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Abstract. Image animation aims to animate a source image by using
motion learned from a driving video. Current state-of-the-art methods
typically use convolutional neural networks (CNNs) to predict motion
information, such as motion keypoints and corresponding local transfor-
mations. However, these CNN based methods do not explicitly model
the interactions between motions; as a result, the important underlying
motion relationship may be neglected, which can potentially lead to no-
ticeable artifacts being produced in the generated animation video. To
this end, we propose a new method, the motion transformer, which is
the first attempt to build a motion estimator based on a vision trans-
former. More specifically, we introduce two types of tokens in our pro-
posed method: i) image tokens formed from patch features and corre-
sponding position encoding; and ii) motion tokens encoded with motion
information. Both types of tokens are sent into vision transformers to
promote underlying interactions between them through multi-head self
attention blocks. By adopting this process, the motion information can
be better learned to boost the model performance. The final embedded
motion tokens are then used to predict the corresponding motion key-
points and local transformations. Extensive experiments on benchmark
datasets show that our proposed method achieves promising results to
the state-of-the-art baselines. Our source code will be public available.

1 Introduction

Image animation (also known as motion transfer) is a technique that aims to
animate a source image based on the motion information extracted from a given
driving video, such that the generated video can mimic the motion in the driv-
ing video while simultaneously retaining the appearance of the target object
in the source image. This approach enables people to quickly create innovative
content without the need to start from scratch, which can save large amounts
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time. Motion transfer has gained significant attention from the computer vision
community in recent years [21,5,11,27,34,35,37], owing to its wide range of prac-
tical applications across entertainment and education such as virtual try-on [2,7],
video conferencing [44], e-commerce advertising [49], and so on.

Existing image animation works can be roughly divided into two categories,
namely supervised methods and unsupervised methods. In more detail, super-
vised methods typically focus on the animation of a specific object type (e.g .,
human body, human face, etc.) and utilize a third-party model to extract struc-
tural representations, which might take the forms of 2D keypoints [23,24], 3D
meshes [57], 3D optical flow [21] and so on. This type of method has advantages
in modeling accurate object structures, but is limited by the object-specific ap-
proach to image animation. On the other hand, unsupervised methods [34,35,37]
aim to avoid the requirement for object-specific predefined structure representa-
tions. These approaches usually learn intermediate motion representations (e.g .,
keypoints and affine matrices) between two images by warping one image to
reconstruct another. Currently proposed unsupervised methods generally com-
prise of two modules: a motion estimator and an image generator. In these
methods, the image generators tend to be quite similar, while the motion es-
timators are always the research focus and are proven to be quite crucial for
animation performance. For example, Siarohin et al. [34] utilize an unsupervised
keypoint detector to estimate sparse motions. These authors later boost the per-
formance of their method by adding a head in order to better predict the affine
matrix [35]. Moreover, the method proposed in [37] further improves the motion
learning process, by entangling a keypoint and the corresponding affine matrix
into a single heat-map estimation.

In order to animate arbitrary objects, we follow the unsupervised setting and
focus primarily on motion estimation in this work. It is worth noting that all
CNN-based methods discussed above fail to consider the interactions between
motions, which may prevent these methods from learning robust motion estima-
tors. We believe the robustness of motion estimators can be boosted by the global
information of motions. Accordingly, in this work, we make the first attempt to
model the global motion information by employing vision transformers in un-
supervised image animation. More specifically, we explicitly model the motion
(i.e., the keypoint and corresponding affine matrix) as a query token in the trans-
former, which we refer to as motion tokens and treat as learnable parameters. We
further introduce image tokens, which are obtained by projecting the flattened
image patch features to the same dimension as the motion tokens. These motion
tokens, conditioned on image tokens, are then decoded to final keypoints and
affine matrices through several transformer layers. Intuitively, the motion trans-
former compensates for the lack of prior structural representations by naturally
introducing global motion information to assist with part motion learning; this
procedure is efficiently implemented through the self-attention mechanism. We
can summarize the advantages of the motion transformer in two aspects with ref-
erence to different objects: i) For objects with relatively non-rigid motions (such
as human body), it learns the set of local motions in a more stable fashion; ii) for
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objects with relatively rigid motions (such as faces), it exhibits a strong ability
to learn global motion patterns simultaneously for all motion tokens.

