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Fig. 1. Given an image of a hairstyle (top row) and a face (left column) which may be
in a different pose than the hair, we seamlessly transfer the hair onto the face image.
Unlike previous approaches, details are preserved even when hair and face images have
different poses and head-shapes.

Abstract. We propose a novel algorithm for automatic hairstyle trans-
fer, specifically targeting complicated inputs that do not match in pose.
The input to our algorithm are two images, one for the hairstyle and
one for the identity (face). We do not require any additional inputs such
as segmentation masks. Our algorithm consists of multiple steps and we
contribute three novel components. The first contribution is the idea to
include baldification into hairstyle editing pipelines to simplify inpaint-
ing of background and face regions covered by hair. The second contribu-
tion is a novel embedding algorithm that can handle both pose changes
and semantic image blending. The third contribution is the hairnet ar-
chitecture that semantically blends the hairstyle and identity images,
performing multiple tasks jointly, such as baldification of the identity
image, transformation estimation between the two images, warping, and
hairstyle copying. Our results show a clear improvement over current
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state of the art methods in both quantitative and qualitative results.
Code and data will be released.

Keywords: Hairstyle transfer, GANs, StyleGAN, deep learning, image
editing

1 Introduction

Choosing a new hairstyle is an important decision, and for many applications
that range from marketing to social media and entertainment, there is a need
to ‘try on’ different hairstyles. For this problem we are given a reference image
Ihair and an identity image Iident which includes a face and background. The
goal is to generate a new image Imix that is as similar as possible to Iident with
the hair of Ihair, but to keep the generated image plausible as a realistic portrait
image. The problem is challenging because hair is complex in its interaction with
the environment – it is reflective and translucent, and the lighting of the hair
including scattering and shadows must be consistent with the Iident. It may pass
in front of or behind the face, ears, and clothing. It may be backlit, may have
sub-pixel strands, and it reflects light anisotropically.

The current state of the art is Barbershop [44], which uses StyleGAN to
invert Ihair and Iident, aligns both images to a target segmentation mask, and
then copies the activations of an early style-block that correspond to the ‘hair’
into Iident. However, Barbershop has two main limitations that we try to address.
First, the pipeline is inherently limited to work for two input images Ihair and
Iident that have similar pose. Second, it requires a target segmentation mask to
determine the shape of the hair region in relation to the face – but the mask
is produced by a näıve heuristic approach that may result in impossible hair
shapes, e.g. when complex inpainting of the mask would be needed to deal with
translation, scale, occlusion, or disocclusion of the face in Iident.

To overcome these limitations we propose three novel concepts in our work.
First, we introduce baldification as a pipeline stage in hairstyle editing. Baldifi-
caton can address disocclusion issues in Iident and provides a dedicated stage to
consistently inpaint occluded background and face regions.

Second, we propose a novel embedding algorithm for hairstyle transfer com-
bining two recent embedding algorithms. StyleGAN has biases towards certain
hairstyles and so GAN-inversion tends to lose many of the unique characteristics
of a hairstyle. Barbershop [44] addresses this by optimizing the activations of an
early style-block (called an F -code) of the StyleGAN generator. This embedding
is compatible with SOTA semantic image blending algorithms, such as combin-
ing hair and face images, but it cannot work for pose changes. On the other
hand, generator fine tuning proposed by PTI [31] is a high quality embedding
method that is great for pose changes, but it doesn’t work with SOTA image
blending algorithms. The reason is that PTI generates a separate generator for
each input image, but a single generator is required for image blending. Our so-
lution is to combine F code embedding with generator fine tuning [31] to create



HairNet 3

the first high quality embedding method that allows for both pose changes as
well as image blending.

