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Abstract. This paper presents a unified multimodal pre-trained model
called NÜWA that can generate new or manipulate existing visual data
(i.e., images and videos) for various visual synthesis tasks. To cover lan-
guage, image, and video at the same time for different scenarios, a 3D
transformer encoder-decoder framework is designed, which can not only
deal with videos as 3D data but also adapt to texts and images as 1D
and 2D data, respectively. A 3D Nearby Attention (3DNA) mechanism
is also proposed to consider the nature of the visual data and reduce the
computational complexity. We evaluate NÜWA on 8 downstream tasks.
Compared to several strong baselines, NÜWA achieves state-of-the-art
results on text-to-image generation, text-to-video generation, video pre-
diction, etc. Furthermore, it also shows surprisingly good zero-shot ca-
pabilities on text-guided image and video manipulation tasks.

Text-To-Image (T2I)

A dog with 

goggles

staring at 

the camera. 

A person is 

preparing 

some art. grass
water

house

sky

tree

a horse is running on the grassland

grass
water

house

sky

tree

grass
water

house

sky

tree

Sketch-To-Image (S2I)

The car is reversing

Image Completion (I2I) Image Manipulation (TI2I)

Text-To-Video (T2V) Sketch-To-Video (S2V) Video Prediction (V2V) Video Manipulation (TV2V)

grass
water

house

sky

tree

flower

cup

wall
vase

door

table

Fig. 1: Examples of 8 typical visual generation and manipulation tasks supported by
the NÜWA model.
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1 Introduction

Nowadays, the Web is becoming more visual than ever before, as images and
videos have become the new information carriers and have been used in many
practical applications. With this background, visual synthesis is becoming a
popular research topic, which aims to generate new or manipulate existing visual
data (i.e., images and videos) for various visual scenarios.

Auto-regressive models[35, 21, 39, 29] play an important role in visual synthe-
sis tasks, due to their explicit density modeling and stable training compared
with GANs[3, 33, 41, 26]. Earlier visual auto-regressive models like PixelCNN[21],
PixelRNN[35], Image Transformer[24], iGPT[4], and Video Transformer[38], per-
formed visual synthesis in a “pixel-by-pixel” manner. However, due to their high
computational cost on high-dimensional visual data, such methods can be ap-
plied to low-resolution images or videos only and are hard to scale up.

Recently, with the arise of VQ-VAE[22] as a discrete visual tokenization ap-
proach, efficient and large-scale pre-training can be applied to visual synthe-
sis tasks for images (e.g., DALL-E[29] and CogView[7]) and videos (e.g., GO-
DIVA[39]). To model the locality of images and videos, sparse attentions are
commonly used to reduce computation and improve the performance. Although
achieving great success, such solutions still have the following two limitations:

On the one hand, from the pre-training perspective, current works treat im-
ages and videos separately and focus on generating either of them. This limits
the models to benefit from both image and video data.

On the other hand, from the model perspective, current works use block-
sparse attention or axial-sparse attention as the pre-training backbone, both
considering only part of visual locality. Block-sparse attention limits attention
in a fixed 3D block and axial-sparse attentions limits attention in axes, both
failed to fully model the locality of images and videos.

To handle the above issues, we propose NÜWA, with a 3D decoder to share
information from both images and videos and a 3D Nearby-sparse Attention
(3DNA) to model the full spatial and temporal locality. We verify NÜWA on 8
downstream visual synthesis, as shown in Fig. 1. The main contributions of this
work are three-fold:

– We propose NÜWA, a general 3D transformer encoder-decoder framework,
which covers language, image, and video at the same time for different visual
synthesis tasks. It consists of an adaptive encoder that takes either text or
visual sketch as input, and a decoder shared by 8 visual synthesis tasks.

– We propose a 3D Nearby Attention (3DNA) mechanism in the framework
to consider the locality characteristic for both spatial and temporal axes.
3DNA not only reduces computational complexity but also improves the
visual quality of the generated results.

