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Abstract. Despite the demonstrated editing capacity in the latent space
of a pretrained GAN model, inverting real-world images is stuck in a
dilemma that the reconstruction cannot be faithful to the original in-
put. The main reason for this is that the distributions between training
and real-world data are misaligned, and because of that, it is unstable of
GAN inversion for real image editing. In this paper, we propose a novel
GAN prior based editing framework to tackle the out-of-domain inver-
sion problem with a composition-decomposition paradigm. In particular,
during the phase of composition, we introduce a differential activation
module for detecting semantic changes from a global perspective, i.e.,
the relative gap between the features of edited and unedited images.
With the aid of the generated DiffFCAM mask, a coarse reconstruction
can intuitively be composited by the paired original and edited images.
In this way, the attribute-irrelevant regions can be survived in almost
whole, while the quality of such an intermediate result is still limited
by an unavoidable ghosting effect. Consequently, in the decomposition
phase, we further present a GAN prior based deghosting network for sep-
arating the final fine edited image from the coarse reconstruction. Ex-
tensive experiments exhibit superiorities over the state-of-the-art meth-
ods, in terms of qualitative and quantitative evaluations. The robust-
ness and flexibility of our method is also validated on both scenarios of
single attribute and multi-attribute manipulations. Code is available at
https://github.com/HaoruiSong622/Editing-0ut-of-Domain.

1 Introduction

Generative Adversarial Networks (GANs) [5,12,17] have demonstrated impres-
sive image editing capability. From a random noise input, GAN models can en-
code abundant semantic information and spontaneously excavate interpretable
directions in a latent space (e.g., W space [18], W space [19] and etc.). By vary-
ing the latent codes along the controllable directions, highly realistic images with
diverse attributes can be synthesized using GANs. However, such manipulations
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Fig. 1: We delve deep into the editing problem of out-of-domain GAN inversion.
(b) shows that for out-of-domain real images, GAN inversion cannot obtain
a faithful reconstruction and therefore produce unacceptable editing (c). Our
framework localizes semantic changes with differential activations (d), enabling
the preservation of out-of-domain image content (like the lion hat and micro-
phone) while activating the editing ability of GAN priors.

are applicable only in the latent space. For real images, a mapping function is
required to transform the RGB input to a latent code.

GAN inversion [28,43] which aims at inverting a given image back into the
latent space of a pretrained GAN model such as StyleGAN [18], can enable the
corresponding semantic directions to be applicable for real image editing. As a
consequence, numerous GAN inversion based image processing frameworks [2,
13,34,38,40,42] have emerged. However, existing inversion methods are stuck in
a dilemma that they cannot faithfully invert those images that are not from the
distribution of training data. For example, as shown in Fig. 1b, both real images
are fed into the pSp encoder [28] for inversion, and then the codes are sent to a
pretrained StyleGAN2 [19] for generation, but it turns out that the microphone
and the lion hat are vanished or distorted. This is due to the misaligned data
domains. Such an out-of-domain issue can undoubtedly lead to unstable editing
performance and thus severely hinder the practicality of GAN inversion. On the
other hand, the powerful attribute-aware manipulation capability of pretrained
GANs is indispensable for image editing. These facts motivate us to raise a
natural idea: it would be feasible if we can properly integrate the edited region
from the corresponding inversion with its unedited counterpart from the original
input.

To achieve this goal, we turn to consider how to detect the edited region in
the inversion. This reminds us of class activation mapping (CAM) [29,41]. Such
techniques focus on producing an attention map that highlights the regions that
contribute to the classification decision, and have been widely used in visual
explanations, such as weakly-supervised localization [6] and visual question an-
swering [26]. Also for image manipulation, Kim et al. [20] utilize Grad-CAM [29]
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(a) CAM [41] (b) Grad-CAM [29] (c) Ours
Fig. 2: Activation maps generated by CAM, Grad-CAM and our Diff-CAM mod-
els. Our activation map has a broader and more comprehensive coverage.

to generate a mask for localizing the attribute-relevant regions. A critical prob-
lem of CAM-based methods is that, its principle is to locate the activation re-
gions that make the final decision, but making such a decision does not require
a comprehensive activation on the attribute-relevant regions (e.g., locating the
wrinkle instead of the whole face can classify the “old” attribute). As a result,
they tend to produce localized activations (see Fig. 2a and 2b). Relying on CAM
for editing is apparently not flexible, as the editing of some attributes like “sex”
may change the entire face, but binarily classifying male or female typically con-
centrate on facial components. This contradicts with our objective to combine
edited region and its unedited counterpart.