Third, we propose an image blending architecture, called Hairnet, that is a
learned substitute for the heuristic segmentation map editing step in Barber-
shop. In particular, hairnet is capable to learn how to make difficult semantic
decisions that are required when merging a hairstyle image with an identity im-
age. For example, should long hair pass infront or behind the shoulders or ears.
Hairnet is trained to jointly perform multiple steps required to blend the two
input images, such as baldification, estimating translation and scale between
two images, warping, and hairstyle copying. The most interesting aspect about
hairnet is that it can be trained in an unsupervised fashion, since there are no
ground truth images telling us how to transfer hair from one image to another.

In summary, we make the following contributions: 1) We extend the cur-
rent SOTA method barbershop to handle input images with different pose. 2)
We introduce the concept of baldification to tackle disocclusion problems of the
background and face regions. 3) We combine two SOTA GAN embedding algo-
rithms to enable pose changes and image blending. 4) We introduce an image
blending architecture hairnet that can be trained in an unsupervised manner.

2 Prior Art

State-of-the-art GANs. Generative adversarial Networks (GANs) [15,29] have
seen recent improvements to the loss functions, architecture as well as availability
of high quality datasets [22]. Karras together with a team of changing co-authors
developed the current state of the art GAN called StyleGAN [19,22,23,20,21].
These GANs are trained on quality high quality datasets like FFHQ [22], AFHQ [8]
and LSUN objects [41]. Apart from photo-realistic image synthesis, StyleGAN
learns a rich latent space which has been used to perform various downstream
tasks such as image editing [33,1,27,4]. Moreover, the architecture of StyleGAN is
now used to model other tasks like unsupervised dense correspondences [28] and
3D GANs which are able to generate high-resolution multi-view-consistent im-
ages along with approximate 3D geometry [7,13,26]. In the context of this work,
we build upon a StyleGAN based hair editing framework, BarberShop [44], to
improve the generalization capabilities and the speed of the framework. Based
on the issues section in the official released repository of StyleGAN3 [21], there
is no solid evidence as of now that it is better than StyleGAN2 in real image
projection and editing quality, hence, we use StyleGAN2 [23] to build and com-
pare our framework. This is also important for a comparison, as none of the
competing methods uses StyleGAN3.

GAN latent space projection and GAN-based editing. In order to extract
meaningful information from a GAN, there are two important components: pro-
jecting existing images into a GAN latent space and extracting latent directions
to edit an images. First, to enable image editing, image embedding/projection
is used as a technique to project real images into the GAN’s latent space. In the
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StyleGAN domain, Image2StyleGAN [1] uses the extended W+ latent-space to
project a real image into the StyleGAN latent space using optimization. Other
methods like II2S [46] and PIE [36] improve the reconstruction-editing qual-
ity trade-off. Other works like IDInvert [43], pSp [30], e4e [37], and Restyle [5]
use encoders and identity preserving loss functions to maintain the semantic
meaning of the embedding. PTI [31] and HyperStyle [6] modify the generator
weights to better map out-of-distribution images. Secondly, image editing frame-
works extract important semantic directions in a pretrained GAN. Related to
StyleGAN, the editing frameworks [16,33,35,4] analyze the linear and non-linear
nature of the underlying W and W+ spaces. We use StyleFlow to perform two
editing operations critical to our HairNet framework i.e. “Bald” and “Pose”
edits. StyleSpace [39] proposes to edit images in StyleSpace S. Another impor-
tant area of StyleGAN based editing is CLIP based image editing [27,14,2] and
domain transfer [45,10].

Hair editing using GANs. Using StyleGAN, there are broadly two types of
hair editing frameworks. The first category uses hair segmentation information to
edit the hairstyles, e.g. [34,32,44]. We call such methods as semantic region based
methods. Recent works use unsupervised analysis on the feature maps [3,11] to
identify semantic regions. Editing in Style [11] uses k-means clustering. Based on
the Editing in Style method, two relevant works, StyleFusion [18] and Retrieve
in Style [9] modify the hair styles using StyleSpace [39] editing and interpolation.
Apart from the segmentation and semantic region based methods, some other
methods like StyleCLIP [27] and HairCLIP [38] use the CLIP model to modify
the hairstyle of a person based on the text prompts. Our method falls in the realm
of segmentation based methods. In this work we quantitatively and qualitatively
compare our method with the segmentation and semantic region based methods
in section 4.3.