We conduct extensive experiments on four benchmark datasets, which con-
tain various kinds of objects such as talking heads, human bodies, animals, etc.
The superior performance of our proposed method relative to existing baselines
clearly demonstrates that global motion information can help to improve the
robustness of motion estimators, as well as showing the success of our proposed
motion transformer in capturing the global motion information.

2 Related Work

Image animation: Supervised methods [23,24,11,27,29,55,60,19,5,30,56,36,26]
focus on the animation of a specific object type. Among these, the human body
[22,29,13,54,31,6,1,33,52,14] and human face [11,12,28,51,46,48,3,41,47,16] are
the most popular animation objects. Methods of this kind rely on object-specific
landmark detectors, 3D models or other forms of supervision, which are usually
pre-trained on a large amount of labeled data. On one hand, the advantage of
these methods is that based on the pre-obtained structure representations, it
is easier to further learn the warping flow between two images. On the other
hand, these methods are also hampered by an obvious limitation, as they are
only suitable for a specific object type.

Unsupervised methods [34,35,37,40] have been recently proposed to address
the above limitation. These approaches typically leverage a large amount of
easy-to-obtain unlabeled web videos and design image reconstruction losses to
learn intermediate motion representations (e.g ., keypoints and affine matrices).
Benefiting from the unsupervised scenario, methods of this kind can be applied to
animate a wide range of objects, including human bodies, human faces, animals,
etc. It is worth noting that no predefined structural representations of objects are
available for training in those methods. Specifically, Monkey-Net [34] proposes to
learn intermediate part keypoints as sparse motions by means of the downstream
image reconstruction task. Subsequently, FOMM [35] improves on this approach
by simultaneously regressing the local affine matrices along with the keypoints
of object parts. Moreover, MRAA [37] further improves FOMM by combining
the learning of part keypoints and local affine matrices into a single heat-map
estimation process. Among these approaches, however, Monkey-Net is limited
by the coarsely defined motion model, FOMM suffers from regressing stable
affine matrices, while MRAA struggles in modeling relatively rigid motions (e.g .,
human face) and fails to consider cooperative part motions.

It is worth noting that all above unsupervised methods focus on the motion
estimation process in image animation. Our method also lies in this research
scope, with a newly proposed motion transformer as the motion estimator. Sim-
ilar to FOMM, our method also regresses the affine matrices, while it avoids the
instability problem by adopting a global-assisted approach; moreover, benefiting
from this approach, our method is also better able to handle rigid motions and
cooperative local motions when compared with MRAA.
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Vision transformer: Transformers [42] have achieved great success in natu-
ral language processing (NLP) community. Recently, they have also achieved
promising results in computer vision tasks. Among them, DETR [4] and ViT [9]
are the pioneering methods, and have been followed by a series of other vision
transformer methods [59,58,20,18,53,50,43]. DETR [4] was the first to introduce
transformers to the object detection. It follows the encoder-decoder architecture
of traditional transformers in NLP, where object queries are introduced as learn-
able parameters. ViT [9] proposes a transformer encoder architecture for image
classification, which directly splits the image into patches and introduces a learn-
able classification token to aid in performing the task. Recently, several methods
have proposed variant forms of transformers for landmark detection [45,18,50].
Our method is motivated by these recent works, in that we regress the object
keypoints as well as affine matrices for image animation.

3 Methodology

In the context of unsupervised image animation, we are given a source image S
and a driving video D = {Zi}, where Zi is the i-th video frame. Unless otherwise
noted, in the remainder of this work we will use Z to represent a video frame
for the sake of simplicity.