– Compared to several strong baselines, NÜWA achieves state-of-the-art re-
sults on text-to-image generation, text-to-video generation, video prediction,
etc. Furthermore, NÜWA shows surprisingly good zero-shot capabilities not
only on text-guided image manipulation, but also text-guided video manip-
ulation.
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2 Related Works

2.1 Visual Auto-Regressive Models

The method proposed in this paper follows the line of visual synthesis research
based on auto-regressive models. Earlier visual auto-regressive models [21, 35, 24,
4, 38] performed visual synthesis in a “pixel-by-pixel” manner. However, due to
the high computational cost when modeling high-dimensional data, such meth-
ods can be applied to low-resolution images or videos only, and are hard to scale
up.

Recently, VQ-VAE-based [22] visual auto-regressive models were proposed
for visual synthesis tasks. By converting images into discrete visual tokens, such
methods can conduct efficient and large-scale pre-training for text-to-image gen-
eration (e.g., DALL-E[29] and CogView[7]), text-to-video generation (e.g., GO-
DIVA[39]), and video prediction (e.g., LVT[27] and VideoGPT[42]), with higher
resolution of generated images or videos. However, none of these models was
trained by images and videos together. But it is intuitive that these tasks can
benefit from both types of visual data.

Compared to these works, NÜWA is a unified auto-regressive visual synthesis
model that is pre-trained by the visual data covering both images and videos
and can support various downstream tasks. We also verify the effectiveness of
different pretraining tasks in Sec. 4.3. Besides, VQ-GAN[9] instead of VQ-VAE
is used in NÜWA for visual tokenization, which, based on our experiment, can
lead to better generation quality.

2.2 Visual Sparse Self-Attention

How to deal with the quadratic complexity issue brought by self-attention is
another challenge, especially for tasks like high-resolution image synthesis or
video synthesis.

Similar to NLP, sparse attention mechanisms have been explored to alleviate
this issue for visual synthesis. [38, 27] split the visual data into different parts
(or blocks) and then performed block-wise sparse attention for the synthesis
tasks. However, such methods dealt with different blocks separately and did not
model their relationships. [11, 29, 39] proposed to use axial-wise sparse atten-
tion in visual synthesis tasks, which conducts sparse attention along the axes of
visual data representations. This mechanism makes training very efficient and
is friendly to large-scale pre-trained models like DALL-E[29], CogView[7], and
GODIVA[39]. However, the quality of generated visual contents could be harmed
due to the limited contexts used in self-attention. [24, 28, 5] proposed to use local-
wise sparse attention in visual synthesis tasks, which allows the models to see
more contexts. But these works were for images only.

Compared to these works, NÜWA proposes a 3D nearby attention that ex-
tends the local-wise sparse attention to cover both images to videos. We also
verify that local-wise sparse attention is superior to axial-wise sparse attention
for visual generation in Sec. 4.3.



4 C. Wu et al.

3D-Decoder

1D-Encoder

3D-Encoder

2D-Encoder

A light wind blew across 
the country road.

Input Text

Output Image

Input Image Sketch

Input Video Sketch

Output Video

Input Image Parts

Input Video Frames

Output Remaining Parts

Output Future Frames

Visual 

Generation

Visual 

Completion,

Prediction,

Manipulation

Fig. 2: Overview structure of NÜWA. It contains an adaptive encoder supporting dif-
ferent conditions and a pre-trained decoder benefiting from both image and video data.
For image completion, video prediction, image manipulation, and video manipulation
tasks, the input partial images or videos are fed to the decoder directly.

3 Method

3.1 3D Data Representation

To cover all texts, images, and videos or their sketches, we view all of them
as tokens and define a unified 3D notation X ∈ Rh×w×s×d, where h and w
denote the number of tokens in the spatial axis (height and width respectively),
s denotes the number of tokens in the temporal axis, and d is the dimension of
each token. In the following, we introduce how we get this unified representation
for different modalities.

Texts are naturally discrete, and following Transformer[36], we use a lower-
cased byte pair encoding (BPE) to tokenize and embed them into R1×1×s×d. We
use placeholder 1 because the text has no spatial dimension.