3 Method

3.1 Background

We build on the approach of Barbershop [44], and we briefly summarize the key
points here but encourage the reader to consult the source for details. The main
idea of Barbershop is to use a new latent space for images that allows for spatial
control of image features. The new FS-code starts with the frequently used W+
latent representation of an image [1], but replaces the first 7 ·512 elements of the
embedding vector by the activations of style-block 7 of the StyleGAN generator.
The new latent code consists of a 32 × 32 × 512 tensor of activations F and a
vector S with the remaining elements of the W+ embedding. The new F code
has more degrees of freedom than the W+ latent-code, and an optimization
process is used to find values of F that are similar to the original W+ based
activations, but that also improve the reconstruction of the input image. That
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optimization process is described in [44] and we omit it here for brevity, as it is
not critical for understanding our contribution.

The tensor F can be understood as a 32×32 coarse spatial representation of
an image, and so copying and pasting regions of the F -code allows coarse details
(called structure) of the image to be transferred. This allows the Barbershop to
preserve the shape of medium-to-large features, such as the shape of a hair region
or the structure of large curls or braids. The style code S used by barbershop
is global, and so an optimization process was described to find a single S that
best captures the appearance (color and texture) of the hair in Ihair in regions
of hair while preserving the appearance of Iident in other parts of the image.

A key challenge in transferring the hairstyle from one image to another is
that the pose and head-geometry of the subject in Ihair may be different from
Iident. In order to address this issue, Barbershop aligned each image to a common
target-segmentation mask. The target mask was constructed heuristically, and so
occasionally implausible target masks were created. In addition, the alignment
mainly works for smaller translations, but cannot compensate for larger pose
differences.

3.2 Overview

Fig. 2. Overview of hair blending pipeline. Input identity image (a) is embedded into
FS-space (b) and then a latent-edit is used to baldify the image and get its F -code (c).
Another hair input image (d) cannot be embedded the same way, so pivotal tuning is
used to make a new generator (e) and then after a pose-edit the generator is used to get
FS codes (f) for the hair. The hair is masked (g) and then (c) and (g) are inputs to a
new HairNet network (h) that predicts a blended F code. The identity image’s global
style information (i) and the hair’s style (j) are combined to produce final output (k).

We borrow the idea of FS-codes from Barbershop, but we propose to use an
alternative approach to deal with changes in pose and head shape. Our approach
eliminates the need to generate a target segmentation mask, resulting in a more
robust approach to hairstyle transfer. Rather than a target mask, we first remove
hair from Iident to make a new image Ibald using a latent-edit, eliminating the
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need to handle disocclusion after this step. The baldification method is described
in section 3.3.

Furthermore, prior approaches to hairstyle transfer struggle when Ihair and
Iident are from very different viewpoints or head-poses. We use a latent-edit
to change the pose of Ihair to match the pose of Iident. We adapt the pivotal
tuning approach [31] to fine-tune a StyleGAN generator in order to create a
detailed pose-edited hair image, Ipose. Our pose-editing approach is described in
section 3.4.

Next, we train a new network called HairNet to blend the F -codes. Let
Fpose and Spose denote the FS-code of the pose-edited hair image Ipose, and
similarly let Fbald and Sbald denote the FS-code of Ibald. Then

Fmix = HairNet(Fpose, Fbald). (1)

The purpose of HairNet is to use unsupervised machine learning rather than
heuristics to learn how to copy hair from one image into another. A key element
of our approach is a process for training HairNet in an unsupervised way, which
we discuss in detail in section 3.5.

Proceeding with the overview of our method, once Fmix is determined, the
corresponding style-code Smix must also be determined by mixing elements of
Sident and Shair. This is important to preserve the color and texture of the hair,
as described in section 3.6.

