRGB block.

Age fidelity losses (LD,LC). Following [5], we use a conditional discriminator D to
asses that generated images correspond to the target age at. More precisely, we em-
ploy the discriminator architecture of StyleGAN2 equipped with a multiclass prediction
head, together with the training loss LD defined in [24].

We employ a loss LC that assesses age matching using the same pretrained classifier
C used in the CUSP module to complement the adversarial loss. Furthermore, LC is
implemented using the Mean-Variance loss [27], a classification loss tailored for age
estimation.

Cycle-Consistency loss (Lcy). Following [46], we adopt a cycle consistency Lcy to
force the network to preserve details that are not specific to the age (e.g., , background
or face identity). Lcy is given by:

Lcy = ∥Xi − T (T (Xi, at), ai)∥1 (4)
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Full objective. Finally, the total cost function can be written

min
M

max
D

λr Lr +λC LC +λD LD +λcy Lcy (5)

where λr, λC , λD, and λcy are constant weights.

4 Experiments

4.1 Evaluation protocol and implementation

Every paper employs different metrics, datasets, and tasks in the aging literature. There-
fore, we include a large set of metrics, datasets, and tasks in our experiments to allow
comparison with most existing methods.

Datasets. In this paper, we employ three widely-used, publicly available high-resolution
datasets for face aging and analysis:
• FFHQ-RR: Initially proposed in [43], this aging dataset based on FFHQ [15] com-
prises of 48K images depicting people from 20 to 69 years old. Because of this Re-
stricted age Range, we refer to this dataset as FFHQ-RR. Images are downsampled to
224×224.
• FFHQ-LS: Tis aging dataset, introduced in [26], is composed of the 70K images from
FFHQ [15], manually labeled in 10 age clusters that try to capture both geometric and
appearance changes throughout a person’s life: 0-2, 3-6, 7-9, 10-14, 15-19, 20-29, 30-
39, 40-49, 50-69 and 70+ years old. Consequently, this dataset is referred to as FFHQ-
LS because of its LifeSpan age range. The resolution of these images is 256×256 pixels.
• CelebA-HQ [13, 22]: It consists of 30K images at 1024×1024 resolution, which we
downsample to 224×224 pixels. The only age-related label in the dataset is young,
which can be either true or false.

The use of FFHQ-RR and FFHQ-LS may seem redundant since they are both based
on the FFHQ dataset, but we perform distinct experiments on both datasets to allow
comparison with existing state-of-the-art methods (which report results on at least one
of them).

Tasks. We employ two tasks to evaluate the performance:
• Young → Old: as in [43], we sample 1000 images belonging to the “young” category
and translate them to a target age of 60. This task is only performed on CelebA-HQ.
• Age group comparison: similarly to [23], we consider different age groups: (20-29),
(30-39), (40-49), and (50-69) on FFHQ-RR and additionally (0-2), (3-6), (7,9), (15,19)
on FFHQ-LS. We again sample the first 1000 test images and translate every one of
them into the central age of each of the four different age groups (25, 35, 45, and 55,
respectively).

Metrics. We choose metrics to evaluate the two main aspects of the aging task. Firstly,
the translated/generated images must preserve the content of the input image in terms
of identity, facial expression, and background. Secondly, the age translation might be
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Fig. 3: Comparison with State-of-the-art on CelebA-HQ for the Young → Old task em-
ploying a target age of 60 years old.

accurate. In particular, we adopt the following metrics:
• LPIPS [44] measures the perceptual similarity when the target age coincides with the
input image age.
• Age Mean Absolute Error (MAE). We employ a pretrained and independent age esti-
mation network to compare the predicted age with the target age given an input image.
As we already use the DEX pretrained classifier [33] at training time, we utilize Face++
API 4. Experiments show that DEX is more biased towards younger age predictions
than Face++. Therefore, reporting the MAE to the input target age at would be biased.
To compensate for this DEX-Face++ misalignment, we estimate the age of the original
images with Face++ and compute the mean for each group. We then report the distance
between the mean group predicted age and the transformed image predicted age.
• Kernel-Inception Distance [4] (KID) assesses that the generated images are similar
to real ones for similar ages. While FID [9] is adopted in [23], we adopted KID as it
is better suited for smaller datasets. We report the KID between original and generated
images within the same age groups.
• Gender, Smile, and Face expression preservation and Blurriness: Face++ provides
these metrics to evaluate input image preservation and quality. Gender, Smile, and Face
expression preservation are reported in percentages as in [43].