In this paper, we propose a novel GAN prior based editing framework to
resolve the above problems. Specifically, our editing method is executed in a
composition-decomposition manner. In the composition stage, our aim is to gen-
erate a coarse reconstruction via combining the edited inversion with the original
input, weighting by a Diff-CAM mask which is used for indicating the edited re-
gion. In particular, we present a simple yet effective differential activation mech-
anism to track the semantic changes rather than locating classification-relevant
regions. It is performed by capturing the variational features between the edited
and the original inversions, and we shed light on the differential features that
reveal the editing attributes. In this way, the produced mask can specify the
range of the edited region more accurately (see in Fig. 2c), as the semantical
differences are explicitly embedded in the hidden responses. While in the de-
composition stage, we need to remove the ghosting effect occurred in the coarse
result. To deal with it, we further design a deghosting network that reuses the
GAN prior, which is used for separating the final fine edited inversion from
the coarse reconstruction in a multi-scale aggregation manner. Extensive exper-
iments show that our method is the first feasible real-image editing method that
built upon GAN inversion.

In summary, our key contributions are as follows:

— We delve deep into the out-of-domain problem existed in GAN inversion,
and propose a novel GAN prior based editing framework in a composition-
decomposition manner. Our method can use the original input to generate
the unedited region, as well as maintaining a high quality of editing.
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— We tailor a differential activation strategy to track semantic changes before
and after editing. This design allows to embed more accurate range of the
edited region with neglectable additional computational cost.

— We present a deghosting network with hierarchical GAN priors, for effectively
alleviating the ghosting effect in the coarse reconstruction.

— We outperform state-of-the-art methods in terms of qualitative and quanti-
tative evaluations, and we demonstrate the flexibility and robustness in both
scenarios of single attribute and multi-attribute manipulations.

2 Related Work

Non-GAN prior based image manipulation. Non-GAN prior based meth-
ods [17,21,45] usually manipulate attributes of images via an adversarial training
process. Kim et al. [21] propose a GAN based framework to discover cross-domain
relations. Isola et al. [17] propose to use conditional GANs for image-to-image
translation. And Zhu et al. [15] propose to translate images across different do-
mains without paired training data. In general, these methods are designed to
learn a model that corresponds to a specific translation, which leads to inflexibil-
ity in practical applications. To address this problem, StarGAN [9] is proposed
to learn the mapping among multiple domains, using only a single generator and
a discriminator. CMP [20] proposes to refine image-to-image translation results
by introducing a cam-consistency loss to force the network to focus on attribute-
relevant regions. Note that all these methods need to train models from scratch,
and thus cannot capture GAN priors which is proven to be extremely effective
for image manipulation [18,19]. Also, they are limited in synthesizing images at
high resolution.

GAN prior based real image editing. GAN prior based methods, i.e.,
GAN inversion, are proposed to inference a latent code of a given image based
on a pretrained GAN model such as StyleGAN [18,19]. These methods can be
roughly divided into two categories, optimization-based [1,2, 10, 13,27, 35] and
learning-based [7,8,13,14,32,37,44]. The main advantage of the former techniques
is that they can ensure superior image reconstruction, while the corresponding
cost is a higher computational complexity. In contrast, learning-based methods
have a fast inference speed. Richardson et al. [28] propose a pSp encoder that
can embed real images into an extended W7 space. Xu et al. [36] propose to
train a hierarchical encoder based on a feature pyramid network. Alaluf et al. [4]
introduce an iterative refinement mechanism for learning the inversion of real
images. However, these methods cannot faithfully reconstruct the image content,
mainly due to the misalignment between training and test data. We aim to solve
this problem in a novel composition-decomposition paradigm via differential ac-
tivations.

Interpreting CNN. Recent interpreting CNN models [11,29,41] attempt to
understand the behaviour of the networks. Zhou et al. [11] propose CAM which
aims to highlight the model’s attention regarding a specific class. Selvaraju et
al. [29] propose Grad-CAM without relying on the global average pooling layer.
Lee et al. [22] propose LFI-CAM which treats the feature maps as masks and
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Fig. 3: Overall pipeline of our model. Given an input image, we first invert it to
the latent space and perform user-desired editing. Then a differential activation
module is applied to track the semantic changes of the manipulation. Edited
region and unedited one are further combined using a Diff-CAM mask to produce
a coarse reconstruction, on which the ghosting artifacts can be mitigated by the
deghosting network with the aid of GAN priors.

learns the feature importance for generating the attention maps. Note that these
methods are usually performed on responses themselves, while our strategy, with
a clear aim of real image editing, explores to capture the variation between edit
and unedited image features.