Images are naturally continuous pixels. Input a raw image I ∈ RH×W×C with
height H, width W and channel C, VQ-VAE[22] trains a learnable codebook to
build a bridge between raw continuous pixels and discrete tokens, as denoted in
Eq. (1)∼(2):

zi = argmin
j

||E(I)i −Bj ||2, (1)

Î = G(B[z]), (2)

where E is an encoder that encodes I into h×w grid features E(I) ∈ Rh×w×dB ,
B ∈ RN×dB is a learnable codebook with N visual tokens, where each grid of
E(I) is searched to find the nearest token. The searched result z ∈ {0, 1, . . . , N−
1}h×w are embedded by B and reconstructed back to Î by a decoder G. The
training loss of VQ-VAE can be written as Eq. (3):

LV = ||I − Î||22 + ||sg[E(I)]−B[z]||22 + ||E(I)− sg[B[z]]||22, (3)
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where ||I− Î||22 strictly constraints the exact pixel match between I and Î, which
limits the generalization ability of the model. Recently, VQ-GAN[9] enhanced
VQ-VAE training by adding a perceptual loss and a GAN loss to ease the ex-
act constraints between I and Î and focus on high-level semantic matching, as
denoted in Eq. (4)∼(5):

LP = ||CNN(I)− CNN(Î)||22, (4)

LG = logD(I) + log(1−D(Î)). (5)

After the training of VQ-GAN, B[z] ∈ Rh×w×1×d is finally used as the represen-
tation of images. We use placeholder 1 since images have no temporal dimensions.

Videos can be viewed as a temporal extension of images, and recent works like
VideoGPT[42] and VideoGen[45] extend convolutions in the VQ-VAE encoder
from 2D to 3D and train a video-specific representation. However, this fails
to share a common codebook for both images and videos. In this paper, we
show that simply using 2D VQ-GAN to encode each frame of a video can also
generate temporal consistency videos and at the same time benefit from both
image and video data. The resulting representation is denoted as Rh×w×s×d,
where s denotes the number of frames.

For image sketches, we consider them as images with special channels. An
image segmentation matrix RH×W with each value representing the class of a
pixel can be viewed in a one-hot manner RH×W×C where C is the number of
segmentation classes. By training an additional VQ-GAN for image sketch, we
finally get the embedded image representation Rh×w×1×d. Similarly, for video
sketches, the representation is Rh×w×s×d.

3.2 3D Nearby Self-Attention

In this section, we define a unified 3D Nearby Self-Attention (3DNA) module
based on the previous 3D data representations, supporting both self-attention
and cross-attention. We first give the definition of 3DNA in Eq. (6), and intro-
duce detailed implementation in Eq. (7)∼(11):

Y = 3DNA(X,C;W ), (6)

where both X ∈ Rh×w×s×din

and C ∈ Rh′×w′×s′×din

are 3D representations
introduced in Sec. 3.1. If C = X, 3DNA denotes the self-attention on target
X and if C ̸= X , 3DNA is cross-attention on target X conditioned on C. W
denotes learnable weights.

We start to introduce 3DNA from a coordinate (i, j, k) under X. By a linear

projection, the corresponding coordinate (i′, j′, k′) under C is
(
⌊ih

′

h ⌋, ⌊j w′

w ⌋, ⌊k s′

s ⌋
)
.

Then, the local neighborhood around (i′, j′, k′) with a width, height and tempo-
ral extent ew, eh, es ∈ R+ is defined in Eq. (7),

N (i,j,k) =

{
Cabc

∣∣∣∣ ∣∣a− i′
∣∣ ≤ eh,

∣∣b− j′
∣∣ ≤ ew,

∣∣c− k′∣∣ ≤ es
}
, (7)
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in a fixed 3D-block.
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in each 3D axis.
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Fig. 3: Comparisons between different 3D sparse attentions. All samples assume that
the size of the input 3D data is 4 × 4 × 2 = 32. The illustrations in the upper part
show which tokens (blue) need to be attended to generate the target token (orange).
The matrices of the size 32× 32 in the lower part show the attention masks in sparse
attention (black denotes masked tokens).

where N (i,j,k) ∈ Reh×ew×es×din

is a sub-tensor of condition C and consists of
the corresponding nearby information that (i, j, k) needs to attend. With three

learnable weights WQ,WK ,WV ∈ Rdin×dout

, the output tensor for the position
(i, j, k) is denoted in Eq. (8)∼(11):

Q(i,j,k) = XWQ (8)

K(i,j,k) = N (i,j,k)WK (9)

V (i,j,k) = N (i,j,k)WV (10)

yijk = softmax

(
(Q(i,j,k))TK(i,j,k)

√
din

)
V (i,j,k) (11)

where the (i, j, k) position queries and collects corresponding nearby information
in C. This also handles C = X, then (i, j, k) queries the nearby position of itself.