3.1 The General Framework for Image Animation

Existing unsupervised image animation methods [34,35,37] generally perform
image animation in a frame-by-frame manner. Given the source image and each
frame of the driving video, the image animation model outputs a synthesized im-
age that mimics the pose of the object in the driving frame while also preserving
the appearance of the object in the source image.

Unsupervised models typically comprise two stages: motion estimation and
image generation. The motion estimation stage produces the relative motion
(often in the form of optical flow) between each driving video frame and the
source image, while the image generation stage warps the source image based on
the relative motion in order to generate the synthesized image.

To obtain the relative motion, the motion information of the source image
or a driving video frame is first separately predicted and then ensembled to
calculate the dense motion flow. More specifically, the motion information of a
single image is disentangled as a set of transformations of object parts, each of
which is represented by a keypoint and its affine transformation from an latent
reference image. A motion estimator is designed to predict the keypoints and
the corresponding affine transformations for the input image.
Motion estimation: The first stage of the general image animation framework
involves estimating relative motions between the source image and driving frame.
This stage plays a critical role in the process, as the estimation accuracy largely
determines the overall quality of the generated video. Existing works [34,35,37]
generally follow CNN-style models, where the transformation of each object part
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Fig. 1. Overview of the general image animation framework and our proposed motion
transformer. Unlike the existing CNN based works [35,37], our motion transformer in-
troduces image tokens and motion tokens, which encode visual and motion information
respectively. And those tokens are further sent into multiple transformer layers to mine
the underlying interactions between them, the self attention and cross attention are
denoted by the straight and curved lines. By using a linear head, the output motion
tokens are finally regressed to keypoints and their corresponding affine matrices.

is derived by learning a mapping from the learned feature maps. We contend
that current CNN-based methods may not adequately capture the global motion
information, as they do not consider interactions between part motions.

Assume there are K parts in an object for either the source image or each
driving frame. In the motion estimation stage, the goal is to learn a motion trans-
formation (tk, Ak) for the k-th part, where tk ∈ R2×1 denotes a keypoint (i.e.,
the centroid of the transformation), Ak ∈ R2×2 represents the corresponding
affine transformation matrix, and k = 1, ...,K.

Moreover, since the affine transformation Ak should be applied only to a cer-
tain neighboring area (also known as a mask) of the object part rather than the
entire image, we constrain the effect of Ak by further learning the correspond-
ing mask Mk. In the literature [35,37], the mask estimator is usually designed
as a CNN-based encoder-decoder architecture. Specifically, it takes the warped
source image as input and generates the masks {Mk|Kk=1}’s of K object parts.
Furthermore, an additional occlusion map can also be learned to guide the image
generator in inpainting the occluded regions. We refer the readers to [35,37] for
further details.

Motion representation: After learning (tkS , A
k
S) and (tkZ , A

k
Z), we can obtain

the following motion flow from the driving frame Z to the source image S for
the k-th object part based on the first-order motion model [35,37], as follows:

T k
S←Z(c) = tkS +Ak

S(A
k
Z)
−1(c− tkZ), (1)

where c denotes any image coordinate in the driving frame.
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We next obtain the dense motion flow TS←Z(c) by combining T k
S←Z(c) with

masks Mk(c) as linear weights:

TS←Z(c) =

K∑
k=1

Mk(c) · T k
S←Z(c), (2)

where Mk(c) is the mask of the k-th object part at the coordinate c and∑K
k=1 M

k(c) = 1. Moreover, the dense motion flow TS←Z(c) represents that

the pixel value at coordinate c of the generated image Z̃ is warped and obtained
based on the pixel value at coordinate TS←Z(c) of the source image.
Image generation: Given the source image S and the dense motion flow
TS←Z(c), a Unet-based encoder-decoder generator is introduced to generate the
synthesized image Z̃. Specifically, the source image S is passed through the en-
coder to obtain feature maps, after which it is then warped according to the
dense motion flow TS←Z(c). Finally, the decoder learns the synthesized image Z̃
based on the warped feature map.