3 Approach

3.1 Overview

Due to the misaligned distributions between training and test data, existing
GAN inversion methods cannot guarantee the fidelity of the reconstruction.
And the quality of the subsequent edited image is therefore severely limited
by such an out-of-domain problem. To remedy this, we propose a composition-
decomposition paradigm for image editing and illustrate its overall pipeline in
Fig. 3.

Specifically, given an image as input, our method firstly inverts it into the la-
tent space. Semantic manipulation can then be produced by feeding and varying
the latent code into a pretrained and fixed generator. Consequently, an initial
result can be obtained by fusing the original input and the edited inversion with
a Diff-CAM mask as weight. In particular, the procedure of generating the Diff-
CAM mask is encapsulated in a self-contained differential activation module,
which exploits the differential information between two reconstructions to pro-
mote the accuracy for determining the range of the editing-relevant region. The
final output is further generated by a deghosting network, which resorts to the
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diverse facial prior for mitigating the ghosting effect and enhancing the realism
of the initial result. Note that we use the StyleGAN2 generator as the pretrained
one in our model.

3.2 GAN Inversion and Single Attribute Editing

To achieve GAN inversion of a given image I, we need to map it into a latent
space in which rich semantic information is embedded. This can be implemented
via many existing methods, for example, a pretrained pSp encoder Efyed(-),
and the latent code w can thus be formulated by w = Ffyeq(I). Then we can
obtain the inverted image I’ by a pretrained StyleGAN2 generator G(-), which
is formulated by I' = G(w). Note that there most likely exists a bias between
I’ and I, due to the out-of-domain problem.

And to manipulate the corresponding attributes, the latent code would be
varied along various intepretable directions that are discovered in the latent
space. The edited inversion T can then be produced based on the altered code
by the same generator G(-). Given a specific direction n for single attribute
editing, this process can be formulated as T' = G(w + an), where « is a scaling
factor. Note that our method can also support multi-attribute editing, and we
will discuss this in Sec. 3.6.

3.3 Differential Activation Module

Once we have the paired images {I’, T'}, we respectively feed them into a plain
trainable encoder Eirainable(-), and can easily obtain the differential features A
via a simple subtraction operation:

A= Etrainable (I/) - Etrainable (T) (1)

Subsequently, these features are sent to a lightweight network which serves as
a classifier and consists of convolutional and fully connected layers. We use the
cross-entropy loss L. to train the encoder and the classifier together, which can
be formulated as follows:

N S
eSe
Lee =— Zycl()g]vis_a (2)
e=1 i=167"
where y = {y1,y2, -+ ,yn} is a one-hot vector that indicates which attribute
has been edited, s = {s1, 82, -+, sy} denotes the output vector of the classifier

before softmax operation, e denotes the natural constant, and N is the total
number of attributes.

Now we are ready for performing activation calculation. The first step is to
define the weight 3% that corresponded to the kth channel of H and the cth
attribute, which is formulated as follows:

global average pooling

1 Os
B = = Z Z ° (3)
i

k>’
OH,
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where H is the features generated by the last convolutional layer in the classifier,
¢ and j respectively denotes the height and the width of the features.

Then our Diff-CAM mask Mpig.cam can be represented as a piecewise linear
transformation of weighted differential features, that is

Mpig.cam = ReLU(Y _ BEH"). (4)
k

Finally, we normalize the above mask into the interval of [0, 1] via Mpig.cam =
Mpig.cam/max(Mpig.cam). Since the Dift-CAM mask is generated based on
the differential features that describe semantically changes, the range of the
editing-relevant region can be detected more accurately via a comprehensive
activation. It is thus more suitable than other CAM-based masks for image
editing.

3.4 Composition

After obtaining the Diff-CAM mask, it is time to composite the edited image
with the original input for resolving the out-of-domain issue. We have the fused
image Ffuseq by the following weighted average formula:

Fiysea =T © Mpig-cam + 1 © (1 — Mpig.cam), (5)

where ® denotes the hadamard product. However, the quality of such an initial
blending result is unsatisfactory due to an inevitable ghosting effect.

