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Abstract. The key success factor of the video deblurring methods is to
compensate for the blurry pixels of the mid-frame with the sharp pixels
of the adjacent video frames. Therefore, mainstream methods align the
adjacent frames based on the estimated optical flows and fuse the align-
ment frames for restoration. However, these methods sometimes generate
unsatisfactory results because they rarely consider the blur levels of pix-
els, which may introduce blurry pixels from video frames. Actually, not
all the pixels in the video frames are sharp and beneficial for deblurring.
To address this problem, we propose the spatio-temporal deformable
attention network (STDANet) for video delurring, which extracts the
information of sharp pixels by considering the pixel-wise blur levels of
the video frames. Specifically, STDANet is an encoder-decoder network
combined with the motion estimator and spatio-temporal deformable at-
tention (STDA) module, where motion estimator predicts coarse optical
flows that are used as base offsets to find the corresponding sharp pix-
els in STDA module. Experimental results indicate that the proposed
STDANet performs favorably against state-of-the-art methods on the
GoPro, DVD, and BSD datasets.

Keywords: video deblurring, pixel-wise blur levels, spatio-temporal de-
formable attention

1 Introduction

In the past few years, hand-held image capturing devices, such as smartphones
and action cameras, have been pervasive in our daily life. The camera shake
and high-speed movement in dynamic scenes often generate undesirable blur in
the video. The blurry video significantly reduces the visual quality and degrades
performance in many subsequent vision tasks, including tracking [21,9], video
stabilization [20], and SLAM [17]. Therefore, it is extremely attractive to develop
an effective method to deblur videos for above mentioned human perception and
high-level vision tasks.

Unlike image deblurring, video deblurring methods exploit additional infor-
mation in the temporal domain. The key success factor of the video deblur-
ring methods is to compensate for the blurry pixels of the mid-frame with the
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Fig. 1. The overview of STDANet, which takes three adjacent frames as input and
restores the sharp mid-frame. Note that S↓

i−1, S↓
i , and S↓

i+1 are the corresponding
downsampled ground truth sharp frames of Si−1, Si, and Si+1, respectively.

sharp pixels of the adjacent video frames. Traditional video deblurring meth-
ods [12,1,3,38] often model motion blur by optical flow. Then those methods
jointly estimate the optical flow and latent frames under the constraints by
some hand-crafted priors.

Early deep learning methods [13,30,24,35] directly concatenate the multi-
frames features to restore the mid-frame based on the CNN. However, those
methods do not take full advantage of the information of the video frames be-
cause they explicitly considering the alignment of video frames. The recent main-
stream deep learning methods [25,19] align the video frames by optical flows and
directly generate the sharp frames by fusing aligned frames. However, they are
less effective for the frames whose pixels contain large displacements because
they may introduce blurry pixels that are not beneficial for blurring. EDVR [35]
computes the pixel-wise similarity in multiple frames and restores the pixels in
the mid-frame with high-similarity pixels in the video frames. However, the pix-
els of high similarity in the adjacent frames are also blurry for the blurry pixels
in the mid-frame, which are not beneficial for deblurring.

To solve these issues, we propose spatio-temporal deformable attention net-
work (STDANet), which extracts the information of sharp pixels by considering
the pixel-wise blur levels of the video frames. Specifically, STDANet is based
on an encoder-decoder network combined with motion estimator and spatio-
temporal deformable attention (STDA) module. First, the encoder extracts the
multi-features from multiple input frames. Then, the motion estimator predicts
coarse optical flows between consecutive video frames given the multi-features
generated by the encoder. After that, the estimated optical flows and the ex-
tracted features are fed to STDA module to generate the fused features by ag-
gregating the information of the sharp pixels from the extracted multi-features.
Different from recent methods [25,19], where the optical flows are used to align
the adjacent frames, the optical flows are used as base offsets in the STDA mod-
ule, which reduces the degradation of deblurring results caused by inaccurate
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optical flows. Finally, the decoder restores the sharp mid-frame based on the
fused features.