3.2 Motion Transformer

Since existing CNN-based methods do not explicitly model the interactions be-
tween motions, the underlying motion relationship is not fully exploited and
cannot be properly captured. We argue that this underlying relationship is crit-
ical to the process and helps reduce artifacts in generated animation videos.
For instance, when people smile, the movement of their mouths and eyes oc-
curs simultaneously, meaning that they are highly correlated. Considering this
limitation of existing CNN-based models, we aim to seek out a better way of
modeling the motion interactions.

To address the above issue, we propose to take advantage of the recently pro-
posed vision transformer. We accordingly name our method the motion trans-
former. In a vision transformer layer, raw data are processed to form tokens,
which act as the layer input. The underlying relationship among those tokens
can be effectively mined through the attention mechanism. As a result of adopt-
ing this approach, meaningful embeddings can be learned for those tokens. Our
motion transformer employs multiple vision transformer layers.

In our proposed motion transformer for image animation, we explicitly model
the motions of object parts as input query tokens (motion tokens) to the trans-
former. We further obtain image tokens by projecting image patch features
through a fully connected layer and subsequently embedding them with position
encoding. By feeding those two types of tokens together into the transformer,
the motion tokens are able to utilize the global context information of the entire
image through attention with image tokens, which aids in better capturing the
interaction between object part motions. Moreover, a linear head is designed in
the last transformer layer to directly regress the keypoints and affine matrices
of the motions. The entire process is illustrated in Fig 1.
Tokens: Two types of tokens are introduced in our motion transformer. We first
introduce a set of motion tokens, inspired by the recent vision transformers [4].
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Each motion token is expected to encode the motion information of an object
part (i.e., a keypoint and its affine transformation). These motion tokens are
considered as learnable embeddings in our method; we denote them as {P k

0 |Kk=1},
where P k

0 ∈ Rd represents the k-th object part and d is the embedding dimension.
The second type of tokens is the image token. Rather than directly using

raw images, we first extract low-level image features by utilizing a CNN model.
Subsequently we flatten the patch image features, with each patch projected to
dimension d. To maintain the position information of the patch image features,
we add the projected features by the absolute position encoding. We refer to the
result features as image tokens, denoted as In0 ∈ Rd, n = 1, ..., N .
Multiple vision transformers: When an object moves, different object parts
are not completely independent. Rather, they often correlate with each other,
which, however, was not discussed in existing motion transfer methods [35,37].
To model the relation among tokens, we utilize the natural advantages of vision
transformer for building attention. In particular, a motion token is updated via
all motion tokens and image tokens, and correspondingly we build two types of
attention for the motion tokens. i) self attention for mining the underlying rela-
tionship between motion tokens; ii) cross attention for decoding motion tokens
to the final keypoints and affine matrices.

Formally, let us denote by P i
l−1 a motion token that to be input to the

l-th transformer layer, in which P i
l−1 is linearly projected to the query, key

and value features QP i
l−1

,KP i
l−1

, VP i
l−1

; and similarly for image tokens we have

QIi
l−1

,KIi
l−1

, VIi
l−1

. For ease of illustration, we temporally drop the subscript and

define the multi-head self attention (MSA) as follow:

headj = softmax

QW j
Q

(
KW j

K

)T

√
d

VW j
V , (3)

MSA (Q,K, V ) = [head1, ..., headh]WO, (4)

WO,W
j
Q,W

j
K ,W j

V are learnable parameters, and h represents the total number
of heads in each transformer layer. In practice, Q is the query from a token, while
K,V are from another token. With this definition, the motion token is updated
by self attention and cross attention as follows:

P i
l =

∑
j

MSA(QP i
l−1

,KP j
l−1

, VP j
l−1

) +
∑
j

MSA(QP i
l−1

,KIj
l−1

, VIj
l−1

), (5)

P i
l = FFN

(
LN

(
P i
l

)
+ P i

l

)
, (6)

where FFN and LN denote the feed forward network and layer normalization
respectively. On one hand, the left term of Eqn. (5) (i.e., the self attention)
indicates that each motion token tends to query all other motion tokens, in
this way the underlying relationship between motion tokens could be effectively
captured; on the other hand, the motion token can be gradually embedded with
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motion information through querying the image tokens, as formulated in the
right term of Eqn. (5) (i.e., the cross attention).