Fig. 3 shows comparisons between different 3D sparse attentions. Assume we
have 3D data with the size of 4× 4× 2, the idea of 3D block-sparse attention is
to split the 3D data into several fixed blocks and handle these blocks separately.
There are many ways to split blocks, such as splitting in time, space, or both.
The 3D block-sparse example in Fig. 3 considers the split of both time and space.
The 3D data is divided into 4 parts, each has the size of 2× 2× 2. To generate
the orange token, 3D block-sparse attention considers previous tokens inside the
fixed 3D block. Although 3D block-sparse attention considers both spatial and
temporal axes, this spatial and temporal information is limited and fixed in the
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3D block especially for the tokens along the edge of the 3D block. Only part
of nearby information is considered since some nearby information outside the
3D block is invisible for tokens inside it. The idea of 3D axial-sparse attention
is to consider previous tokens along the axis. Although 3D axis-sparse attention
considers both spatial and temporal axes, this spatial and temporal information
is limited along the axes. Only part of nearby information is considered and some
nearby information that does not in the axis will not be considered in the 3D axis
attention. In this paper, we propose a 3D nearby-sparse, which considers the full
nearby information and dynamically generates the 3D nearby attention block
for each token. The attention matrix also shows the evidence as the attended
part (blue) for 3D nearby-sparse is more smooth than 3D block-sparse and 3D
axial-sparse.

3.3 3D Encoder-Decoder

In this section, we introduce 3D encode-decoder built based on 3DNA. To gen-
erate a target Y ∈ Rh×w×s×dout

under the condition of C ∈ Rh′×w′×s′×din

,
the positional encoding for both Y and C are updated by three different learn-
able vocabularies considering height, width, and temporal axis, respectively in
Eq. (12)∼(13):

Yijk := Yijk + Ph
i + Pw

j + P s
k (12)

Cijk := Cijk + Ph′

i + Pw′

j + P s′

k (13)

Then, the condition C is fed into an encoder with a stack of L 3DNA layers to
model the self-attention interactions, with the lth layer denoted in Eq. (14):

C(l) = 3DNA(C(l−1), C(l−1)), (14)

Similarly, the decoder is also a stack of L 3DNA layers. The decoder calculates
both self-attention of generated results and cross-attention between generated
results and conditions. The lth layer is denoted in Eq. (15).

Y
(l)
ijk = 3DNA(Y

(l−1)
<i,<j,<k, Y

(l−1)
<i,<j,<k) + 3DNA(Y

(l−1)
<i,<j,<k, C

(L)), (15)

where < i,< j,< k denote the generated tokens for now. The initial token V
(1)
0,0,0

is a special < bos > token learned during the training phase.

3.4 Training Objective

We train our model on three tasks, Text-to-Image (T2I), Video Prediction (V2V)
and Text-to-Video (T2V). The training objective for the three tasks are cross-
entropys denoted as three parts in Eq. (16), respectively:

L = −
h×w∑
t=1

log pθ

(
yt

∣∣y<t, C
text

; θ
)
−

h×w×s∑
t=1

log pθ

(
yt

∣∣y<t, c; θ
)
−

h×w×s∑
t=1

log pθ

(
yt

∣∣y<t, C
text

; θ
)

(16)

For T2I and T2V tasks, Ctext denotes text conditions. For the V2V task, since
there is no text input, we instead get a constant 3D representation c of the
special word “None”. θ denotes the model parameters.
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4 Experiments

Based on Sec. 3.4 we first pre-train NÜWA on three datasets: Conceptual Cap-
tions[16] for text-to-image (T2I) generation, which includes 2.9M text-image
pairs, Moments in Time[20] for video prediction (V2V), which includes 727K
videos, and VATEX dataset[37] for text-to-video (T2V) generation, which in-
cludes 241K text-video pairs. In the following, we first introduce implementa-
tion details in Sec. 4.1 and then compare NÜWA with state-of-the-art models in
Sec. 4.2, and finally conduct ablation studies in Sec. 4.3 to study the impacts of
different parts.

