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Abstract. Stroke based rendering methods have recently become a pop-
ular solution for the generation of stylized paintings. However, the cur-
rent research in this direction is focused mainly on the improvement of
final canvas quality, and thus often fails to consider the intelligibility of
the generated painting sequences to actual human users. In this work, we
motivate the need to learn more human-intelligible painting sequences
in order to facilitate the use of autonomous painting systems in a more
interactive context (e.g . as a painting assistant tool for human users or
for robotic painting applications). To this end, we propose a novel paint-
ing approach which learns to generate output canvases while exhibiting
a painting style which is more relatable to human users. The proposed
painting pipeline Intelli-Paint consists of 1) a progressive layering strat-
egy which allows the agent to first paint a natural background scene
before adding in each of the foreground objects in a progressive fashion.
2) We also introduce a novel sequential brushstroke guidance strategy
which helps the painting agent to shift its attention between different
image regions in a semantic-aware manner. 3) Finally, we propose a
brushstroke regularization strategy which allows for „60-80% reduction
in the total number of required brushstrokes without any perceivable
differences in the quality of generated canvases. Through both quantita-
tive and qualitative results, we show that the resulting agents not only
show enhanced efficiency in output canvas generation but also exhibit
a more natural-looking painting style which would better assist human
users express their ideas through digital artwork.

1 Introduction

Paintings form a key medium through which humans express their ideas and
emotions. Nevertheless, the creation of finer-quality art is often quite challenging
and and requires a considerable amount of time on part of the human painter.

One way to address this problem is to develop autonomous painting agents
which can assist human painters to better express their ideas in a quick and
concise fashion. To this end, there is a growing research interest [8, 9, 11, 14, 18,
23,28–30,35,44,48,49] in teaching machines “how to paint”, in a manner similar to
a human painter. For instance, Huang et al . [18] use deep reinforcement learning
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Fig. 1. Developing a more human-relatable painting style. (Left) Painting sequence
visualization which demonstrates that our method exhibits higher resemblance with the
human painting style as opposed to previous state of the art. (Right) This resemblance
is achieved through 1) a progressive layering strategy which allows for a more human-
like evolution of the canvas, 2) a sequential attention mechanism which focuses on
different image regions in a coarse-to-fine fashion and 3) a brushstroke regularization
formulation which allows our method to obtain detailed results while using significantly
fewer brushstrokes („1/20 as compared to Paint Transformer [28] in above).

to learn an unsupervised brushstroke decomposition for the creation of non-
photorealistic imagery. Zou et al . [49] use gradient descent to optimize over the
brushstroke parameters for the entire painting trajectory. Similarly, Liu et al .
[28] propose a novel Paint Transformer which formulates the “learning to paint”
problem as a feed-forward set prediction problem. Despite their efficacy, existing
works often lack semantic understanding of image contents and are invariably
reliant on a progressive grid-based division strategy, wherein the painting agent
divides the overall image into successively finer grids, and then proceeds to paint
each in parallel. This leads to hierarchically bottom-up painting sequences which
are quite mechanical and thus not applicable for human users.

In this paper, we propose a novel painting pipeline (intelli-paint), which tries
to address the need for more human-intelligible painting sequences, by mimicking
some commonly found traits of the human painting process. This is achieved in
three main ways. First, we propose a progressive layering strategy which, much
like a human, allows the painting agent to successively draw a given scene in
multiple layers. That is, instead of starting to paint the entire scene at once, our
method learns to first paint a realistic background scene representation before
adding in each of the foreground objects in a progressive layerwise fashion.

Second, the human painting process is often characterized by a localized
spatial attention span. For instance, a potential artist would focus on different
local image areas while painting distinct parts of the final canvas [47]. This is
in sharp contrast with previous works, which either focus on the entire image
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or several predefined grid blocks [28, 49]. To better mimic the human style, we
introduce a sequential brushstroke guidance approach which allows the painting
agent to shift its attention between different image areas through a self-learned
sequence of localized attention windows. The spatial dimensions and position of
the localized attention window are progressively adjusted during the painting
process so as to paint a given scene in a coarse-to-fine fashion.