Finally, the image Imix is found by applying the StyleGAN generator with
the activations style-block 7 set to Fmix and using Smix as for the remaining
style blocks.

3.3 Baldification

A key element of our approach to hair transfer is removal of the existing hair in
Iident, which we call ‘baldification’. To do so, we first find a latent code Wident

in W+ space by applying GAN inversion to Iident. In addition, we find an F -
code Fident for the identity image to capture a more detailed and spatially-
aligned representation. Then we use the StyleFlow [4] method to generate a
latent code Wbald. StyleFlow in W+ space may cause details other than head-
hair to change – for example, facial hair may be removed, and the expression
or facial features may slightly change. In addition, W+ space does not have
the capacity to reconstruct all images as well as FS space does, so after the
edit we use Wbald to find an initial F -code F init

bald. Then we use an automatic
segmentation method, BiseNET [40], to label pixels. A binary hair mask for the
hair-region is formed and then down sampled bicubically to a shape of 32 × 32
pixels (so that each pixel is a real-valued number between zero and one) to form
Mhair. Then

Fbald = (1−Mhair)Fident +MhairF
init
bald. (2)

where the expression is evaluated for each pixel. Note that the the latent edit
using StyleFlow only modifies the early layers of W+ as described in [4, section
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6.2.3], and so the S-code of the baldified image is simply the latter elements of
Wbald.

3.4 Pose-Editing

A major failure-mode of hair-transfer is when the hair and face images are from
different poses, however automatically changing the pose of the hair image while
also preserving its structure is extremely challenging. Latent editing approaches,
such as StyleFlow [4], are capable of changing the pose by modifying aW+ latent
code, and therefore have a limited capacity to reconstruct details in the edited
image. For baldification, equation (2) works only because Fident and Fbald are
spatially aligned, however this will not be the case if a latent-edit is used to
change the hair pose.

We address this by using pivotal tuning (PTI) [31], which refines a generator
G to create a specialized generator with slightly different weights, which does a
better job at reconstructing details of a specific image. We adapt this approach to
create a generator Gpose that is refined with frozen weights for all the StyleGAN
blocks that follow the F -code, but the first m = 7 blocks are free to adapt to
better-reconstruct Ihair. Because the FS code uses only the activations of style
block m, the two generators produce identical images for the same FS-codes.
We use StyleFlow to generate a latent-code Wpose from Whair and then use the
activations of layer m of Gpose(Wpose) as Fpose

3.5 Training HairNet

Overview In order to train hairNet we first describe an unsupervised way to
generate inputs and the desired output of the hair-transfer network. We use
images from the FFHQ [22] dataset as a source of training images for hair trans-
fer. In order to do hair-transfer, we consider the FFHQ images to be an ideal
result for Imix, and we generate Ibald and Ipose

3 from it using latent edits and
augmentation (described in §3.5). From these we train HairNet to minimize
a reconstruction loss (§3.5), so that the image generated using the FS-code
predicted by HairNet is perceptually similar to Imix. Finally, we describe the
network architecture of HairNet.

Hair Image Generation The process of generating Ibald was described in
section 3.3. In order to train HairNet we need to do an inverse problem of
hair transfer – we need to generate an image that preserves the same hair as
Imix but that is different elsewhere. We rely on a semantic segmentation of
Ihair to determine a binary hair mask that is zero in regions that are not hair
and one elsewhere, then downsample the mask bicubically to match the spatial
dimensions (32 × 32) of the F -code and multiply it by the downsampled mask
to produce an image with meaningful information only in the hair region.