4.1 Implementation Details

In Sec. 3.1, we set the sizes of 3D representations for text, image, and video as
follows. For text, the size of 3D representation is 1× 1× 77× 1280. For image,
the size of 3D representation is 21 × 21 × 1 × 1280. For video, the size of 3D
representation is 21× 21× 10× 1280, where we sample 10 frames from a video
with 2.5 fps. Although the default visual resolution is 336 × 336, we pre-train
different resolutions for a fair comparison with existing models. For the VQ-GAN
model used for both images and videos, the size of grid feature E(I) in Eq. (1)
is 441× 256, and the size of the codebook B is 12, 288.

Different sparse extents are used for different modalities in Sec. 3.2. For text,
we set (ew, eh, es) = (1, 1,∞), where ∞ denotes that the full text is always used
in attention. For image and image sketches, (ew, eh, es) = (3, 3, 1). For video and
video sketches, (ew, eh, es) = (3, 3, 3).

We pre-train on 64 A100 GPUs for two weeks with the layer L in Eq. (14)
set to 24, an Adam [13] optimizer with a learning rate of 1e-3, a batch size of
128, and warm-up 5% of a total of 50M steps. The final pre-trained model has
a total number of 870M parameters.

4.2 Comparison with state-of-the-art

Text-to-Image (T2I) fine-tuning: We compare NÜWA on the MSCOCO[16]
dataset quantitatively in Tab. 1 and qualitatively in Fig. 4. Following DALL-
E[29], we use k blurred FID score (FID-k) and Inception Score (IS)[31] to eval-
uate the quality and variety respectively, and following GODIVA[39], we use
CLIPSIM metric, which incorporates a CLIP[25] model to calculate the seman-
tic similarity between input text and the generated image. For a fair compari-
son, all the models use the resolution of 256 × 256. We generate 60 images for
each text and select the best one by CLIP[25]. In Tab. 1, NÜWA significantly
outperforms CogView[7] with FID-0 of 12.9 and CLIPSIM of 0.3429. Although
XMC-GAN[44] reports a significant FID score of 9.3, we find NÜWA generates
more realistic images compared with the exact same samples in XMC-GAN’s
paper (see Fig. 4). Especially in the last example, the boy’s face is clear and the
balloons are correctly generated.
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Fig. 4: Qualitative comparison with state-of-the-art models for Text-to-Image (T2I)
task on MSCOCO dataset.

Table 1: Qualitative comparison with the state-of-the-art models for Text-to-Image
(T2I) task on the MSCOCO (256×256) dataset.

Model FID-0↓ FID-1 FID-2 FID-4 FID-8 IS↑ CLIPSIM↑

AttnGAN[41] 35.2 44.0 72.0 108.0 100.0 23.3 0.2772
DM-GAN[46] 26.0 39.0 73.0 119.0 112.3 32.2 0.2838
DF-GAN[32] 26.0 33.8 55.9 91.0 97.0 18.7 0.2928
DALL-E[29] 27.5 28.0 45.5 83.5 85.0 17.9 -
CogView[7] 27.1 19.4 13.9 19.4 23.6 18.2 0.3325
XMC-GAN[44] 9.3 - - - - 30.5 -

NÜWA(scratch)
Full Attention
17.1 16.5 16.3 18.5 20.9 22.7 0.3257

NÜWA(scratch)
Axial Attention
18.7 18.4 19.2 20.3 21.3 22.8 0.3253

NÜWA(scratch)
3D Nearby Attention (ours)
16.9 15.6 16.5 18.9 20.2 23.1 0.3276

NÜWA(finetune)
Pretrain on CC Dataset
14.2 15.2 16.9 20.5 24.7 25.8 0.3424

NÜWA(finetune)
Pretrain on CC, Moments and Vatex Dataset
12.9 13.8 15.7 19.3 24 27.2 0.3429

NÜWA(zeroshot)
Pretrain on CC, Moments and Vatex Dataset
22.6 18.6 17.2 17.4 24.8 24.5 0.3331