Third, we note that prior works often use a fixed brushstroke budget irre-
spective of the complexity of the target image. This not only leads to wasteful
(and overlapping) brushstroke patterns (refer Fig. 4) but also imparts an artifi-
cial painting style to the final agent. To this end, we propose an inference-time
brushstroke regularization formulation which removes brushstroke redundancies
by regularizing the total number of brushstrokes required for painting a given
canvas. Our experiments reveal that this not only leads to a „60-80% enhance-
ment in the brushstroke decomposition efficiency but also results in more natural
looking painting sequences which are easily intelligible by a human painter.

To summarize, this paper makes the following contributions.
– We introduce a progressive layering approach, which much like a human,

allows the painting agent to draw a given scene in multiple successive layers.
– We propose a sequential brushstroke guidance strategy which enables the

painting agent to focus on different image regions through a learned sequence
of coarse-to-fine localized attention windows.

– Finally, we introduce an inference time brushstroke regularization procedure
which results in a „60-80% enhancement in the brushstroke decomposition
efficiency and leads to more natural painting sequences. which are better
intelligible by a human user.

2 Related Work

Classical stroke based rendering. The problem of teaching machines “how
to paint” has been extensively studied in the context of stroke-based rendering
(SBR), which focuses on the recreation of non-photorealistic imagery through
appropriate positioning and selection of discrete elements such as paint strokes or
stipples [15–17, 26, 38, 40, 46]. Classical works for incorporating semantic knowl-
edge into the painting process have also been explored. [2,5–7] use image saliency
to generate a coarse to fine painting sequence in which sailent details (e.g . edges)
are preserved in increasing amounts. In contrast, our work uses image saliency
to learn a progressive layering strategy in which the agent learns to paint a nat-
ural background scene (refer Fig. 2) before adding in the foreground objects in
a progressive fashion. [34,39] use local attention over a heuristically determined
window for computation of stroke parameters. Our work differs as it provides
an unsupervised approach for learning the optimal movement of this attention
window for painting in a coarse-to-fine manner (refer Sec. 4.1).

Supervised painting methods. More recent solutions [13,14] adopt the use
of recurrent neural networks for computing optimal brushstroke decomposition.
However, these methods require access to dense human brushstroke annotations,
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which limits their applicability to most real world problems. In another work,
Zhao et al . [47] use a conditional variational autoencoder framework for synthe-
sising time-lapse videos depicting the recreation of a given target image. How-
ever, this requires access to painting time-lapse videos from real artists for train-
ing. Furthermore, the time-lapse outputs are generated at very low-resolution as
compared to the high-resolution sequences generated using our approach.

Unsupervised painting methods. In recent years, there has been an in-
creased focus on learning an unsupervised brushstroke decomposition without
requiring access to dense human brushstroke annotations. For instance, recent
works [11, 18, 19, 29, 35, 44] use deep reinforcement learning and an adversarial
training approach for learning an efficient brushstroke decomposition. Optimiza-
tion based methods [49] directly search for the optimal brushstroke parameters
by performing gradient descent over a novel optimal-transport-based loss func-
tion. In another recent work, Liu et al . [28] propose a Paint Transformer which
formulates the painting problem as a feed-forward stroke set prediction problem.

While the above works show high proficiency in painting high-quality output
canvases, the generation of the same invariably depends on a progressive grid-
based division strategy. In this setting, the agent divides the overall image into
successively finer grids, and then proceeds to paint each of them in parallel.
Experimental analysis reveals that this not only reduces the efficiency of the
final agent, but also leads to mechanical (grid-based) painting sequences which
are not directly applicable to actual human users.

3 Need for More Human-Intelligible Painting Agents

Interactive applications. The need for stroke-based-rendering methods (as
opposed to pixel-based methods [12, 21]) is often motivated from the need to
mimic the human artistic creation process [3,28,49], which can then be used for
development of painting assistant and teaching tools [18,28] for human users. The
development of more human-intelligible painting sequences is thus important as
it will allow for the use of autonomous painting methods in an interactive context.

Robotic painting tasks. Robotic applications for expression of AI creativ-
ity are being increasingly explored [22, 31, 42]. Our contribution is significant
in this direction, as our method not only learns a painting sequence which is
more interpretable to actual human users, but more importantly it provides an
efficient painting plan which would allow a robotic agent to paint a vivid scene
using significantly less number of brushstrokes as compared to previous works.