3 In this case the Ipose = Ihair as the pose is perfectly aligned by construction.
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Even after masking out the F -code while preserving the hair, the results
are still different from the inputs one expects to provide HairNet for inference
because the hair is still perfectly aligned to with the head-shape of Ibald (and
the desired output in Imix). In order to ensure that the network does not simply
learn to copy the hair, we apply the following augmentations to Ihair: a) We
apply a random translation to Ihair, drawn from a truncated normal distribution
with σ = 0.2. b) We apply a random log-normally-distributed scale to Ihair,
drawn from the same distribution. The augmentation applies a transform with
parameters,

Thair = (tx, ty, sx, sy) (3)

where tx and ty are translations and sx and sy are the logarithms of the scale
applied to the hair image. Note that we represent the transformation using the
log scale so that all parameters are normally distributed with zero-mean.
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Fig. 3. The HairNet architecture. The input Fpose is multiplied by a hair-
segmentation mask Mpose and concatenated channelwise with Fbald. The result is
passed through the same set of residual blocks used by StyleGAN2 discriminator and a
final convolution reduces the features to 512 channels, then two fully-connected layers
predict Tpred. The Fpose tensor is warped and concatenated with Fbald before pass-
ing through a similar number of residual blocks. We call the StyleGAN2 blocks with
strided convolution TBlocks, and the residual blocks without downsampling or strided
convolution are called MBlocks.

Network Architecture. The architecture ofHairNet is inspired by the Style-
GAN2 discriminator network. The inputs to the network are the F -codes Fbald

and Fpose along with a segmentation mask, Mpose, for the hair in Ibald com-
puted using BiseNet [40]. The network first predicts a spatial transformation,
Tpred, which is then used to warp the masked Fpose tensor so that the features
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corresponding to hair are positioned properly relative to Fbald. The spatial trans-
former network portion of the architecture uses residual blocks that are identical
to the ones used in the StyleGAN2 discriminator, indicated in Fig. 3 as TBlocks.
After three residual TBlocks, a final convolution is used to reduce channels to
512, before fully-connected layers predict the transformation (Tpred). Then a
spatial transformation is applied to the masked activations of Fpose, warping it
so that the features corresponding to hair are in new spatial locations (ideally
aligned to Fbald).

Rather than simply copy/pasting the F -code values as was done in Barber-
shop [44], we use another residual ‘blending’ network to predict Fpred. The aim
is to allow the network to learn when hair should cover the face or be occluded
by it. The residual blocks of this network do not downsample their inputs, and
they are labeled as MBlocks in Fig 3. A final convolution applied to the output
of the last MBlock reduces the channels from 1024 down to 512, producing Fpred

as output.

Loss Function. The goal of the HairNet network is to generate an F -code,

Fpred = HairNet(Fpose, Fbald), (4)

so that the generated image

Ipred = G(Fpred, Sident), (5)

where the function G(·) is the StyleGAN image generator, is perceptually as
similar as possible to Imix. Our training process augments the hair image by
applying a translation scale transformation, Thair, to the hair image, and archi-
tecture predicts the same spatial transformation, Tpred in order to align hair.
We use the L2 loss between the two transformation parameters in order to en-
courage the network to learn the correct transformation. We also use LPIPS [42]
as a perceptual similarity metric. A secondary goal is to minimize the L2-error
between Ipred and Imix, and finally, we also want to keep the L2 error between
the latent code Fpred and Fmix small. We minimize the following loss function:

Lrec = L2(Thair, Tpred) + λ1LPIPS(Imix, Ipred)

+ λ2L2(Fmix, Fpred) + λ3L2(Imix, Ipred) (6)

The contribution of different loss terms are evaluated empirically in supplemental
materials.

Preventing Overfitting. The F -codes contain significantly more information
than a W+ code for an image, and it is possible for a system such as the one
we described to learn how to infer the missing information about an image’s
original hair from a ‘baldified’ input image. This means that our training process
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if capable of ignoring Fhair completely in order to generate Fmix using baldified
images if Imix is always the same as Iident. We address this by randomly using
Ibald as Imix. With probability p we replace Fhair with zeros, and we use Ibald
and Fbald as Imix and Fmix when evaluating the losses. We find p = 0.5 produces
reasonable results.