The main contributions are summarized as follows:

– We propose a spatio-temporal deformable attention (STDA) module which
aggregates the information of sharp pixels in the input consecutive video
frames and eliminates the effects of blurry pixels introduced from input con-
secutive video frames.

– We present a spatio-temporal deformable attention network (STDANet)
equipped with motion estimator and the proposed STDA module, where
motion estimator predicts coarse optical flows and provides base offsets to
find sharp pixels in adjacent frames.

– We quantitatively and qualitatively evaluate STDANet on the DVD, Go-
Pro, and BSD datasets. The experimental results indicate that STDANet
performs favorably against state-of-the-art methods with comparable com-
putational complexity.

2 Related Work

2.1 Single-Image Deblurring

The traditional single image deblurring methods [28,33,15,22,18] assume a uni-
form blur kernel and design various natural image priors to compensate for the
ill-posed blur removal process. However, these methods do not have the ability
to handle the non-uniform blur. To solve the non-uniform blur problem, one
group of methods [7,6,36,8,40] extends the degree of freedom of the blur model
from uniform to non-uniform in a limited way compared to the dense matrix.
Another group of methods [2,10,12,11] introduces additional segmentations into
blur models or adopt motion estimation-based deblurs.

With the development of deep learning, many CNN-based methods are pro-
posed to solve dynamic scene deblurring. Gong [5] adopt a fully-convolutional
deep neural network (FCN) to directly estimate the motion flow from the blurry
image and restore the unblurred image from the estimated motion flow. Sun [32]
use CNN to estimate the motion blur field. With the emergence of large datasets
for single image deblurring, several works [34,23,41,16,26] use CNN to directly
generate clear images from blurry images in an end-to-end manner. Nah [23]
use a multi-scale method for single image deblurring. However, the parameters
between each scale are not shared, which leads to a huge amount of parameters.
To solve this problem, SRN [34] introduces a deblur network with skip connec-
tions where the parameters are shared in each scale. DeblurGAN-v2 [16] uses
an end-to-end generative adversarial network (GAN) for single image motion
deblurring and introduces the Feature Pyramid Network into single image de-
blurring. DMPHN [41] introduces the hierarchical multi-patch (MP) model for
deblurring and improves deblur performance. MT-RNN [26] uses an RNN with
recursive feature maps for progressive deblurring over iterations.
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2.2 Multi-Image Deblurring

Several methods utilize multiple images to solve dynamic scene deblurring from
videos. The traditional methods [12,1,3,38] jointly estimate the optical flow and
blur kernel to restored frames with the some hand-crafted priors. However, the
proposed priors usually lead to complex energy functions which are difficult
to solve. In addition, Su [30] align the consecutive frames and then the Con-
volutional Neural Networks are used to restored images. Kim [13] propose a
recurrent neural network to fuse the concatenation of the multi-frames features.
Wieschollek [37] develop a recurrent network to recurrently use the features
from the previous frame in multiple scales. Wang [35] achieve better alignment
performance base on deformable convolution. Zhou [44] use the dynamic filters
to align the consecutive frames. Pan [25] introduce a temporal sharpness prior
to improve the ability of the deblur network. Zhang [42] develop a adversarial
loss and spatial-temporal 3D convolutions to improve latent frame restoration.
Recently, ARVo[19] uses self-attention to capture the pixel correlation of the con-
secutive frames. However, those methods rarely consider the different blur levels
of each frame, which make they do not take full advantage of the sharpness pixel
information in the video frames.