The two types of attention process above enable the efficient interactions
between tokens. In implementation, different from recent works [4,20] in which
the two types of attention process are separately conducted, we found it more
efficient to unify the self attention and cross attention in a single transformer
architecture. To do this, we directly concatenate the image tokens and motion
tokens as the initial input tokens F0 = [P 1

0 ; ...;P
K
0 ; I10 ; ...; I

N
0 ] ∈ R(N+K)×d, and

use the single self attention process to update the concatenated tokens:

F i
l =

∑
j

MSA(QF i
l−1

,KF j
l−1

, VF j
l−1

), (7)

F i
l = FFN

(
LN

(
F i
l

)
+ F i

l

)
. (8)

Note that in this procedure, image tokens are also updated with attention to
all tokens, while to our observation, this dose not affect the performance, and
the unified self attention is more efficient in end-to-end training.

At the final transformer layer, we take out the motion tokens P k
L from the

output token feature FL, and employ a linear head to directly regress the affine
matrix and translation vector. Let Wh ∈ Rd×6 denote the parameters of the
linear head; the decoded part affine matrix and translation vector of each motion
token are then computed as [Ak, tk] = P k

LWh.

3.3 Training

We consider the following losses to formulate the objective function of our
method. The whole training process is conducted in an end-to-end fashion.
Perceptual loss: Following FOMM and MRAA, we adopt the multi-resolution
perceptual loss [15] defined with a pre-trained VGG-19 [38] network. Given the
driving frame Z with resolution index i, the generated image Z̃, and the feature
extractor ϕ with layer index l, the perceptual loss can be written as follows:

Lper =
∑
i

∑
l

∥∥∥ϕl (Zi)− ϕl(Z̃i)
∥∥∥
1
. (9)

Equivariance loss: Following FOMM and MRAA, the equivariance loss is
adopted here. Given a random geometric transformation T and a driving image
Z, this loss can be written as follows:

Lequi =
∑
k

∥∥∥T(tkZ)− tkT(Z)

∥∥∥
1
. (10)

Background losses: To handle those situations in which the background is not
static, we follow the MRAA in utilizing a background predictor network to pre-
dict the background motion flow. To facilitate the separation of the background
and foreground motion learning, inspired by [10], we adopt the following losses:

Lmask =
∥∥M0 − 1

∥∥
1
+

∑
k ̸=0

∥∥Mk − 0
∥∥
1
, (11)
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and
Lcon =

∑
k ̸=0

∑
c

Mk(c) ·
(
c− uk

)2
/ sum

(
Mk

)
, (12)

where uk =
∑

c M
k(c) · c/ sum

(
Mk

)
. Intuitively, the mask loss Lmask is used to

constrain the portion of foreground and background area in an image, and the
foreground motion mask is considered to be more focused under the constraint
of the concentration loss Lcon.
Overall loss: We combine all of the above losses to formulate the overall object
function of our proposed vision transformer, as follows:

L = Lper + Lequi + λ(Lmask + Lcon). (13)

It should be noted here we adopt only the above background losses Lmask and
Lcon for the TaichiHD dataset with λ = 0.1 to handle the dynamic background
change in TaichiHD videos in the experiments. As videos from other datasets
typically have a static background, we omit Lmask and Lcon from the overall
loss for those datasets.

4 Experiments

Datasets: The following benchmark datasets are used in our experiments:

– VoxCeleb [25]: A talking head dataset consisting of 20047 videos. All videos
are cropped and resized to 256× 256.

– TaiChiHD [35]: This dataset contains 3120 videos. All videos are cropped
and resized to 256× 256.

– TED-talks [37]: This is a talking show dataset containing 1255 videos. All
videos are cropped and resized to 384× 384.

– MGIF [34]: This dataset contains 1000 cartoon animal videos, all of which
are resized to 256× 256, following [35].