3.6 Styling

RetreiveInStyle (RiS) [9] and EncodeInStyle (EiS) [30] use a fast method to
interpolate latent codes by first selecting a set of elements of a latent code
in style-space. Style-space latent-codes modulate the channels of each stylegan
block. RiS and EiS threshold total activatiosn within a masked region to deter-
mine which latent code elements are relevant to that region. In order to edit the
region-of-interest, the latent code elements that are not relevant are frozen and
the others are free to change.

One important caveat is that the layer relevance approach uses elements in
style space rather then W+ space. We build on this approach and we also use
style-space. This slightly changes our interpretation of the S-code in FS-space
as the style space elements are the result of an affine transform applied to the
W+ vector.

The methods of RiS and EiS use an effective heuristic to change the relevant
elements of a latent code - however we find that their approach, while fast,
would cause unexpected changes to the color of the hair. Instead, wo use the
same optimization criteria as Barbershop (the masked LPIPS function, Lmask) to
solve for the relevant portions of the code. This loss function is the same function
used by Barbershop [44, section 3.5] for style mixing, with one modification. Let
that R be a mask so that Ri = 1 if the corresponding element Si of the style
code is relevant, and Ri = 0 otherwise. We use the mask to change only the
relevant parts of the stylecode using optimization. Assume that, for some vector
Cmix, we have Smix = (1−R)S +RCmix, and

Cmix = argmin
C

Lmask((1−R)S +RC), (7)

where Lmask is calculated using Ipose and Ibald using Mpose as the segmentation
mask.

4 Evaluation

4.1 Metrics

Quantitative evaluation of the success of an image editing task has always been
a challenging task. A successful edit does two things; it correctly preserves some
attributes while changing others (e.g. the face vs the hair), and it also produces
a high quality image as output (e.g. free of artifacts). In our case, a successful
edit reconstructs the face from one image (Iident) and it correctly constructs the
hair from another image (Ihair) after a pose change.
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We use the FID [17] of the generated images and the FFHQ dataset as a
quantitative measure of the quality of generated images. The FID is a standard
metric for evaluating GANs and if the generated Imix images are not similarly
distributed to the FFHQ dataset then they will have high FID scores, and that
may indicate low quality results. However, the FID is a poor approximation to
human perception of the quality of the input. Several other attempts have been
made to quantitatively evaluate the quality of a generated image. The Natu-
ralness Image Quality Estimator (NIQE) [25] measures overall image quality
(not specific to face). Precision, Recall, and Realism were introduced in [24].
Precision and recall check whether edited images are on the same manifold as
a ground-truth set of image, Realism is simply the distance of an image from
the manifold of training images. These methods check the overall quality of an
image, but do not capture whether the hair and face are preserved. ArcFace [12]
measures the edit’s ability to preserve the face of the identity image after the
edits. However, we are unaware of any automatic quantitative way to evaluate
whether the hairstyle was correctly transferred with a pose that matches the face
image. For this problem, we must rely on a user-study and human perception.

4.2 Ablation Study

Many parts of our method are necessary to get any meaningful result, for example
we cannot evaluate the effect of using pivotal tuning in isolation because without
it a pose edit that produces an F -code that is different from the W+ embedding
is not even possible. The main contributions we can ablate are the HairNet
and our optimization method for mixing the S-codes, which is presented in Fig.
4.

Qualitative results of ablatingHairNet are shown in Fig. 4(top), which high-
lights the importance of human perception in evaluating images, as we expect
most readers would agree that the ‘w/o HairNet‘ row of Fig. 4 is significantly
worse than the last row, which uses HairNet. However, the quantitative met-
rics are nearly identical; FID without hairnet is 56.4 (vs 55.6 with HairNet).
The NIQE is 11.82 (vs 11.85), the Precision is 95.5% (vs 97%), Recall is 57% (vs
60%) and Realism is 1.21 (vs 1.26%). Quantitatively, we show that HairNet
only slightly changes each metric, even though the visual results are significant.
We evaluate ablating the style mixing step qualitatively in Fig. 4(bottom), which
shows that style mixing with Lmask better preserves the colors of the hair and
face.