3 The Proposed Method

The proposed STDANet aims to restore the sharp mid-frame Ri given three
consecutive blurry frames Bi = {Bk}i+1

k=i−1. As shown in Figure 1, it con-
tains four components: the feature extraction network, the motion estimator,
the STDA module, and the reconstruction network, where the feature extrac-
tion network and the reconstruction network follow the encoder-decoder archi-
tecture. First, the feature extraction network generates the extracted features

Fb
i =

{
Fb

k

}i+1

k=i−1
for Bi. Then, the motion estimator predicts the optical flows

Oi = {Ok→k+1|k = i− 1, i} ∪ {Ok+1→k|k = i− 1, i} between the two adjacent
frames Bk and Bk+1. Next, the STDA module takes Fb

i , Oi as input and gen-

erates the fused features Ff
i by aggregating the features of low-blur-level pixels

in the consecutive frames. Finally, the reconstruction network restores the sharp
frame Ri for Bi. Except STDANet, we also propose STDANet-Stack, which uses
a cascaded strategy [25] to stack STDANet and takes five adjacent blurry frames

{Bk}i+2
k=i−2 as input.

3.1 Motion Estimator

Previous video deblurring methods [25,19] that use optical flows to align two
adjacent frames to the mid-frame, which requires accurate optical flows gener-
ated by heavyweight neural networks such as PWC-Net [31]. In contrast, optical
flows are used as the base offsets in the STDA module, which are more robust
to the errors in estimated optical flows. Therefore, we propose the motion esti-
mator that predicts coarse optical flows between two adjacent frames with much
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Fig. 2. The detailed network structure of the MMA and MSA layers. Note that “SP
Offsets” denotes “the offsets of sampling points”.

smaller computational complexity. To accelerate the computational complexity,
the motion estimator generates the optical flows that are of 1/4 sizes the in-
put images. Consequently, the motion estimator is 1/70 the size of PWC-Net.
Compared to existing methods for optical flow estimation [4,31,39], the motion
estimator does not use any time-consuming layers such as correlation layer [4],
cost volume layer [31,39].

Specifically, the motion estimator consists of stacked four convolutional layers
with kernel sizes of 3 and strides of 1. Given the three adjacent image features Fb

i ,
the motion estimator generates four optical flows Oi = {Ok→k+1|k = i− 1, i} ∪
{Ok+1→k|k = i− 1, i}, where Om→n represents the optical flow from the m-th
frame to the n-th frame.

3.2 Spatio-temporal Deformable Attention Module

To extract the information of sharp pixels from consecutive video frames, we
propose spatio-temporal deformable attention (STDA) module. As shown in
Figure 2, there are two layers in the STDA module that aggregates features
in a coarse-to-fine manner, named Multi-to-Multi attention (MMA) layer and
Multi-to-Single attention (MSA) layer. Figure 3 gives an illustration how the
MMA and MSA layers extract image features of sharp pixels.

Multi-to-Multi Attention Layer The multi-to-multi attention layer takes
the image features of three consecutive frames Fb

i as input and generates the

coarse aggregated image features Fg
i =

{
Fg

k|F
g
k ∈ RC×H×W

}i+1

k=i−1
, where C,

H, and W represent the number of channels, height, and width of the image
features, respectively.
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Fig. 3. The illustration of MMA and MSA layers. The colors of the sampling points
denotes the corresponding attention weights, where higher attention weights indicate
that the sampling points are sharper. First, the MMA layer extracts the information of
sharp pixels from multi-features Fb

i and generates the features of adjacent frames Fg
i =

{Fg
k|F

g
k}

i+1
k=i−1

. Second, the MSA layer generates the fused features Ff
i by aggregating

the information of sharp pixels from Fg
i .

Step 1. The image features Fb
i =

{
Fb

k|Fb
k ∈ RC×H×W

}i+1

k=i−1
of adjacent

frames are aligned to the mid-frame with the estimated optical flows Oi and
produces Fw

i =
{
Fw

k |Fw
k ∈ RC×H×W

}
, where Fw

k is

Fw
k = Warp(Fb

k,Oi→k), k = i− 1, i+ 1 (1)

where “Warp” denotes the backward warp with operation.

Step 2. The concatenated features Fc
i ∈ R(2T−1)×C×H×W are generated by

concatenating the aligned features Fw
i and image features Fb

i , where T denotes
the number of frames in the sliding window.