Implementation details. We use the same training settings as StyleGAN2-ADA [14]
with λr = 10, λC = 0.06, λD = 1, λcy = 10. The optimizer used is Adam with
lr = 0.0025 and β1 = 0, β2 = 0.99. FFHQ-RR and CelebA-HQ models are trained for
65 epochs with a batch size of 18. FFHQ-LS is trained for 140 epochs with a batch size
of 16. All experiments are run on a single Nvidia A100 GPU.

4.2 Comparison with State-of-the-Art

From our literature review (Sec. 2), we identify HRFAE [43] and LATS [26] as the
two main competing methods. Indeed, Re-aging GAN [23] cannot be included in the

4 Face++ Face detection API: https://www.faceplusplus.com/ (last visited on July
20, 2022).

https://www.faceplusplus.com/
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Fig. 4: Qualitative comparison with
HRFAE. The images corresponding
to the input ages are highlighted with
red frames.

Fig. 5: LATS comparison for different age tar-
gets. The images corresponding to the input
ages are highlighted with red frames.

Table 1: User study on four different aspects of image aging comparing CUSP.
Age accuracy Identity preservation Overall quality Natural progression

20-29 50-69 Added 20-29 50-69 Added 20-29 50-69 Added -

CUSP 60.2 72.9 66.6 50.8 63.7 57.3 55.8 67.7 61.8 60.6
HRFAE [43] 17.5 15.6 16.6 24.4 24.0 24.2 21.7 20.6 21.1 24.9
LATS [26] 22.3 11.5 16.9 24.8 12.3 18.5 22.5 11.7 17.1 14.5

comparison since neither the code nor the age classifier used for evaluation is publicly
available. Since HRFAE and LATS report experiments on different datasets and follow
different protocols, we perform experiments using the two tasks previously described.
First, we follow HRFAE [43], which employs the Young → Old task on CelebA-HQ.
In this case, the performance of FaderNet [19], PAG-GAN [41], IPC-GAN [40], and
HRFAE (on 1024×1024 resolution images) is reported in [43] and is included in our
experimental comparison. Second, we employ the age group comparison task to allow
better comparison with LATS [26] on the most challenging FFHQ-LS dataset. Indeed,
since no automatic quantitative evaluation is reported on the FFHQ-LS in [26], we chose
the age group comparison task that provides richer analysis than the Young → Old task.

User study. We conducted a study on 80 different users comparing CUPSP with HRFAE
[43] and LATS [26]) on the young-to-old and old-to-young tasks on FFHQ-RR. Simi-
larly to [26], we asked about user preferences regarding identity preservation, target age
accuracy, realism, the naturalness of the age transition, and overall preference.

As seen in Table 1, CUSP outperforms HRFAE [43] and LATS [26] in every single
category by a large margin (CUSP was selected globally in 62% of cases, compared to
22% and 17%, respectively). Furthermore, CUSP’s results depict people of the target
age with greater accuracy while maintaining the source image identity. On top of that,
it outputs higher quality images, and the progression seems more natural and realistic.

Qualitative comparison. In Fig. 3, we show a qualitative comparison with the state-of-
the-art evaluated on the celebA-HQ dataset, where we transform the input image to the
age of 60 years old. First, we observe that Fader, PAGGAN, and IPCGAN generate im-
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Table 2: Quantitative comparison on CelebA-HQ for the Young → Old task employing
a target age of 60. CUSP HP (High preservation) is run with σm = σg = 1.8.

Method Predicted Age Blur Gender Smiling Neutral Happy

Real images 68.23 ± 6.54 2.40 - - - -

FaderNet 44.34 ± 11.40 9.15 97.60 95.20 90.60 92.40
PAGGAN 49.07 ± 11.22 3.68 95.10 93.10 90.20 91.70
IPCGAN 49.72 ± 10.95 9.73 96.70 93.60 89.50 91.10
HRFAE 54.77 ± 8.40 2.15 97.10 96.30 91.30 92.70
HRFAE-224 51.87 ± 9.59 5.49 97.30 95.50 88.30 92.50
LATS 55.33 ± 9.33 4.77 96.55 92.70 83.77 88.64
CUSP HP 67.76 ± 5.38 2.53 93.20 88.70 79.80 84.60

Table 3: Quantitative comparison with LATS on the FFHQ-LS dataset for the age group
comparison task. CUSP CP (Custom preservation) and LP (Low preservation) are run
with (σm, σg) = (8, 4.5) and (σm, σg) = (8, 8) respectively.