Evaluation metrics: We follow [35,37] in evaluating the video reconstruction
quality, where videos are reconstructed with appearance representations by using
their first frame and motion representations w.r.t. all frames. Four commonly
used evaluation metrics are listed below.

– L1 distance: The average L1 distance between the generated and ground-
truth video frames.

– Average keypoint distance (AKD): The average distance of detected key-
points between the generated and ground-truth video frames. This metric is
designed for evaluating the pose quality of generated videos.

– Missing keypoint rate (MKR): The percentage of keypoints that are not
detected in the generated video frames but do exist in the ground-truth.

– Average Euclidean distance (AED): The average Euclidean distance between
generated and ground-truth video frames, as in the feature space. This metric
evaluates the identity information of the generated video frames.
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Implementation details: For image generation, we adopt Unet [32] to con-
struct the mask predictor and generative encoder-decoder. Skip connections are
added in the encoder-decoder architecture similar to [34,37]. For motion estima-
tion, we adopt the first three stages of the HRNet-W32 encoder [39] pretrained
on ImageNet [8] as the CNN backbone in our model. After the CNN encoder
has been applied, image features are down-sampled by a scale factor of 4. We
utilize a 12-layer standard transformer encoder architecture. Moreover, the sine
function [42] is used for position encoding. The image patch size is set to 4×4 in
all experiments, with 256 image tokens used for the input resolution of 256×256
and 576 for 384 × 384. The token dimension d is set to 192. The number of
motion tokens is set to 10, as in [35,37]. The Adam optimizer [17] is adopted,
where the initial learning rate is set as 2×10−4 and dropped by a factor of 10 at
the end of 60th and 90th epoch. We train the entire networks on eight NVIDIA
V100 GPU cards for 100 epochs.

4.1 Comparison with State-of-the-Art

Model capacity: Under the general image animation framework, we analyze the
difference between motion estimators from the model capacity view. As listed in
Table 1, the proposed motion estimator has slightly less parameters than FOMM
and MRAA, while the FLOPs of it are much heavier, which is caused by the
high-resolution (4 times lower than the input image resolution) computation in
the CNN encoder and in the global attention process in the vision transformer
layers. It should be noted here, compared to the image generator that is always
the same between our method and existing methods, the motion estimator tends
to take a small computation cost in the whole image animation process. While
being considerably lighter than the image generator, the motion estimator is
proved to be efficient and effective for improving image animation performance,
as in our method and recent works [35,37].
Quantitative comparison: The video reconstruction results are presented in
Table 2. As can be seen from the table, our method generally performs the best
across all evaluation metrics, as well as across all benchmark datasets with object
types including human body, human face and animal etc., reflecting the superior-
ity of the motion transformer to perform general image animation. More specif-
ically, a lower L1 distance straightforwardly indicates better video reconstruc-
tion quality achieved by our method. It is also worth noting that our method
achieves considerable improvements in terms of AKD on the three datasests,
which strongly suggests that our method achieves better transferred motion.
This can be further validated in the qualitative results of Fig. 2. Moreover, our
method also achieves the best performance on the AED metric, indicating that
the identity information can be better preserved using our method for conduct-
ing image animation. The superiority on the AED metric is even more obvious
on the VoxCeleb dataset, we draw reason that the identity information is espe-
cially important for a human face, while our method generally learns the global
motion pattern for the human face, which enables it to better capture the global
face structure.
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Table 1. Parameters comparison of the proposed motion estimator with that of FOMM
and MRAA. For clearness, we also list the parameters of the image generator (the
encoder-decoder generator together with the mask predictor). The model parameters
and FLOPs are computed with input image resolution 256 × 256.

Parameters FLOPs

ImageGenerator 45.57M 53.64G
MotionEstimator-FOMM 14.21M 1.28G
MotionEstimator-MRAA 14.20M 1.26G
MotionEstimator-Ours 12.23M 7.54G

Table 2. Quantitative comparisons with FOMM [35] and MRAA [37] on the video
reconstruction task. We present results on four benchmarks, our method generally
achieves the best performance on all datasets across all metrics.