Step 3.Given Fc
i and Fb

i as input, the attention mapsAg ∈ RQ×M×T×K , the
offsets of sampling points ∆Pg ∈ RQ×M×T×K×2, and the flatten features Eg ∈
RTHWC are generated, where Q = THW . M , T , and K represent the number
of attention heads, the number of sampling points, and the number of frames,
respectively. The attention maps Ag are used to measure the sharpness of the
pixels, which are normalized by

∑T
t=1

∑K
k=1 A

g
mtqk = 1. The offsets of sampling

points ∆Pg and estimated optical flows Oi are used to find the corresponding
pixels in the adjacent frames, where Oi provides the base offsets. ∆Pg, Ag, and
Oi are generated as following
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∆Pg = Co
MMA(F

c
i )

Ag = Cm
MMA(F

c
i )

Eg = Concat(Cl
MMA(F

b
i−1), Cl

MMA(F
b
i ), Cl

MMA(F
b
i+1)) (2)

where “Concat” denotes the concatenation operation. Cm
MMA, Co

MMA, Cl
MMA rep-

resent different convolution layers. The attention map Ag, offsets of sampling
points ∆Pg and flatten features Eg are fed to the deformable attention function
D [45] and produces the fused features Zg ∈ RTCHW .

Zg = D(Ag, ϕ(∆Pg,Oi),E
g), (3)

where ϕ represents the operation that adds the estimated optical flows to the
offsets of sampling points ∆Pg. In 3, the optical flows is used as based offsets,
which reduces the degradation of deblurring results caused by inaccurate optical
flows.

Step 4. Zg is reshaped and splitted into
{
Fh

k |Fh
k ∈ RC×H×W

}i+1

k=i−1
. The

final fused features Fg
i =

{
Fg

k|F
g
k ∈ RC×H×W

}i+1

k=i−1
are generated as following

Fg
k = Cg

MMA(F
h
k) (4)

where Cg
MMA denotes a convolutional layer.

Multi-to-Single Attention Layer The multi-to-single attention layer takes
the coarse aggregated image features Fg

i as input and generates the fused features

Ff
i for the mid-frame. Similar to the MMA layer, the MSA layer aggregates

information of sharp pixels from the adjacent frames. However, in the MSA
layer, the aggregated features are only propagated to the mid-frame. Therefore,
in the MSA layer, the fused features Zf ∈ RCHW is generated as following

Zf = D(Af , ϕ(∆Pf , {Ok→i|k = i− 1, i+ 1}),Ef ) (5)

where Af ∈ RHW×M×T×K , ∆Pf ∈ RHW×M×T×K×2, and Ef ∈ RTCHW are
the attention maps, the offsets of sampling points, and flatten features obtained
as in the MMA layer. The fused features Ff

i is obtained as following

Ff
i = Cf

MSA(F
n
i ) (6)

where Cf
MSA denotes a convolutional layer. Fn

i ∈ RC×H×W is reshaped from Zf .

3.3 Feature Extraction and Reconstruction Networks

Feature Extraction Network. The feature extraction network generates im-
age features Fb

i from blurry images Bi. It consists of three convolutional blocks,
two of which have a convolution layer with the stride of 2 followed by three
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residual blocks with LeakyReLU as the activation function. The first convolu-
tional block has a convolution layer with the stride of 1 followed by three residual
blocks with LeakyReLU as the activation function.

Reconstruction Network. The reconstruction network is used to restore the
sharp mid-frame Ri by taking the fused features from STDA module as input.
It consists of three convolutional blocks, two of which have one deconvolutional
layer with the stride of 2 and three residual blocks with LeakyReLU as the
activation function. The last convolutional block has one convolutional layer
with the stride of 1 and three residual blocks with LeakyReLU as the activation
function.

3.4 Cascaded Progressive Deblurring

Inspired by TSP [25], we propose STDANet-Stack by stacking STDANet in a

cascaded manner [25]. It takes five adjacent blurry video frames {Bk}i+2
k=i−2 as

input and restores the sharp mid-frame Ri.

