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1 Implementation Details

In this work, the layers of adaptive contexual bottlenecks in the encoder are
set to L = 8, where the dilation rates of convolutions in each bottleneck are
empirically set to r ∈ R = {1, 2, 3, 4}. In multi-scale spatial-aware attention, the
patch size is set to h = w = {2, 4}. We use λedge = 0.1, λseg = 0.5 for the overall
loss in Eq. 3. The weight of edge loss in Eq. 4 is empirically set to w1 = 5.0.

We train our model with batch size of 20 using the Adam optimizer. We first
use an initial learning rate of 2e − 4 and 1e − 5 and then 5e − 5 and 1e − 6 to
train the main network and edge discriminator respectively. Following [6, 5], we
scale the image size of all datasets to 256× 256 as the input.

2 Visual Results

In this section, we compare our method with state-of-the arts on four large-
scale datasets, i.e., CelebA-HQ dataset [3, 4], Outdoor dataset (OST) [8], and
Cityscapes dataset [1].

2.1 Qualitative Facial Inpainted Results

Compared with the baselines (GC [9], CMGAN [10], ICT [7] and CTSDG [2]),
the inpainted results of faces with various races are illustrated in Figure 1. In the
first case (the black male with a square mask), GC [9] can only emerge blurred
face outlines, and recent methods such as CMGAN [10], ICT [7] are still hard to
generate complete face, while CTSDG [2] results in ripples that affect fidelity.
In the second case (the white female with free-form masks), all baselines cannot
repair the right eyebrow or lips, which our method restores symmetrically and
reasonably. Similarly, only our method produces a harmonious eye shape in the
third case (the Asian female with free-form masks). In addition, as shown in
Figure 2, more facial cases demonstrate that our method can reconstruct images
with semantically consistent and reasonable patches.



2 Y. Yu et al.

2.2 Qualitative Scene Inpainted Results

We provide some scene inpainted results in Figure 3 and 4 respectively. It indi-
cates that our method can achieve state-of-the-art performance in various com-
plex scenarios.
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Fig. 1. Qualitative comparison results on the CelebA-HQ dataset.
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Fig. 2. Visual results on the CelebA-HQ dataset. From left to right are masked image,
ours, and Ground Truth.
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Fig. 3. Visual results on CityScape dataset. From left to right are masked image, ours,
and Ground Truth.
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Fig. 4. Visual results on OST dataset. From left to right are masked image, ours, and
Ground Truth.
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