Approximating the manifold of human paintings. While sketch based
methods for photorealistic image generation [4, 29, 43, 45] have been extensively
studied, the use of partially drawn human paintings for image synthesis remains
unexplored due to lack of large-scale collection of human (or human-like) painting
trajectories. In an exciting concurrent work, Singh et al . [36] use the improved
human-likeliness of our painting sequences in order to perform photorealistic
image synthesis and editing from rudimentary user paintings and brushstrokes.
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Fig. 2. Method Overview. Given a target image I, the Intelli-Paint agent first learns to
paint a realistic background scene on the canvas. Once the background scene has been
painted, the agent then proceeds to progressively add each of the foreground objects
using a sequential brushstroke guidance procedure. To do this, the painting agent
first uses the convex combination formulation from Eq. 6 to select the foreground
object it would like to paint (indicated by object window Gt). The features within
each object region are then painted in a coarse-to-fine fashion through a sequence of
localized attention windows Wt. Finally, the brushstroke sequence is fed into a stroke-
regularization procedure which removes brushstroke redundancies (and overlaps) to
output the most efficient painting sequence for each test image.

4 Our Method

The intelli-paint framework (Fig. 2) is based on a two-stage hybrid optimiza-
tion strategy which consists of two modules: sequential-planner (SP) and stroke-
regularizer (SR). In the first stage, the sequential-planner (SP) learns to predict a
coarse but more human-like initialization for the brushstroke sequence sinit. The
coarse brushstroke sequence initializations are then fed into a gradient descent
based stroke regularization (SR) procedure, which removes redundant brush-
stroke patterns and refines the original brushstroke parameters to output the
most efficient stroke decomposition spred for each test image. This two-stage
process can be mathematically formulated as,

sinit “ SP pCinit, Itargetq Ñ spred “ SR psinit, Itargetq, (1)

where Cinit signifies the blank canvas initialization and I is the target image. In
the following sections, we discuss each of the above modules in full detail.
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4.1 Sequential Planner

Reinforcement Learning Formulation. The sequential-planner (SP) is mod-
elled as a deep reinforcement learning agent which learns a painting policy π pre-
dicting vectorized brushstroke parameters at (modeled as a Bézier curve [18,35])
from the current agent state st. The agent state st at any timestep t is modeled
as the tuple pCt, I, t,Gt,Wt,SI , lq, where Ct is the canvas state, I is the tar-
get image, SI signifies the target-image saliency map, l is the current painting
layer (refer Sec. 4.1.2), and pGt,Wtq represent the coarse and fine local attention
windows for the painting agent respectively (refer Sec. 4.1.3).

The canvas state Ct is updated using a differentiable neural renderer module,
which rasterizes the predicted brushstroke parameters at to output a brushstroke
alpha map Sαpatq and its colored rendering Scolorpatq. The canvas updates at
each timestep t are then computed as follows,

Ct`1 “ Ct d p1 ´ Sαpatqq ` Scolorpatq. (2)

We next discuss further details regarding the above formulation which allows
our painting agent to generate output canvases while exhibiting some commonly
found traits (e.g . layering, sequential attention) of the human painting process.

Progressive Layering: The human painting process is often progressive and
multi-layered [33, 47]. That is, instead of painting everything on the canvas at
once, humans often first paint a basic background layer before progressively
adding each of the foreground objects on top of it (refer Fig. 1). However, such a
strategy is hard to learn using previous works which directly minimize the pixel
wise distance the generated canvas Ct and the target image I.

To this end, we propose a progressive layering strategy, which much like a
human artist, allows the painted canvas to evolve in multiple successive layers.
The objective of the painting agent in the first layer, is to paint a realistic
background scene by trying to only focus on the non-salient (background) image
areas. In doing so, the salient image regions are painted so as to maximize the
efficiency of painting the background contents (e.g. salient region corresponding
to a bird sitting on a tree would be painted while focusing on tree leaves and
branches, as in Fig. 4). Once the background layer is drawn, the painting agent
in the successive layer then proceeds to add different foreground objects in a
decreasing order of saliency. An illustration of a two layer painting process is
shown in Fig. 2. The painting agent first draws a realistic background scene
(by focusing only on background image contents like ground, grass, etc.), before
adding in the foreground objects (sheep) in the second layer.