Specifically, STDANet-Stack restores Ri in two steps. First, it produces R̂i−1

by taking {Bk}ik=i−2 as input. Similarly, R̂i and R̂i+1 are restored by taking

{Bk}i+1
k=i−1 and {Bk}i+2

k=i as inputs, respectively. Next, Ri is generated by taking{
R̂k

}i+1

k=i−1
as input.

3.5 Loss Functions

We employ two loss functions to train STDANet and STDFANet-Stack.

MSE Loss represents the distance between the restored frame R and its corre-
sponding ground truth sharp frame S, which is formulated as

Lmse =∥ R− S ∥2 (7)

Warp Loss is introduced to train the motion estimator in an unsupervised
manner, which is computed as

Lwarp =∥ S↓
i −Warp(S↓

j ,Oi→j) ∥2 (8)

where S↓
i and S↓

j are the two downsampled frames.Oi→j represents the estimated

optical flow from S↓
j and S↓

i . “Warp” denotes the backward warp operation.

Total Loss are defined as

Ltotal = Lmse + γLwarp (9)

where γ controls the weights of the two loss functions.
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Table 1. The quantitative results on the DVD dataset. Note that “Ours∗” denotes
STDANet-Stack.

Method SRN IFI-RNN-L STFAN EDVR TSP PVDNet ARVo Ours Ours∗

PSNR 30.53 31.67 31.24 31.82 32.13 32.31 32.80 32.63 33.05
SSIM 0.8940 0.9160 0.9340 0.9160 0.9270 0.9260 0.9352 0.9300 0.9374

(a) Input (b) EDVR (c) TSP (d) PVDNet-L (e) Ours (f) GT

Fig. 4. The qualitative results on the DVD dataset. Note that “GT” stands for ground
truth.

4 Experiments

4.1 Datasets

DVD. The DVD dataset [30] contains 71 videos (6,708 blurry-sharp pairs),
splitting into 61 training videos (5,708 pairs) and 10 testing videos (1,000 pairs).
GoPro. The GoPro dataset [23] contains 3,214 pairs of blurry images and sharp
images at 1280×720 resolution, where 2,103 and 1,111 pairs of blurry images
and sharp images are used for training and testing, respectively.
BSD. The BSD dataset [43] is a real-world video deblur dataset, which contains
three sub-datasets with different sharp exposure time - blurry exposure time.

4.2 Evaluation Metrics

For fair comparisons, STDANet-Stack use same cascaded progressive structure
like TSP [25] and ARVo [19]. In the experiments, we use both peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) as quantitative evaluation
metrics for testing set. Moreover, GMACs (Giga multiply-add operations per
second) is used to evaluate the computational complexity.

4.3 Implementation Details

To achieve better trade-off between video deblurring quality and computational
efficiency, the M,K, T are set as 4, 12 and 3, respectively. γ is set to 0.05.
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Table 2. The quantitative results on the GoPro dataset. Note that “Ours∗” denotes
STDANet-Stack.

Method SRN IFI-RNN-L STFAN EDVR TSP PVDNet PVDNet-L Ours Ours∗

PSNR 30.61 31.05 28.59 31.54 31.67 31.52 31.98 32.29 32.62
SSIM 0.9080 0.9110 0.8608 0.9260 0.9279 0.9210 0.9280 0.9313 0.9375
GMACs 1175 1,425 504 2739 6450 1004 1755 1677 6000

(a) Input (b) EDVR (c) TSP (d) PVDNet (e) Ours

Fig. 5. The qualitative results of real blur images from the DVD dataset. There are
no corresponding ground truth for the real blur images.

(a) Input (b) EDVR (c) TSP (d) PVDNet-L (e) Ours (f) GT

Fig. 6. The qualitative results on the GoPro dataset. Note that “GT” stands for ground
truth.

The network is implemented with PyTorch [27] 1. The network is trained with a
batch size of 8 on four NVIDIA Geforce RTX 2080 Ti GPUs. The initial learning
rate is set to 10−4. The network is optimized using Adam optimizer [14] with
β1 = 0.9 and β2 = 0.999. We randomly crop the input images into patches with
resolutions of 256× 256, along with random flipping or rotation during training.