Age MAE Gender Preservation (%)

0-2 3-6 7-9 15-19 30-39 50-69 Mean 0-2 3-6 7-9 15-19 30-39 50-69 Mean

LATS 7.68 8.91 6.59 5.19 8.23 5.73 7.05 72.2 70.6 74.2 93.7 93.9 93.9 83.1
CUSP CP 6.89 8.26 7.67 6.70 10.67 10.86 8.51 74.5 69.3 78.1 88.3 92.1 85.9 81.4
CUSP LP 6.49 9.29 5.59 4.99 8.36 5.74 6.74 69.0 76.0 78.1 87.4 86.1 80.1 79.4

ages with important artifacts. On the contrary, HRFAE, LATS, and our approach gener-
ate consistent images with only minor artifacts. However, only CUSP produces images
that correspond to the correct target age. Other methods generate images where people
look younger than expected since they are unable to make suitable structural changes.
Furthermore, LATS operates only in the foreground, requiring a previous masking pro-
cedure; for this reason, in Fig. 3, the outputs related to LATS display a constant gray
background. In addition, CUSP can preserve identity and non-age-related details.

We also perform a qualitative comparison with the two main competitors: HRFAE
on FFHQ-RR in Fig. 4 and with LATS on FFHQ-LS in Fig. 5. We show that CUSP
achieves more profound facial structure modifications (e.g., thin face shapes that grow
wider and wrinkled skin) and hair color transformation. The age progression is smooth.
Close ages produce almost identical pictures, but global age progression seems realistic
and natural. Regarding LATS (Fig. 5), we see that we obtain similar performance while
our method has four major advantages: (1) it operates directly on the entire image and
deals with backgrounds and clothing; (2) it does not require an externally trained image
segmentation network; (3) CUSP employs a single network while LATS uses a separate
network for each gender; and (4) it offers user control as shown in our ablation study
(see Sec. 4.3).

Quantitative comparison. In Table 2, we report a quantitative comparison evaluated on
the CelebA-HQ dataset employing the Young → Old task. Every model has been trained
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on FFHQ-RR. Regarding HRFAE, we report the performance obtained with models
trained and tested at 224×224 and 1024×1024 resolutions (referred to as HRFAE-224
and HRFAE, respectively). We used the available code for LATS to train a model on this
dataset. We also report (first row) the mean age predicted by the Face++ classifier when
feeding the images of the age class 60 according to the DEX classifier used at training
time. We observe an 8.23-year discrepancy. In other words, to generate images that look
similar to those labeled as 60 at training time, we need to predict images that the Face++
classifier will perceive on average as 68.23 years old. These experiments confirm that
CUSP outperforms other methods, being the only method that substantially modifies
the image to adjust the person’s target age.

In addition, CUSP ranks second in terms of Blur, quantifying the good quality of our
images. For instance, the performance of HRFAE-224 worsens the predicted age with
respect to its 1024×1024 counterpart and deteriorates noticeably in the Blur metric,
suggesting a severe drop in the generated image quality. Interestingly, the more pro-
found and realistic transformations yielded by CUSP and LATS imply slightly worse
scores according to the preservation metrics. Indeed, preservation metrics suffer from
the increased ability to make structural changes to pictures. However, this drop in quan-
titative fidelity is not manifested in the user study or qualitative results (Figs. 5 and
4). Two hypotheses can explain this discrepancy between qualitative and quantitative
results. First, several biases can impact the results (e.g., sports clothing is replaced for
formal clothes at higher ages, and glasses appear in older targets as well). In addition,
there may also be some expression-related biases in different age groups. Second, the
CUSP module more frequently targets the image’s mouth and eye areas. Those areas
are the most related to facial expression detection, and their blurring might negatively
affect facial expression preservation.

We report in Table 3 a comparison with LATS, both trained and evaluated on the
FFHQ-LS dataset. The results support the qualitative analysis performed regarding
Figs. 4 and 5. Our proposed method is on par with LATS performance concerning the
aging task and achieves those results while preserving numerous image details. CUSP
with low preservation even outperforms LATS in terms of Mean Age-MAE. We also
notice that our approach obtains similar performance in terms of gender preservation
while employing a single model and not using gender annotations as in [26].