In order to achieve this layering process, we first divide the overall painting
episode into multiple layers as follows,

Cout “

L´1
ÿ

l“0

T {L
ÿ

t“1

Cl
t d p1 ´ Sαpaltqq ` Scolorpaltq, (3)
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where L “ 2 is the number of layers3, T is the episode length, Cl“0
0 signifies an

empty canvas, and Cl“1
0 is initialized as the canvas output Cl“0

T {L from last layer.
Given canvas state Ct, input image I and foreground saliency map SI , the lay-
erwise painting style can then achieved be achieved by optimizing the following
layered reward objective for each layer l,

rlayert plq “ DpI d MIplq, Ct`1 d MIplqq ´ DpI d MIplq, Ct d MIplqq, (4)

where DpI, Ctq is the joint conditional Wasserstein GAN [1] discriminator score
for image I and canvas Ct [18], and the layered-mask MIplq is defined as,

MIplq “ 1 ´ SI d p1 ´ lq. (5)

Sequential Brushstroke Guidance: Human painters often exhibit a localized
spatial attention span while focusing on distinct image areas [47]. This is in
stark contrast with previous works which either compute stroke decomposition
globally over the entire canvas or over a set of predefined grid regions [18,28,49].
To this end, we propose a sequential brushstroke guidance strategy, which allows
the reinforcement learning agent to shift its attention between different image
regions through a sequence of coarse-to-fine attention windows tW0,W1 . . .WT u.
In particular, the computation of the localized attention window Wt at any
timestep t during the painting process is done in the following broad steps,

– Foreground object selection: The RL agent first selects the in-focus fore-
ground object by predicting coordinates of a coarse global attention win-
dow Gt. Given an input image I with N foreground objects, we model
Gt “ xG

t , y
G
t , w

G
t , h

G
t as a convex combination of each of in-image object

bounding box detections Bi P R4, i P r1, N s.

Gt “

N
ÿ

i“0

αt
i Bi, s.t. @t

ÿ

i

αt
i “ 1, αt

i ě 0. (6)

where αt “ tαt
0, . . . αt

Nu P RN`1 are the spatial attention parameters
predicted by the RL agent at timestep t. B0 represents an attention window
over the entire canvas and is used to switch focus to background image areas.

– Local attention window selection: Within each object window Gt, the agent
further learns to sequentially shift its focus on different in-object features
through a sequence of coarse-to-fine local attention windows Wt. In partic-
ular, given the coarse object window coordinates Gt “ xG

t , y
G
t , w

G
t , h

G
t , the

coordinates Wt “ xL
t , y

L
t , w

L
t , h

L
t for the finer localized attention windows

3 For simplicity, we primarily use L “ 2 in the main paper. Further details on extending
progressive layering to L ą 2 are provided in Appendix A.2.
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are computed in a Markovian fashion as,

xL
t`1 “ xG

t`1 ` pxL
t ` ∆xtq wG

t`1, (7)

yLt`1 “ yGt`1 ` pyLt ` ∆ytq hG
t`1, (8)

wL
t`1 “ pmaxp1 ´ t̃, wminq ` ∆wtq wG

t`1, (9)

hL
t`1 “ pmaxp1 ´ t̃, hminq ` ∆htq hG

t`1, (10)

where t̃ P r0, 1s is the normalized episode timestep, pwmin, hminq are the
minimum attention window dimensions and p∆Wt “ ∆xt, ∆yt, ∆wt, ∆htq P

R4 are successive Markovian [10] updates predicted by the RL agent. The
above Markovian update formulation helps ensure spatial closeness of two
consecutive local attention windows (Eq. 7,8), while facilitating a coarse-to-
fine adjustment of the spatial attention window dimensions (Eq. 9,10).

– Brushstroke parameter adjustment : Finally, the coordinates of attention win-
dow Wt are used to modify the predicted brushstroke parameters alt (mod-
eled as Bézier curve), so as to constrain the painting agent to only draw
within the local attention window. This procedure can be expressed as,

alt Ð ParamAdjustmentpalt,Wtq. (11)

Please refer Appendix C for detailed implementation notes and instructions.

Human-Consistency Penalties: Human artists inherently try to focus on
spatially close image areas and try to avoid unnecessary spatial oscillations when
painting a given image [47]. In this regard, while the Markovian adjustment pro-
cedure introduced in Sec. 4.1.3 ensures the spatial closeness of two consecutive
local attention windows Wt, unnecessary movements may still arise due to oscil-
lations between different coarse attention windows Gt. To prevent learning such
stroke decompositions we introduce the following spatial penalty,

rspatialt “ ´}Gt`1 ´ Gt}F , (12)

where }.}F represents the Frobenius norm.
Similarly, human painting sequences are also characterized by the use of same

(or similar) color patterns at consecutive timesteps [47]. Thus, in order to mimic
this behaviour we propose the following color transition penalty rcolort ,

rcolort “ ´}pR,G,Bqt`1 ´ pR,G,Bqt}F , (13)

where pR,G,Bqt represents the brushstroke color prediction at timestep t.