1 The source code is available at https://github.com/huicongzhang/STDAN

https://github.com/huicongzhang/STDAN
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Table 3. The quantitative results on the BSD dataset. Note that “Ours∗” denotes
STDANet-Stack.

Method
1ms–8ms 2ms–16ms 3ms–24ms

PSNR SSIM PSNR SSIM PSNR SSIM

IFIRNN 33.00 0.9330 31.53 0.9190 30.89 0.9170
ESTRNN 33.36 0.9370 31.95 0.9250 31.39 0.9260
EDVR 32.79 0.9264 31.99 0.9129 31.53 0.9192
TSP 33.62 0.9419 32.19 0.9285 31.68 0.9266
PVDNet-L 33.93 0.9392 32.46 0.9290 31.87 0.9293

Ours 34.21 0.9446 33.13 0.9388 32.65 0.9409
Ours∗ 34.32 0.9456 33.27 0.9420 32.83 0.9443

Table 4. The quantitative results on the GoPro dataset in terms of PSNR and SSIM
when replacing MMA and MSA layers with the concatenation operation.

MMA ✓ ✓
MSA ✓ ✓

PSNR 30.12 31.15 31.18 32.29
SSIM 0.8950 0.9146 0.9152 0.9313

4.4 Experimental Results

The DVD dataset. To evaluate the performance of the proposed method, we
compare it with the state-of-the-art methods. Table 1 shows the quantitative
results on the DVD dataset [30], where IFI-RNN-L [29] is larger IFI-RNN [24].
The proposed method outperforms the state-of-the-art methods in term of PSNR
and SSIM. Compared to the best state-of-the-art method ARVo, the proposed
STDANet-Stack improves the PSNR and SSIM by 0.25dB and 0.0022, respec-
tively. Figure 4 shows several examples in the testing set, which indicates that
existing state-of-the-art methods are less effective when the inputs contain heavy
blur. We further compare the proposed method with state-of-the-art methods
on the real blur images from the DVD dataset. Figure 5 shows that the proposed
method generates sharper images with more visual details, which demonstrates
the superiority of removing the unknown real blur in dynamic scenes robustly.

The GoPro dataset. We compare STDANet to the state-of-the-art video
deblurring methods on the GoPro dataset [23]. As show in Table 2, the pro-
posed STDANet and STDANet-Stack perform favorably against the state-of-
the-art methods in terms of PSNR and SSIM. Compared to the PVDNet-L [29],
STDANet achieves higher PSNR and SSIM with lower computational complex-
ity. STDANet-Stack achieves 0.95dB higher PSNR than TSP [25] with lower
computational complexity, where the STDANet-Stack use the same cascaded
progressive structure as TSP [25]. As shown in Figure 6, the proposed method
restores better image details and structures.
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(a) Input (b) EDVR (c) TSP (d) PVDNet-L (e) Ours (f) GT

Fig. 7. The qualitative results on the 2ms-16ms subset of the BSD dataset. Note that
“GT” stands for ground truth.

(a) Input (b) (-MMA,-MSA) (c) (-MMA,+MSA) (d) (+MMA,-MSA) (e) (+MMA,+MSA) (f) GT

Fig. 8. The qualitative results when replacing MMA and MSA layers with the concate-
nation operation. Note that “+” and “-” denote “with” and “without”, respectively.
“GT” stands for ground truth.

The BSD dataset. We compared the our method to the state-of-the-art meth-
ods on BSD dataset [43]. For a fair comparison, the EDVR [35], TSP [25], and
PVDNet-L [29] are trained with their open-sourced implementations. In Table 3,
our method achieves the best results on all the three subsets in terms of PSNR
and SSIM. The qualitative results are shown in Figure 7, which indicate that
our method restores much sharper images.