To validate the effectiveness of our proposed 3DNA, we train NÜWA from
scratch and Tab. 1 shows 3DNA outperforms axial attentions and full attentions.
To validate the effectiveness of joint pretraining both images and videos, we pre-
train NÜWA on pure image dataset (CC) and mixed image and video dataset
(CC, Moments, Vatex). Tab. 1 shows Text-to-Video task also helps Text-to-
Image task. This is interesting as videos provides external motion knowledge to
help the model better build the connection between text and image.
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Fig. 5: Quantitative comparison with state-of-the-art models for Text-to-Video (T2V)
task on Kinetics dataset.

Table 2: Quantitative comparison with state-of-the-art models for Text-to-Video
(T2V) task on Kinetics dataset.

Model Acc↑ FID-img↓ FID-vid↓ CLIPSIM↑

T2V (64×64) [15] 42.6 82.13 14.65 0.2853
SC (128×128) [1] 74.7 33.51 7.34 0.2915
TFGAN (128×128)[1] 76.2 31.76 7.19 0.2961

NÜWA(scratch) 77.4 29.32 7.08 0.3007

NÜWA(finetune) 77.9 28.46 7.05 0.3012

Table 3: Quantitative comparison with state-of-the-art models for Video Prediction
(V2V) task on BAIR (64×64) dataset.

Model Cond. FVD↓

DVD-GAN-FP[6] 1 110
Video Transformer (S)[38] 1 106±3
TriVD-GAN-FP[17] 1 103
CCVS[19] 1 99±2
Video Transformer (L)[38] 1 94±2

NÜWA(scratch) 1 87.6

NÜWA(finetune) 1 86.9

Text-to-Video (T2V) fine-tuning: We compare NÜWA on the Kinet-
ics[12] dataset quantitatively in Tab. 2 and qualitatively in Fig. 5. Following
TFGAN[1], we evaluate the visual quality on FID-img and FID-vid metrics and
semantic consistency on the accuracy of the label of generated video.To ensure
NÜWA is trained with the same size information of Kinetics as other methods,
images are first bilinear interpolated into 128×128 before resized into 336×336.
As shown in Tab. 2, NÜWA achieves the best performance. In Fig. 5, we also
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Fig. 6: Quantitative comparison with
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Fig. 7: Qualitative comparison with the
state-of-the-art model for Image Comple-
tion (I2I) task in a zero-shot manner.
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Fig. 8: Quantitative comparison with state-of-the-art models for text-guided image
manipulation (TI2I) in a zero-shot manner.

show the strong zero-shot ability for generating unseen text, such as “playing
golf at swimming pool” or “running on the sea”.

Video Prediction (V2V) fine-tuning: We compare NÜWA on BAIR
Robot Pushing[8] dataset quantitatively in Tab. 3. Cond. denotes the number of
frames given to predict future frames. For a fair comparison, all the models use
64×64 resolutions. Although given only one frame as condition (Cond.), NÜWA
still significantly pushes the state-of-the-art FVD[34] score from 94±2 to 86.9.

Sketch-to-Image (S2I) fine-tuning: We compare NÜWA on MSCOCO
stuff[16] qualitatively in Fig. 6. NÜWA generates realistic buses of great varieties
compared with Taming-Transformers[9] and SPADE[23]. Even the reflection of
the bus window is clearly visible.

Image Completion (I2I) zero-shot evaluation: We compare NÜWA in
a zero-shot manner qualitatively in Fig. 7. Given the top half of the tower, com-
pared with Taming Transformers[9], NÜWA shows richer imagination of what
could be for the lower half of the tower, including buildings, lakes, flowers, grass,
trees, mountains, etc.

Text-Guided Image Manipulation (TI2I) zero-shot evaluation: We
compare NÜWA in a zero-shot manner qualitatively in Fig. 8. Compared with
Paint By Word[2], NÜWA shows strong manipulation ability, generating high-
quality text-consistent results while not changing other parts of the image. For
example, in the third row, the blue firetruck generated by NÜWA is more re-
alistic, while the behind buildings show no change. This is benefited from real-
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Fig. 9: Human evaluation on MSCOCO
dataset for Text-to-Image (T2I) task.