4.2 Brushstroke Regularization

Existing works on autonomous painting systems are often limited to using (an
almost) fixed brush stroke budget irrespective of the complexity of the target
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image. Experiments reveal that this not only reduces the efficiency of the gener-
ated painting sequence but also results in redundant (overlapping) brushstroke
patterns (Fig. 4) which impart an unnatural painting style to the final agent.

To address this, we propose an inference-time brushstroke regularization
strategy which refines and removes redundancies from the initial brushstroke se-
quence predictions sinit to output the most efficient stroke decomposition spred
for each test image. To do this, we first associate each brushstroke with an im-
portance vector βl

t P r0, 1s by modifying the stroke rendering process as,

Cout “

L´1
ÿ

l“0

T {L
ÿ

t“1

Cl
t d p1 ´ βl

t Sαpaltqq ` βl
t Scolorpaltq,

where βl
t “ signpxl

tq and xl
t „ N p0, 10´3q is randomly initialized from a normal

distribution. We then use gradient descent to optimize the following loss function
over both brushstroke parameters alt and importance vectors βl

t (through xl
t)

Ltotalpa
l
t, x

l
tq “ L2pI, Coutq ` γ

L´1
ÿ

l“0

T {L
ÿ

t“1

}βl
t}1, (14)

where the backpropagation gradients Bβl
t{Bxl

t are computed as σpxl
tqp1´σpxl

tqq,
σp.q is the sigmoid function and γ balances the weightage between brushstroke
refinement and the need to use as few brushstrokes as possible.

5 Implementation Details

Neural renderer. In this paper, we primarily adopt the PixelShuffleNet archi-
tecture from Huang et al . [18] while designing the neural differentiable renderer.
While our approach is not limited to a particular rendering mechanism, we find
that as opposed to the opaque brushstroke models used in [28, 49], the use of a
more naturally blending brushstroke representation from [18], allows our method
to mimic the human painting style in a more closer fashion.

Layered training. The use of progressive layering module requires condi-
tionally training the painting agent policy at each layer while initializing the
canvas state with the output from the last layer. In order to save computa-
tion time during training, we train the successive layer policies in consecutive
batches while using the canvas output from the last layer. Furthermore, we only
use L “ 2 layers at the training time. At inference time, the trained progressive
layering policy can then be applied for L ą 2 layers by appropriately modifying
the target image saliency maps. Please refer Appendix A.2 for further details.

Saliency and bounding box predictions. A key component of the Intelli-
Paint pipeline is the sequential brushstroke guidance strategy which relies on
the computation of object saliency and bounding box predictions. In this work,
we use a pretrained U-2-Net model [32] model in order to compute foreground
saliency predictions. The bounding box predictions are then computed as the
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(a) Target (b) Ours (c) Transformer (d) Optim (e) RL (f) Semantic-RL

Fig. 3. Qualitative method comparison w.r.t painting efficiency. Comparing final can-
vas outputs while using „ 300 brushstrokes for (b) Ours, (c) Paint Transformer [28],
(d) Optim [49], (e) RL [18] and (f) Semantic-RL [35]. We observe that our approach
results in more accurate depiction of the fine-grain features in the target image while
using a low brushstroke count. Please zoom in for better comparison.

union over bounding box outputs from pretrained Yolo-v5 [20] and the overall
bounding box for the saliency prediction output.

Overall training. The RL-based sequential-planner (SP) agent is trained
using the model-based DDPG algorithm [18] with the following overall reward
function for each layer l,

roverallt plq “ rlayert plq ` µ rgbpt ` η rspatialt ` λ rcolort , (15)

where rgbpt is the guided-backpropagation based reward from [35]. The final RL
agent is trained for a total of 5M iterations with a batch size of 128.