5 Analysis and Discussions

5.1 Effectiveness of the STDA Module

MMA and MSA layers. The STDA Module contains two main components:
the MMA and MSA layers, which aggregates information of sharp pixels from
adjacent frames. To validate the effectiveness of the STDA module, the MMA
and MSA layers are replaced with the concatenate operation. In the concatenate
operation, the information from all pixels are introduced from adjacent frames.
Table 4 shows the qualitative comparison when the MMA or MSA layer is re-
moved. Specially, when both MMA or MSA layers are removed, the estimated
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Fig. 9. The visualization of the attention maps in the MSA layer. Sharper pixels have
larger attention weights. (zoom in for best view).

Table 5. The quantitative results on the GoPro dataset in terms of PSNR, SSIM, and
GMACs with different numbers of sampling points.

#Sampling Points K = 1 K = 8 K = 12 K = 16

PSNR 31.64 32.12 32.29 32.32
SSIM 0.9183 0.9288 0.9313 0.9319

GMACs 1520 1620 1677 1735

optical flows are used to align the features from adjacent frames. The experi-
mental results shows that the networks perform worse without the help of the
information of sharp pixels extracted by the MMA and MSA layers. Figure 8
shows the qualitative comparison on the GoPro dataset. The network is less ef-
fective to restore sharp details when both MMA and MSA layers are removed.
Figure 9 gives the visualization of the attention maps in the MSA layer, which
shows that sharper pixels have larger attention weights. For example, the man
riding a bicycle (highlighted with a red bounding box) is blurry in Bi−1, and thus
the corresponding regions are of low weights in the attention maps. In contrast,
Bi have larger weights for this region. To conclude, the proposed STDA module
effectively aggregates the information of sharp pixels from adjacent frames.

Sampling Points. To investigate the effect of numbers of sampling points in the
STDA module, we compare the performance with different numbers of sampling
points. As shown in Table 5, larger number of sampling points leads to better
restoration results but also heavier computational cost. Specially, the STDA
Module degenerates to the temporal attention when K = 1, which causes severe
degeneration in restoration results. The PSNR only increases 0.03 dB when
increasing the number of sampling points from 12 to 16. Therefore, we setK = 12
due to the trade-off between the computational cost and restoration performance.

Attention Heads. The number of attention heads is one of the important hy-
perparameter in the deformable attention function. We also compare the effect
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Table 6. The quantitative results on the GoPro dataset in terms of PSNR, SSIM, and
GMACs with different numbers of attention heads.

#Attention Heads M = 1 M = 4 M = 8

PSNR 32.13 32.29 32.34
SSIM 0.9294 0.9313 0.9322

GMACs 1548 1677 1849

Table 7. The quantitative results on the GoPro dataset in terms of PSNR, SSIM, and
GMACs with different optical flow estimators.

Estimator None PWC-Net Motion Estimator

PSNR 31.58 32.36 32.29
SSIM 0.9176 0.9326 0.9313

GMACs 1632 2352 1677

with different numbers of attention heads in Table 6. As the number of atten-
tion heads increases, the PSNR, SSIM, and GMACs increase. Considering the
trade-off between the computational complexity and restoration performance,
we choose the number of attention heads M = 4.

5.2 Effectiveness of the Motion Estimator

To evaluate the effectiveness of the motion estimator, we compare the video de-
blur results with different optical flow estimators. As shown in Table 7, removing
the optical flow estimator causes considerable degeneration. Although STDANet
with PWC-Net [31] archives the best results, it also leads to high computational
cost. STDANet with the proposed motion estimator archives the best trade-off
between the deblur results and computational complexity.

6 Conclusions

In this paper, we propose STDANet for video deblurring. The main motivation of
this work is that not all the pixels in the video frames are sharp and beneficial for
deblurring. Therefore, the proposed STDANet extracts the information of sharp
pixels by considering the pixel-wise blur levels of the video frames. Different from
mainstream video debulr methods that requires accurate optical flows to align
two adjacent frames to the mid-frame, the coarse optical flows are estimated
by a lightweight motion estimator and are used as the base offsets to find the
corresponding sharp pixels in the adjacent frames. Experimental results indicate
that the proposed STDANet performs favorably against state-of-the-art methods
on the GoPro, DVD, and BSD datasets.
Acknowledgement. This work is supported by the National Key R&D Pro-
gram of China (No. 2021ZD0110901).