4.3 Ablation study

Architecture ablation. We consider four variants of our approach where we ablate the
skip connections and the style encoder5. In (i), the style encoder is not used; an Average
Pooling layerreplaces Es on top of the output from Ec. (ii) employs a style encoder
but no skip connections, while (iii) employs skip connections in every layer. Finally,
(iv) follows the proposed architecture employing skip connections in the second-to-
last layer only. In order to make an unbiased evaluation of the architecture and not the
masking operation performed by CUSP, we report the performance of CUSP with high
preservation (σm, σg) = (7.1, 0.0), as (ii) applies no masking.
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Table 4: Ablation study: impact of the
skip connections (SC.) and the style en-
coder.

LPIPS Age MAE Mean KID

(i) No style encoder 0.84 6.21 0.0163
(ii) No SC. 1.70 6.17 0.0109
(iii) SC. at every layer 1.85 6.34 0.0175
(iv) Full 0.78 6.29 0.0089

Table 5: Ablation study: impact of the
masking strategy used in CUSP.

LPIPS Age MAE Mean KID

Top-class GB 1.25 6.19 0.0145
Class-indep. (Ours) 0.78 6.29 0.0089

Results shown in Table 4 suggest that a separate style encoder, as in our Full model
(iv), yields better reconstruction (lower LPIPS) and similar aging performance (Age
MAE and Mean KID) than using a single encoder for both content and style as in (i).
Regarding skip connections, not using them leads to an important reconstruction error
(see high LPIPS) since the network cannot reconstruct the image details. However, skip
connections in every layer also results in low reconstruction performance. We hypoth-
esize that the model faces optimization issues. More specifically, adding skip connec-
tions on every layer dramatically increases the decoder’s complexity (approximately
doubling its number of parameters), making the network slower and harder to train.

Fig. 6: Impact of the kernel value: images obtained with
High, Low, and Custom structure preservation (LP, HP,
and CP). HP:(σm, σg) = (0, 0); CP:(σm, σg) = (9, 0);
HP:(σm, σg) = (9, 9). The second column shows the mask
estimated by CUSP.

Fig. 7: CUSP param-
eters and impact on
Age MAE (left) and
LPIPS×10 (right).
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CUSP module analysis. In Fig. 6, we qualitatively evaluate the impact of the kernel
values used in CUSP. We compare images obtained with Low, Custom, and High struc-
ture preservation (referred to as LP, CP, and HP), where we use kernel values ranging
from σ = 0 to σ = 9. We also display the mask M estimated by the CUSP module. We
observe that when the user provides low kernel values (i.e., higher preservation), the
shape of the face is kept, while with higher kernel values, the network has the freedom
to change its shape. The impact is clearly visible on the neck and chin of the women in
the second and last row.

The visualization of the mask shows that our approach identifies those regions that
change with age (chin, mouth, and forehead). We also quantitatively measure the im-
pact of each kernel parameter. In Fig. 7, we report the Age MAE and LPIPS while
changing the local and global blur parameters. By increasing the local blur, we can see
that CUSP achieves a significantly lower age error while keeping a small reconstruction
error. On the contrary, using global blur to improve the age performance (i.e., reduce
the age MAE) implies a substantial increase in the LPIPS metric, reflecting some loss
of details. Overall, these experiments demonstrate the conflicting nature of aging and
reconstruction performances. These observations further justify our motivation to offer
the user the possibility of controlling this trade-off, thereby demonstrating the value of
CUSP and its masking strategy. The ability to modify both σm and σg with different val-
ues allows us to achieve the same age-accurate transformation results while minimizing
the reconstruction performance drop.

We complete this analysis with an ablation study regarding the GB-based computa-
tion of the CUSP masks. More precisely, two strategies are compared: in Top-1 class,
we apply GB on the most-activated class, while in class-independent, we adopt the pro-
posed strategy of taking the sum of the classification layer before softmax. Results re-
ported in Tab. 5 demonstrate that the class-independent strategy performs best. Indeed,
using every class output from the age classifier might benefit the masking, as every
age-related feature is relevant for the translation, not only those involving its current
age.

5 Conclusions

We present a novel architecture for face age editing that can produce structural facial
modifications while preserving relevant details in the original image. Our proposal has
two main contributions. First, we propose a style-based strategy to combine the style
and content representations of the input image while conditioning the output on the
target age. Second, we present a Custom Structure Preservation (CUSP) module that al-
lows users to adjust the degree of structure preservation in the input image at inference
time. We validate our approach by comparing six state-of-the-art solutions and employ-
ing three datasets. Our results suggest that our method generates more natural-looking,
age-accurate transformed images and allows more profound facial changes while ade-
quately preserving identity and modifying only age-related aspects. An extensive user
study further confirmed this analysis. We plan to extend CUSP to other image editing
tasks in future works.
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