6 Comparison with State of the Art

In this section, we provide extensive qualitative and quantitative results com-
paring our method with recent state-of-the-art neural painting methods [18, 28,
35,49]. First, in Sec. 6.1, we demonstrate the improved painting efficiency of our
method in generating detailed paintings when using limited number of brush-
strokes. Second, we show that our method leads to painting sequences with
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increased resemblance with the human painting style (refer Sec. 6.2). Finally, in
Sec. 6.3, we provide a discussion of some limitations of our approach in order to
aid a more holistic understanding of the proposed method and future directions.

6.1 Painting Efficiency

As discussed in Sec. 3, the ability to learn an efficient painting plan, in order to
paint detailed output canvases using as few brushstrokes as possible, is essential
for most interactive and robotic painting applications [22,31,42]. In this section,
we compare the painting efficiency of our approach with previous works while
painting under a limited brushstroke budget.

Qualitative Comparison. Fig. 3 shows a qualitative comparison between
the generated canvases using a low budget of 300 brushstrokes per canvas. Note
that due to grid-wise formulation for Paint Transformer [28] and Optim [49], the
corresponding results are reported after „360 and 330 brushstrokes respectively.
We observe that our method results in more accurate depictions of target image
(e.g. fine-grain features for car, hut, and birds in row 1-3 from Fig. 3) when us-
ing a limited number of brushstrokes. In contrast, previous methods often lack
an intelligent mechanism for efficient brushstroke distribution across the canvas
which leads to poor performance when using a limited brushstroke budget. Sur-
prisingly, we also find that Paint Transformer [28] performs worse than previous
methods like Optim [49] when using a small number of brushstrokes.

Quantitative Comparison. Table 1 shows quantitative results on the qual-
ity of the finally generated canvases while using „ 300 brushstrokes per canvas.
The final results are reported in terms of both pixel wise l2 distance Lpixel

and perceptual similarity loss Lpcpt [21] between the final canvas and the tar-
get image. The quantitative values show that our method helps in significantly
lowering the distance metrics between the painted canvas and the target im-
age as compared to previous works. In particular, we note that for the CUB-
Birds dataset [41], our approach leads to a reduction of 30.1%, 25.6% 24.9% and
38.2% in the Lpixel distance metric as compared to RL [18], Semantic-RL [35],
Optim [49] and Paint Transformer [27], respectively.

6.2 Resemblance with Human Painting Style

Qualitative Comparison. We demonstrate the practical applicability of our
method to actual human users by qualitatively comparing the painting sequences
generated by our method with those drawn by actual human artists (refer Fig. 4).
We observe that our method bears high resemblance with the human painting
style in terms of both layerwise painting evolution and localized attention. In
contrast, previous state-of-the-art methods often try to directly minimize the
pixel-wise distance between painted canvas and the target image, thereby leading
to intermediate canvas states which are less intelligible for a human user.

For instance, consider the first example from Fig. 4. Much like a human
painter, our method first paints a realistic background representation (consisting
of the sky, mountains, river and the ground) before drawing in the foreground
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(a) Human (b) Ours (c) Transformer (d) Optim (e) RL (f) Semantic-RL

250 1273 500 1250

250 1190 500 1250

1250

1250

Fig. 4. Qualitative method comparison w.r.t resemblance with the human painting
style. We compare different methods (b-f). All painting sequences are generated using
a different brushstroke count (indicated in the boxes), so as to ensure similar pixel-
wise reconstruction loss with the target image. The corresponding frames for each
sequence are computed after „ 10%, 40%, 60% and 100% of the overall painting episode.
We observe that our method offers higher resemblance with the human painting style
(shown in column-a) as compared to previous works.
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Method Stanford Cars [24] CUB-Birds [41] Intelli-Paint Preference
Lpixel Lpcpt Lpixel Lpcpt Study A Study B

RL [18] 78.06 0.54 72.93 0.56 87.17 % 83.11 %
Semantic [35] 79.98 0.55 68.46 0.55 84.46 % 69.09 %
Optim [49] 76.52 0.54 67.90 0.53 76.95 % 75.41 %
Transformer [28] 87.78 0.57 82.43 0.56 91.11 % 86.50 %
Ours 56.92 0.44 50.94 0.45 N/A N/A

Table 1. Quantitative Evaluations. (Left) Method comparison w.r.t painting efficiency
using a limited brushstroke budget. (Right) User-study results, showing % of painting
samples for which human users prefer intelli-paint sequences over previous works.

car in a coarse-to-fine fashion. This results in a more human-like evolution of the
painted canvas which can be easily relatable to actual human artists. In contrast,
methods like Paint Transformer [28], Optim [49] and RL [18] directly make
brushstrokes based on low-level image features (e.g. red brushstrokes for the car
in row-1 and head of the bird in row-5). This leads to more bottom-up painting
sequences which are different from the human style. Meanwhile, Semantic-RL
[35] tries to paint both foreground and background regions in parallel, thereby
lacking the semantic painting evolution exhibited by human users.