5%

89%
89%

5%
6% 6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

VQ-GAN NÜWA

Visual Quality

better worse undetermined

Fig. 10: Human evaluation on MSCOCO
dataset for Image Completion (I2I) task.

world visual patterns learned by multi-task pre-training on various visual tasks.
Another advantage is the inference speed of NÜWA, practically 50 seconds to
generate an image, while Paint By Words requires additional training during
inference, and takes about 300 seconds to converge.

Sketch-to-Video (S2V) fine-tuning and Text-Guided Video Manipu-
lation (TV2V) zero-shot evaluation: Since there are no current benchmarks
for these two tasks,we thus arrange them in Ablation Study in Section 4.3.

Human Evaluation Fig. 9 presents human comparison results between
CogView[7] and our NÜWA on the MSCOCO dataset for Text-to-Image (T2I)
task. We randomly selected 2000 texts and ask annotators to compare the gen-
erated results between two models including both visual quality and semantic
consistency. The annotators are asked to choose among three options: better,
worse, or undetermined. NÜWA achieves 62% votes for visual quality and 21%
votes for semantic consistency. Fig. 10 shows another human comparison between
VQ-GAN[9] and our NÜWA model on the MSCOCO dataset for the Image Com-
pletion (I2I) task.

4.3 Ablation Study

The above part of Tab. 4 shows the effectiveness of different VQ-VAE (VQ-GAN)
settings. We experiment on ImageNet[30] and OpenImages[14]. R denotes raw
resolution, D denotes the number of discrete tokens. The compression rate is
denoted as Fx, where x is the quotient of

√
R divided by

√
D. Comparing the

first two rows in Tab. 4, VQ-GAN shows significantly better Fréchet Inception
Distance (FID)[10] and Structural Similarity Matrix (SSIM) scores than VQ-
VAE. Comparing Row 2-3, we find that the number of discrete tokens is the key
factor leading to higher visual quality instead of compress rate. Although Row 2
and Row 4 have the same compression rate F16, they have different FID scores
of 6.04 and 4.79. So what matters is not only how much we compress the original
image, but also how many discrete tokens are used for representing an image.
This is in line with cognitive logic, it’s too ambiguous to represent human faces
with just one token. And practically, we find that 162 discrete tokens usually lead
to poor performance, especially for human faces, and 322 tokens show the best
performance. However, more discrete tokens mean more computing, especially
for videos. We finally use a trade-off version for our pre-training: 212 tokens. By
training on the Open Images dataset, we further improve the FID score of the
212 version from 4.79 to 4.31.
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Table 4: Effectiveness of different VQ-
VAE (VQ-GAN) settings.

Model R → D Rate SSIM FID

Trained on ImageNet Dataset
VQ-VAE 2562 → 162 F16 0.7026 13.3
VQ-GAN 2562 → 162 F16 0.7105 6.04
VQ-GAN 2562 → 322 F8 0.8285 2.03
VQ-GAN 3362 → 212 F16 0.7213 4.79
Trained on OpenImages Dataset
VQ-GAN 3362 → 212 F16 0.7527 4.31

Model R → D Rate PA FWIoU

Trained on COCO-Stuff Dataset
V.G-Seg 3362 → 212 F16 96.82 93.91
Trained on VSPW Dataset
V.G-Seg 3362 → 212 F16 95.36 91.82

Reconstructed
Image

Raw
Image

Raw
Sketch

Reconstructed
Sketch

Fig. 11: Reconstruction samples of VQ-
GAN and VQ-GAN-Seg.

Table 5: Effectiveness of multi-task pre-
training for Text-to-Video (T2V) genera-
tion task on MSRVTT dataset.

Model Pre-trained
Tasks

FID-vid↓ CLIPSIM↑

NÜWA-TV T2V 52.98 0.2314

NÜWA-TV-TI T2V+T2I 53.92 0.2379

NÜWA-TV-VV T2V+V2V 51.81 0.2335

NÜWA T2V+T2I+V2V 47.68 0.2439

Table 6: Effectiveness of 3D nearby at-
tention for Sketch-to-Video (S2V) task on
VSPW dataset.