TaiChiHD TEDTalks VoxCeleb MGIF
L1 (AKD, MKR) AED L1 (AKD, MKR) AED L1 AKD AED L1

FOMM 0.057 (6.649, 0.036) 0.172 0.029 (4.382, 0.008) 0.127 0.041 1.29 0.133 0.0224
MRAA 0.048 (5.246, 0.024) 0.150 0.027 (3.955, 0.007) 0.118 0.040 1.28 0.133 0.0274
Ours 0.045 (4.670, 0.021) 0.148 0.026 (3.456, 0.007) 0.113 0.038 1.18 0.116 0.0200

User preference: To evaluate the cross-identity image animation, we conduct
a user study with fifty participants. In more detail, we first prepare fifty compar-
ison videos, each of which is a concatenation of a source image, a driving video
featuring a different-identity, and videos generated by the three methods. Note
that the spatial locations of the generated videos are randomly placed. Partic-
ipants are required to evaluate these three videos according to the transferred
motion and identity preservation. The results in Table 3 show that our method
is clearly awarded more user preferences than other existing methods.

Qualitative comparison: In Fig. 2, we present representative animation ex-
amples on the TaichiHD, Voxceleb1 and TEDTalks dataset. As the figure shows,
our method is generally better at handling both global and local motions. In
more detail, for the human face, despite the fact that both FOMM and MRAA
can capture the head rotation, our method can synthesize the most realistic and
detailed expression information.

Our analysis suggests that it is often the case that a rigid human face turns
from left to right, and occlusion occurs in this kind of rigid or global motion. Our
method can effectively learn global motion patterns for a human face; accord-
ingly, this makes it easier to detect the occlusion caused by the head rotation
and then guide the image generator to inpaint this occluded face structure. In
FOMM and MRAA, the motion is learned in a relatively local manner, which
makes it more difficult to capture the global face structure. For the human body,
it can also be observed that our method synthesizes the most motion-stable re-
sults, while FOMM and MRAA often fail to capture the driving motions. We
believe this occurs because, lacking awareness of the global motion information,
FOMM and MRAA are easier to be affected by large motions and intervention of
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Driving&source FOMM MRAA Ours Driving&source FOMM MRAA Ours Driving&source FOMM MRAA Ours

Fig. 2. Qualitative comparisons on the cross-identity image animation task. We show
results on three datasets (from left to right: VoxCeleb, TaichiHD and TEDTalks), each
with three paired examples.

Table 3. User preferences of our
method against FOMM and MRAA on
the TaichiHD, TEDTalks, and Voxceleb
dataset.

TaiChiHD TEDTalks VoxCeleb

FOMM 96.5% 66.4% 60.8%
MRAA 68.5% 57.1% 69.8%

Table 4. Performance comparison on the
TaichiHD dataset with and without posi-
tion encoding, denoted as w PE and w/o
PE.

L1 (AKD, MKR) AED

w/o PE 0.047 (5.482, 0.028) 0.158
w PE 0.045 (4.670, 0.021) 0.148

background features. By contrast, our motion transformer learn the part motions
in a global-assisted fashion, enabling it to learn the more stable part motions.

4.2 Ablation Study and Parameter Analysis

In this section we study the influence of different components of our motion
transformer. More specifically, we conduct video reconstruction experiments on
the TaichiHD dataset for the purpose of quantitative analysis.
Position encoding: As can be seen Table 4, it is crucial to add position encod-
ing to the image tokens in our experiments. We can explain the importance of
position encoding from two angles. On one hand, the motion (a.k.a., keypoint and
its corresponding affine matrix) estimation is a highly position-sensitive task, in
which image tokens equipped with position encoding ease the learning process.
On the other hand, in order to learn geometry-consistent keypoint and affine
matrix representations in an unsupervised manner, the equivariance loss (i.e.,
Eqn. (10)) is considered to be more effective with position encoding, since the
order of the image patches are shuffled by a geometric transformation; however,
the position encoding is invariant to the shuffling process, thus the consistency
loss can enforce the network to better capture useful image patch features.
CNN encoder: To explore the influence of the image feature representation,
we implement the motion transformer with different CNN backbones. As can be
seen from Table 5, compared to our basic setting (i.e., HR-w32), a light-weight
CNN (i.e., Stem net [39], a widely used CNN for quickly down-sampling the
image by a scale factor of 4) yields worse performance, while a heavy CNN (i.e.,
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Table 5. Performance comparison on
the TaichiHD dataset with different CNN
backbones of the motion transformer.