Quantitative Comparison. We also report quantitative results demon-
strating the human-like resemblance of our approach as compared to previous
works. To this end, we devise a human user study wherein each human partici-
pant is shown a series of paired painting sequences comparing our method with
previous works. For each pair, the subject is then asked to select the painting
sequence which best resembles the human painting style. The user study is per-
formed in two different variations: 1) User-Study A, where subjects are provided
with a human painting sequence to act as reference in their decision-masking, and
2) User-Study B, where participants are only shown a pair of artificial painting
sequences (ours vs competing method) and are thus asked to make the deci-
sion based on their own subjective understanding of the human painting style.
User-Study A was conducted across 10 different full-length painting sequences
procured from real human artists, while User-Study B uses a set of randomly cho-
sen 100 painting sequences from the CelebA [25] and CUB-Birds [41] datasets. A
total of 50 unique Amazon Mechanical Turk subjects were used for both studies.

Results for both user-studies are shown in Table 1. User-Study A reveals
that human subjects consider our painting sequences to be closer to those of a
particular human artist (used as reference). However, as noted in Sec. 6.3, since
each person has its own subjective understanding of what a human-like painting
style constitutes, it does not answer the broader question on the relatability of
these painting sequences from the context of a generic human user. User-study B
tries to address this question. While we observe that the corresponding preference
scores are lower than User-study A, it provides evidence that our approach is
considered more relatable by a majority of human subjects.
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6.3 Discussion and Limitations

In this section, we provide a discussion of some limitations of our method in
order to facilitate a more holistic understanding of our approach.

Limited variation in painting style. We note that our method only mim-
ics some commonly found traits (progressive layering, coarse to fine localized at-
tention) of the human painting process, and, thus does not claim to be calibrated
to the fine-grain variations in the painting styles of each human artist. Never-
theless, as demonstrated in Table 1, we find that our painting style is considered
more relatable (over previous works) by majority of human users.

Human-like vs human-intelligible. We note that while our work provides
a step towards improving the human-intelligibility of the painting sequences over
previous works, it does not claim to be truly human-like. Several factors e.g . lim-
ited variation in painting style (discussed above), use of primitive brushstrokes
(Bézier curves) etc. contribute to this limitation. This leaves much room for im-
provement in the development of truly human-like painting agents, which could
motivate future work in this area (e.g . using advanced stroke representation [37]).

Reliance on pretrained image saliency models. Our method relies on
the computation of image saliency masks for allowing a human-like evolution of
the painted canvas. Thus limitations of the pretrained U2-Net [32] model become
our limitations. Nevertheless, we note that failure to detect a particular salient
object would simply lead to painting the corresponding region in the background
layer, and thus does not affect the quality of the final canvas.

Training requirements. In order to learn a human-relatable style, our
method requires self-supervised training on a dataset of real images. This is in
contrast with Paint transformer [28] which performs self-training on an artificial
dataset, and Optim [49] which does not require any training. That said, once
trained we find that our method is able to generalize across a range of domains at
inference time. For instance, we note that all results in Fig. 3, 4 were generated
using an Intelli-paint model trained only on the CUB-Birds [41] dataset.

7 Conclusion

In this paper, we emphasize that the practical merits of an autonomous painting
system should be evaluated not only by the quality of generated canvas but also
by the interpretability of the corresponding painting sequence by actual human
artists. To this end, we propose a novel Intelli-Paint pipeline, which uses progres-
sive layering to allow for a more human-like evolution of the painted canvas. The
painting agent focuses on different image areas through a sequence of coarse-to-
fine localized attention windows and is able to paint detailed scenes while using
a limited number of brushstrokes. Experiments reveal that in comparison with
previous state-of-the-art methods, our approach not only shows improved paint-
ing efficiency but also exhibits a painting style which is much more relatable
to actual human users. We hope our work opens new avenues for the further
development of interactive and robotic painting applications in the real world.
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