3.5 Deghosting Network

To cope with ghosting artifacts, we treat the coarse reconstruction Fy,seq as
a combination of a target image and a ghost image. In order to decompose
the target image out, we further perform a deghosting process on the coarse
result via a deghosting network. As shown in Fig. 3, the architecture of the
network includes a fully convolutional network which consists of an encoder (the
orange part), a decoder (the pink part), a pretrained StyleGAN2 generator, and
a discriminator D(-). Note that we denote the aggregation of the first three
modules as ¢(+).

Our goal is to utilize the ghosting-free nature of the inherent facial prior in
the pretrained GAN model, such that ghosting artifacts can be removed without
destroying the original facial details. In particular, we first feed Ffyseq to an FCN-
like [25] encoder-decoder architecture for two purposes: the encoder generates
the latent code of Fyueeq, and the decoder is trained to produce ghosting-free
results. Meanwhile, with the predicted latent code, Fy,seq is inverted in the
latent space and reconstructed by the StyleGAN2 generator without ghosting
artifacts. We aggregate the corresponding features of the generator with the
decoder hierarchically, yielding the final deghosting result.

Since the fused image Fiuseq has no ground-truth counterpart, we synthesize
a set of paired data {Firain,I} to train the deghosting network. The training
image Fi ain is given by

Ftrain =T © Mtrain + I ®© (1 - Mtrain)7 (6)
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and the corresponding Diff-CAM mask M,y is defined as follows:

ooy = [ Mbpigcam(i,j), if Mbpigcam(i,j) < 0.5,
Mirain(i,5) = {1 — Mpig-cam(i, j), if  Mpig.cam(é,j) > 0.5. @

The rationale behind this setting is that: 1) the mask M, i, is thus regular-
ized into an interval of [0, 0.5] so that the content of I dominates that of Fiain.
We can then treat image I as the required ground truth. And 2) meanwhile,
the ghosting effect still exists in Fi;ain. Note that the corresponding attribute in
regard to generate the mask M., is consistent with T' and randomly selected.
The total objective Laeghost for optimizing the deghosting network is defined as
follows:

Edeghost = Amﬁmse + )\p['percep + )\aﬁadw (8)

where Lise, Lpercep and Laqv respectively denotes MSE loss, perceptual loss and
adversarial loss, Ap,, Ap, A, are the balance factors. And the involved three losses
are respectively defined as follows:

Lome = 1T = (Frain) 2 (9)
1
Epercep - QHV(I) - V(Qs(Ftrain))H% (10)
Lady = IlEPng(D(I)) + FmiIEZNPglog(l — D(¢(Firain))), (11)

where @ indicates the number of pixels, P. and P, respectively denotes the
distribution of real data and generated data, V'(-) denotes a pretrained VGG-16
network, and we select the features produced by the conv4_3 layer for modeling
the loss.

3.6 Multi-attribute editing

Our method also has a flexibility to handle multi-attribute editing. In fact, it
can be decomposed into a sequence of single attribute editing tasks. Suppose the
number of the attributes needed to be edited is r, three special points should be
noted: 1) In the ith (i # 1) single attribute editing, the paired images {T;, T;_1}
are used for calculating the DiffFCAM mask. At last we will have a set of r
masks. 2) The final Diff-CAM mask is the result of performing element-wise
maximization operation on the mask set. And 3) The final fused image is the
composition of T;. and I with the final mask as weight.

4 Experiments

4.1 Implementation Details

We implement our method in Pytorch on a PC with an Nvidia GeForce RTX
3090. During training, we use Adam as the optimizer with a learning rate of
0.0001, 81 = 0.9, B2 = 0.99. The hyperparameters in Eq. (8) are empirically
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(a) Input (b) “Age” (c) Grad-CAM  (d) Editing (e) Our (f) Editing
& “Eyes open” [29] based on (c) Diff-CAM based on (e)

Fig.4: Comparison with Grad-CAM in our editing framework. Grad-CAM ex-
hibits localized attentions, while ours can correctly locate semantic changes dur-
ing editing.

set to Ay, = 1, Ay = 0.8 and A, = 0.01. Before being sent to Eipain, I’ and T
are downsampled from a resolution of 1024 x 1024 to that of 256 x 256. And
the Diff-CAM mask computed by Eq. (4) will be upsampled to a resolution of
1024 x 1024 before being used in the composition process.

4.2 Experimental Data

FFHQ dataset [18] and Celeba-HQ dataset [24] both contain human face images
of high quality and resolution, with 70000 and 30000 images respectively. We
employ the FFHQ dataset for training the differential activation module and
the deghosting network, while we utilize the Celeba-HQ dataset for testing. All
the quantitative metrics are calculated on the Celeba-HQ dataset.