Spatio-Temporal Deformable Attention Network for Video Deblurring 15

References

1. Bar, L., Berkels, B., Rumpf, M., Sapiro, G.: A variational framework for simulta-
neous motion estimation and restoration of motion-blurred video. In: ICCV (2007)
2, 4

2. Couzinie-Devy, F., Sun, J., Alahari, K., Ponce, J.: Learning to estimate and remove
non-uniform image blur. In: CVPR (2013) 3

3. Dai, S., Wu, Y.: Motion from blur. In: CVPR (2008) 2, 4
4. Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., van der

Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. In: ICCV (2015) 5

5. Gong, D., Yang, J., Liu, L., Zhang, Y., Reid, I.D., Shen, C., van den Hengel, A.,
Shi, Q.: From motion blur to motion flow: A deep learning solution for removing
heterogeneous motion blur. In: CVPR (2017) 3

6. Gupta, A., Joshi, N., Zitnick, C.L., Cohen, M.F., Curless, B.: Single image deblur-
ring using motion density functions. In: ECCV (2010) 3

7. Harmeling, S., Hirsch, M., Schölkopf, B.: Space-variant single-image blind decon-
volution for removing camera shake. In: NIPS (2010) 3

8. Hirsch, M., Schuler, C.J., Harmeling, S., Schölkopf, B.: Fast removal of non-uniform
camera shake. In: ICCV (2011) 3

9. Jin, H., Favaro, P., Cipolla, R.: Visual tracking in the presence of motion blur. In:
CVPR (2005) 1

10. Kim, T.H., Ahn, B., Lee, K.M.: Dynamic scene deblurring. In: ICCV (2013) 3
11. Kim, T.H., Lee, K.M.: Segmentation-free dynamic scene deblurring. In: CVPR

(2014) 3
12. Kim, T.H., Lee, K.M.: Generalized video deblurring for dynamic scenes. In: CVPR

(2015) 2, 3, 4
13. Kim, T.H., Lee, K.M., Schölkopf, B., Hirsch, M.: Online video deblurring via dy-

namic temporal blending network. In: ICCV (2017) 2, 4
14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR

(2015) 10
15. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity

measure. In: CVPR (2011) 3
16. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: Deblurring (orders-

of-magnitude) faster and better. In: ICCV (2019) 3
17. Lee, H.S., Kwon, J., Lee, K.M.: Simultaneous localization, mapping and deblurring.

In: ICCV (2011) 1
18. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood

optimization in blind deconvolution. In: CVPR (2011) 3
19. Li, D., Xu, C., Zhang, K., Yu, X., Zhong, Y., Ren, W., Suominen, H., Li, H.:

Arvo: Learning all-range volumetric correspondence for video deblurring. In: CVPR
(2021) 2, 4, 9

20. Matsushita, Y., Ofek, E., Ge, W., Tang, X., Shum, H.: Full-frame video stabiliza-
tion with motion inpainting. TPAMI 28(7), 1150–1163 (2006) 1

21. Mei, C., Reid, I.D.: Modeling and generating complex motion blur for real-time
tracking. In: CVPR (2008) 1

22. Michaeli, T., Irani, M.: Blind deblurring using internal patch recurrence. In: ECCV
(2014) 3

23. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for
dynamic scene deblurring. In: CVPR (2017) 3, 9, 11



16 H. Zhang et al.

24. Nah, S., Son, S., Lee, K.M.: Recurrent neural networks with intra-frame iterations
for video deblurring. In: CVPR (2019) 2, 11

25. Pan, J., Bai, H., Tang, J.: Cascaded deep video deblurring using temporal sharpness
prior. In: CVPR (2020) 2, 4, 8, 9, 11, 12

26. Park, D., Kang, D.U., Kim, J., Chun, S.Y.: Multi-temporal recurrent neural net-
works for progressive non-uniform single image deblurring with incremental tem-
poral training. In: ECCV (2020) 3

27. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
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