CNN Param. L1 (AKD, MKR) AED

Stem 5.56M 0.048 (6.056, 0.030) 0.161
HR-W32 12.23M 0.045 (4.670, 0.021) 0.148
HR-W48 21.30M 0.045 (4.829, 0.020) 0.149

Table 6. Performance comparison on the
TaichiHD dataset with respect to different
numbers of transformer layers.

Layers L1 (AKD, MKR) AED

4 0.046 (5.320, 0.027) 0.155
8 0.046 (5.226, 0.025) 0.154
12 0.045 (4.670, 0.021) 0.148

HR-w48 [39]) brings no significant improvement. We accordingly conclude that
in the absence of a good image feature representation, the motion transformer
can’t work well; at the same time, the promotion of the CNN backbone to the
final performance is limited, which we attribute to the lack of supervision in the
unsupervised image animation.

Vision transformer layers: We further conduct experiments to explore the
influence of different numbers of vision transformer layers used in our motion
transformer. As can be seen from Table 6, with smaller numbers of layers, the
performance declines considerably (especially on AKD and MKR, which evaluate
the motion quality). This reflects the fact that the motion transformer with
relatively deeper transformer layers facilitates to learn better motion embeddings
for the regression of the motion information.

4.3 Visualization

In this section, we visualize intermediate results to analyze how the motion
transformer learns global motions with different object types and what motion
patterns have been learned. Samples are randomly chosen; while our observations
suggest that the model behaves similarly on the entire dataset.

Visual attention: We visualize the attention maps between motion tokens and
image tokens, to reveal how the motion transformer learns the global and local
motion. The results on the VoxCeleb and TEDTalks dataset are presented in
Fig. 3. For human faces, it can be seen that the whole face region tends to
be attended by all different motion tokens; this implies that each motion part is
learned with awareness of the global motion, which is in line with our motivation.
For human bodies, we first observe that the global motion is effectively captured;
as can be seen in the third row, the motion token learned with a global pattern
attends almost the whole regions of the object in the image. Moreover, we find
that in the initial transformer layers, the local motions of the woman’s hands are
well captured. As the depth increases, motion tokens can also find some other
meaningful relationship. For example, as illustrated in the attention results of
the TEDTalks sample in Fig. 3, the motion token representing the woman’s right
hand (i.e., the first row) actually shows that it is related to her upper body and
head, as in the attention map of the sixth transformer layer. This is reasonable
because, when a woman presents something in the talk, her body may move
together with the hand gestures to communicate with the whole body language.
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(a) Voxceleb

(b) TEDTalks

Fig. 3. Visualizations of visual attention maps between motion tokens and image tokens
on the VoxCeleb and TEDTalks datasets. From left to right of in each row, the presented
content respectively represents the driving image, the corresponding motion mask and
the visual attention maps of each transformer layer. We present visual attention maps
of three representative motion tokens for each dataset. Note that we reshape and resize
the sequence attention values to the original image sizes.

5 Conclusion

We propose a new method, called the motion transformer, under the general im-
age animation framework for unsupervised image animation. The motion trans-
former introduces both image tokens and learnable motion tokens. To encourage
the interactions between image and motion tokens, our motion transformer net-
work employs multiple transformer layers, which take those tokens as input in
order to learn the underlying motion relationship and obtain better motion em-
beddings. We further conduct extensive experiments on four benchmark datasets.
Our experimental results validate the effectiveness of capturing the global motion
information in our motion transformer.
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