4.3 Component Analysis

Effectiveness of DA module. First, in order to prove the effectiveness of
our design of the DA module structure, we replace the DA module with the
commonly used Grad-CAM [29] and check out how the masks differ and influence
the editing.

The results are shown in Fig. 4. The results show the limitation of Grad-CAM
that activates only in local areas. The resulted masks cannot suit for discovering
semantic differences and therefore not suit for blending GAN inversion with
the source image. On the contrary, the masks generated by our DA module
successfully cover the editing-relevant regions, producing a global coverage for
“age” attribute while a local attention for “eyes open” attribute. This largely
aids the blending of edited and unedited regions.

Effectiveness of Deghosting Network. Here we show the results before
and after deghosting in Fig. 5. Even with a correctly detected mask, blending
two images inevitably produces blurry and ghosting artifacts. Our deghosting
network takes advantage of the rich facial priors from the pretrained GAN model,
and effectively removes non-face artifacts as well as generating a clear blending
of faces.
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(a) Input (b) Editing & Mask (c) Composition (d) Deghosting

Fig.5: Effect of our deghosting network. Directly blending two images with a
mask inevitably presents ghosting artifacts (teeth and face shape, zoom in for
better view). Our deghosting network utilizes GAN priors to faithfully remove
artifacts while retaining facial details.

Flexibility Analysis. Our method is flexible and independent of the applied
GAN inversion and interpretable directions. We choose several different inversion
and interpretable direction models to work with our framework. Three combi-
nations of inversion and direction methods are used, i.e., the pSp encoder [28]
together with directions found by StyleGAN2 distillation [33], the IdInvert en-
coder [13] with InterfaceGAN [30, 31], and the ede encoder [32] together with
the directions obtained by StyleFlow [3].

The results are shown in Fig. 6. From the result we can see that all the
encoding methods fail to retain the out-of-domain information. As for the first
person wearing a blue hat and holding a fist, all encoders treat the hat as the
hair and the fist as the background. Similar problem exists in the second person,
in which his cap is inverted to hair and becomes white as he gets older. All
these out-of-domain problems are addressed by our framework, regardless of
their inversions and applied editings. The results show that our DA module and
our deghosting network are encoder-independent and are robust enough to work
with different types of inversion and editing methods.

4.4 Comparison with SOTAs

In order to prove the superiority of our model, we compare our model with
other state-of-the-art facial attributes editing methods. Note that we do not
make an additional comparison with StyleGAN inversion based editing method
other than Fig. 6. This is due to that they would obviously fail on out-of-domain
samples as the original GAN was not trained on them. To maintain fairness, here
we mainly compare our results with those non-StyleGAN based image-to-image
translation methods. In particular, we compare our model with StarGAN [9],
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Fig. 6: Our framework is independent to GAN inversion and interpretable editing
directions. We can work with arbitrary combinations of encoders and directions.
(Zoom in for better view.)

AttGAN [15], and STGAN [23]. Kim et al. [20] propose to refine an image-to-
image translation method by introducing a CAM-consistency loss to force the
network to focus on attribute-relevant regions, and we also compare to the refined
version of StarGAN and AttGAN (denoted as StarGAN* and AttGAN*). All
the results are generated with their official codes, except the refinement method
of Kim et al. [20] that is not publicly available and implemented by ourselves.

Quantitative Evaluation. To quantitatively compare our method with
state-of-the-arts, we use the Fre’chet inception distance (FID) [16] and learned
perceptual image patch similarity (LPIPS) [39] metrics to measure the quality of
the results. FID measures the distribution distance between the original image
dataset and the manipulated dataset. We calculate FID metric for each model,
and select 4 common attributes (“age”, “bushy eyebrows”, “eyeglasses”, and
“beard”) that can be modified by all of the models to generate the manipulated
dataset. The final FID value of each model is obtained by averaging the FID
values corresponding to each attribute. LPTPS metric measures the perceptual
similarity between the two images. The smaller the value of LPIPS, the greater
the similarity. We use it to evaluate non-edited region consistency.