Model Encoder Decoder FID-vid↓ DetectedPA↑

NÜWA-FF Full Full 35.21 0.5220

NÜWA-NF Nearby Full 33.63 0.5357

NÜWA-FN Full Nearby 32.06 0.5438

NÜWA-AA Axis Axis 29.18 0.5957

NÜWA Nearby Nearby 27.79 0.6085

The below part of Tab. 4 shows the performance of VQ-GAN for sketches.
VQ-GAN-Seg on MSCOCO[16] is trained for Sketch-to-Image (S2I) task and
VQ-GAN-Seg on VSPW[18] is trained for Sketch-to-Video (S2V) task. All the
above backbone shows good performance in Pixel Accuracy (PA) and Frequency
Weighted Intersection over Union (FWIoU), which shows a good quality of 3D
sketch representation used in our model. Fig. 11 also shows some reconstructed
samples of 336×336 images and sketches.

Tab. 5 shows the effectiveness of multi-task pre-training for the Text-to-Video
(T2V) generation task. We study on a challenging dataset, MSR-VTT[40], with
natural descriptions and real-world videos. Compared with training only on a
single T2V task (Row 1), training on both T2V and T2I (Row 2) improves the
CLIPSIM from 0.2314 to 0.2379. This is because T2I helps to build a connection
between text and image, and thus helpful for the semantic consistency of the
T2V task. In contrast, training on both T2V and V2V (Row 3) improves the
FVD score from 52.98 to 51.81. This is because V2V helps to learn a common
unconditional video pattern, and is thus helpful for the visual quality of the T2V
task. The default setting, training on three tasks, achieves the best performance.

Tab. 6 shows the effectiveness of 3D nearby attention for the Sketch-to-Video
(S2V) task on the VSPW[18] dataset. We study on the S2V task because both the
encoder and decoder of this task are fed with 3D video data. To evaluate the se-
mantic consistency for S2V, we propose a new metric called Detected PA, which
uses a semantic segmentation model[43] to segment each frame of the generated
video and then calculate the pixel accuracy between the generated segments and
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Manipulation1: The diver is swimming to the surface.

Manipulation2: The diver is swimming to the bottom.

Manipulation3: The diver is flying to the sky 

Raw Video:

Fig. 12: Samples of different manipulations on the same video.

input video sketch. The default NÜWA setting with both nearby encoder and
nearby decoder, achieves the best FID-vid and Detected PA. The performance
drops if either encoder or decoder is replaced by full attention, showing that fo-
cusing on nearby conditions and nearby generated results is better than simply
considering all the information.

We compare nearby-sparse and axial-sparse in two-folds. Firstly, the com-
putational complexity of nearby-sparse is O

(
(hws)

(
ehewes

))
and axis-sparse

attention is O ((hws) (h+ w + s)). For generating long videos (larger s), nearby-
sparse will be more computational efficient. Secondly, nearby-sparse has better
performance because it attends to “nearby” locations containing interactions
between both spatial and temporal axes, while axis-sparse handles different axis
separately and only consider interactions on the same axis.

Fig. 12 shows a new task “Text-Guided Video Manipulation (TV2V)” pro-
posed in this paper. TV2V aims to change the future of a video starting from a
selected frame guided by text. All samples start to change the future of the video
from the second frame. The first row shows the original video frames, where a
diver is swimming in the water. After feeding “The diver is swimming to the
surface” into NÜWA’s encoder and providing the first video frame, NÜWA suc-
cessfully generates a video with the diver swimming to the surface in the second
row. The third row shows another successful sample that lets the diver swim to
the bottom. What if we want the diver flying to the sky? The fourth row shows
that NÜWA can make it as well, where the diver is flying upward, like a rocket.

5 Conclusion

In this paper, we present NÜWA as a unified pre-trained model that can generate
new or manipulate existing images and videos for 8 visual synthesis tasks. Several
contributions are made here, including (1) a general 3D encoder-decoder frame-
work covering texts, images, and videos; (2) a nearby-sparse attention mechanism
that considers the nearby characteristic of both spatial and temporal axes; (3)
comprehensive experiments on 8 synthesis tasks. This is our first step towards
building an AI platform to enable visual world and help creators.
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