4.3 Comparison

We compare our results against several recent state-of-the-art hair editing meth-
ods; Barbershop [44], Retrieve in Style [9], Style Fusion [18], and MichiGAN [34].
Quantitative results are shown in Table 2, however as mentioned previously these
metrics do not capture human perception of whether the edit was successful. For
example methods that simply copy the face achieve high ArcFace scores but pro-
duce images with very undesirably cut&paste artifacts. The same is true for other
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Fig. 4. Qualitative ablation studies: (top) results with, and without using the novel
HairNet component proposed in our process, demonstrating both inpainting and han-
dling of occlusions; (bottom) the effect of style-mixing using Lmask to produce face and
hair colors that are more similar to the corresponding source images.

quantitative metrics, however, our method is within the top-2 for most quality
metrics.

For a more reliable picture of our performance, we conducted a user study
with Amazon Mechanical Turk. For each competing method, 764 image pairs
(theirs vs ours) or (ours vs theirs) were shown to human subjects and they were
asked which image better reconstructed the hair, the face, and which had the
highest overall quality. These quantitative results are shown in Table 1 and it is
clear that for the editing tasks of preserving hair and face our method dominates.
With respect to overall image quality, we are nearly a tie with StyleFusion,
however StyleFusion generates images restricted to a latent space that only has
high quality images at the cost of reconstructing hair and face accurately. Many
additional qualitative results are included in the supplemental materials.
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Method

Barbershop
RetrieveInStyle
MichiGAN
StyleFusion

Face Rec.
Theirs Ours

32% 68%
43% 57%
8% 92%
49% 51%

Hair Rec.
Theirs Ours

30% 70%
43% 57%
4% 96%
46% 54%

Overall Qual.
Theirs Ours

24% 76%
42% 58%
2% 98%
51% 49%

Table 1. User-study results comparing to Barbershop [44], Retreive In Style [9], Michi-
GAN [34], and StyleFusion [18]. Our method outperforms all others for reconstruction
tasks. We only lose to StyleFusion (by less than 1%) for the overall quality question,
however this is expected because images in the restricted StyleGAN latent space can be
more generic and attractive than images with good reconstruction, which many users
will perceive as high quality. However, we do significantly better at hair reconstruction
than StyleFusion.

Method NIQE↓ ArcFace↑ FID↓ Precision↑ Recall↑ Realism↑
Barbershop 12.52 0.78 47.34 0.93 0.83 1.30
RetrieveInStyle 12.18 0.58 60.74 0.96 0.31 1.17
MichiGAN 11.65 0.88 84.66 0.58 0.72 1.09
StyleFusion 12.12 0.56 68.46 0.98 0.19 1.19
Ours 11.85 0.66 55.60 0.97 0.60 1.26

Table 2. Quantitative evaluation of different methods using the following metrics:
NIQE [25], ArcFace [12], FID [17], precision [24], recall [24], and realism [24]. The best
result is bold and the second best is underlined.

Qualitative Results In addition to the quantitative results and the user study,
several examples of our results compared with competing methods are shown
in Fig. 5. We observe that the results visually agree with the user study, and
both StyleFusion and our approach produce high quality results. However, our
approach does a better job at preserving salient qualities of the hair and face.

5 Conclusion

We propose a novel algorithm for automatic hairstyle transfer, specifically tar-
geting complicated inputs that do not match in pose. We introduced three main
technical contributions to tackle this challenge. First, we introduce the concept of
baldification to hairstyle editing pipelines. Second, we propose a novel embedding
algorithm that combines the advantages of two recent state-of-the-art methods.
Third, we propose the hairnet architecture that automatically combines two im-
ages at inference time and can be trained in an unsupervised fashion. In future
work, we would like to extend our framework to recent 3D GANs such as EG3D
or GRAM.
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Fig. 5. Main comparison between competing methods. Notice that our method and
StyleFusion both produce very realistic results, but our method preserves the appear-
ance of the hair with high fidelity to the source image.
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