The numerical results are shown in Table 1. As can be seen, the proposed
method shows the best FID and LPIPS scores among the competitors. This re-
veals that our model can better maintain the distribution of the original dataset,
and a strong capability to preserve the image quality for non-edited regions.
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Input StarGAN AttGAN STGAN StarGAN* AttGAN* Ours

Eyeglasses

Eyebrows

Fig. 7: Qualitative evaluation with respect to state-of-the-art image-to-image face
editing methods on 4 attributes, “age”, “bushy eyebrows”, “eyeglasses”, and
“beard”. StarGAN* and AttGAN* represent the refined version using the cam-
consistency loss [20]. Our method can produce high-resolution and semantically
correct editing on these challenging cases. (Zoom in for better view.)

Qualitative Evaluation. In order to demonstrate the superiority of our
model, we conduct a qualitative study by contrasting the results generated from
different models. Again, here we mainly compare with the image-to-image trans-
lation models. The results of editing 4 attributes by different models are shown
in Fig. 7. We can see that, the outputs of our model are of the highest quality
compared to all other methods. Our outputs best change the attributes while
retaining other irrelevant information. StarGAN and its refined version suffer
from checkerboard-like artifacts. AttGAN* can achieve better editing than the
original version, but it still produces blurry details and semantically incorrect
editing (like the eyebrow on the left wrongly appears on the hair in the second
example), indicating that using an additional mask-guided loss is not reliable
for challenging cases. In contrast, our Diff-CAM mask driven framework obtains
significantly preferable editing performance, not to mention the high-resolution
features provided by StyleGAN-based editing.

4.5 Editing on non-facial attributes and domains

We also verify the generalization ability of our model and display the qualitative
results in Fig. 8. In particular, regarding non-facial attributes (like “hair color”
or “hairstyle”) and other domains (like “car”), the modifications may no longer
happen in the center region like most of those occured in facial attributes editing,
e.g., logo, wheels, and hair. Nevertheless, our DifFCAM can always precisely
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StarGAN AttGAN STGAN StarGAN* AttGAN* Ours

FIDJ 30.98 17.96  20.97 28.52 15.72 13.76
LPIPS| 0.208 0.107  0.178 0.138 0.099 0.094

Table 1: Quantitative comparison with state-of-the-art face editing methods.
StarGAN* and AttGAN* represent the refined version using the cam-consistency
loss [20]. Our method achieves the best numerical performance.

I E—
| e il

Hair color Hairstyle

Ori. Inv. Edit. Diff. Ours : Ori. Inv. Edit. Diff.  Ours

Fig.8: Evaluation on “car” domain and non-facial attributes “hairstyle”, “hair
color”. (Zoom in for better view.)

distinguish the edited and non-edited areas. And our framework can thus be
robust to small regions and different attributes for editing.

4.6 Multi-attribute Editing

In addition to the single-attribute editing, our model shows its high degree of
flexibility by also supporting editing multiple attributes. The process of modi-
fying multiple attributes is completed by modifying the attributes one by one
as is described in Sec. 3.6. Fig. 9 shows two examples of editing two attributes,
“eyes open” and “smile”. The final outputs of our model successfully introduce
the changes involved in the two editing steps and also manage to maintain the
uninvertible information such as the hats and the fingers.

4.7 Limitation

Although our model has achieved promising performance on the editing of facial
or non-facial attributes and other domains, its ability to handle attribute chang-
ing is not unlimited. Fig. 10 shows the examples of our limitation. Our model is
heavily relied on the performance of GAN inversion methods and only introduces
changes covered by the mask from the DA module. Therefore, if the inverted re-
sult cannot faithfully reconstruct the original image which is likely occurred in
the case of non-human domains, serious distortion and ghosting artifacts will be
existed in the final result.

5 Conclusion

In this paper, we propose a novel GAN prior based editing technique to tackle the
out-of-domain inversion problem with a composition-decomposition paradigm.
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(a) Input (b) “Eyes open” (¢) “Smile” (d) Ours

Fig. 9: Multi-attribute editing results. Our method can successfully edit multiple
attributes one by one, while still retaining the out-of-domain regions.

FUP PN

Ori. Inv. Edit. Ours V. Edit. Ours

Window

Thickness

Fig. 10: Challenging cases of our model. The two examples from different domains
show the editing results when the inversion cannot faithfully reconstruct the
original image.

We introduce a differential activation mechanism to track semantic changes be-
fore and after editing. With the aid of the calculated Diff-CAM mask, a coarse
reconstruction can be obtained by the composition of the edited image and the
original input. We further present a deghosting network to mitigate the ghosting
effect in the coarse result. Both qualitative and quantitative evaluations validate
the superiority of our method.
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