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1 Full Resolution Results and Comparisons

Because of our research topic of inpainting at modern camera resolutions, we
have prepared a 2 gigabyte supplemental material with an included HTML
viewer that shows results of all methods at full resolution, and have uploaded that
in an anonymized way to cloud file hosting. We checked with a program commit-
tee member and were told we can include a link as long as we are very confident
we have anonymized it, which we are. The link is https://drive.google.com/
file/d/1Lmar1byASRReJOSimBfWAE2Dt _-gMhor . To prove that the supplemen-
tal is not changed since the time of submission, the MD5 sum of the 2 gigabyte
supplemental material is 59eb1591b1601f491bd6962e43e81672 .

2 Statistical Hypothesis Testing

For the user preferences in Tables 2, 3, and 4 of the main paper, since users
preferred our method, we tested whether this preference is statistically signifi-
cant. We formed 10 null hypotheses: that ours in Table 2 was preferred equally
to each of the four baselines, that ours in Table 3 was preferred equally to each
of the four baselines, and that ours in Table 4 was preferred equally to the two
baselines. We used a one sample permutation t test with 10% simulations and
found the p values are all 0.0 except in Table 4 the p value for ours against
Random-Guided PatchMatch is p = 0.000107. After a Bonferroni correction the
preference for our method is significant in all cases at a p threshold of 0.01.

3 Curation Network Details

We generate a dataset for pretraining the curation network as follows: we first
collect 48229 diverse photos taken by the authors and collaborators in many
countries both indoors and outdoors, where the photos are 2K resolution or
above, and resize them to 2K. For each image, we generate 10 synthetic holes
using the same process and hole dataset described in ProFill [13]: we generate 5
random stroke holes and 5 object-shaped holes, where each hole is constrained
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to fit in a randomly generated 512x512 bounding box. Then, for each of these
holes, we compute all 8 possible guided PatchMatch results from our pipeline. In
total, this results in more than 3 million inpainted images at 2K resolution. To
reduce disk space requirements, we first generate the full inpainted 2K image in
memory, and then crop it to the 512x512 hole bounding box before saving it to
disk. We also collect the corresponding real photo crops before the synthetic holes
were added. Additionally, we associate with each fake inpainted image the hole
mask used to generate it, and for the corresponding real inpainted image with
the same crop bounding box, we associate it with the hole mask used to produce
the fake inpainting. We split the dataset into 80% training, 10% validation, and
10% testing images.

When pretraining and when fine-tuning on human preferences, for data aug-
mentations, we use horizontal and vertical flip, crop and resize, Gaussian blur,
color jitter, Gaussian noise, rotation, and JPEG compression. When fine-tuning
on human preferences, we use a cross-entropy classification loss and train until
after the validation accuracy peaks and declines due to the model overfitting to
the training set.

Some key lessons we learned in collecting our human preference data are that
one should hire photographers either amateur or professional, train them well
with meetings where one explains which of a pair of photos is better and why,
and validate the quality of their preference data against a reference ground truth.
In our case, the reference ground truth was established by an author who has
a passion for photography. In previous variants of our data collection, we tried
to use Amazon Mechanical Turk workers, but found that even when averaging
opinions among many workers, the results were close to random chance. We also
tried working one-on-one with expert human labelers who were not photogra-
phers, but we found their accuracy was much worse than if the workers were
photographers.

4 Automatic Cropping Details

The automatic cropping mentioned in the main paper Section 3.4 works by plac-
ing a crop square around the hole and iteratively expanding the crop square from
an initial size s; by a factor v = 1.05 until one of two conditions is hit: (1) the
crop square is equal size or larger than the image along either dimension, (2) the
number of hole pixels as determined by summation is less than a fraction 7 of the
crop square’s pixels (we use 7 = 0.25). The initial size is s; = max (512, hy,, hp),
where h,,, hy, are the width and height of the hole bounding box. Within each
iteration, the crop square is first centered at the center of the hole bounding box,
but in case the crop square moves outside the image, a translation is applied to
each axis independently. This translation is such that for each axis, the crop
square is moved back entirely inside the image with as few pixels of translation
as possible, or if that is not possible, moves as few pixels as possible so all image
pixels are visible in the crop along that axis.
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5 Discussion of Inpainting Evaluation Metrics

It is well-known that image inpainting lacks good evaluation metrics. Previous
inpainting works often use two types of quantitative evaluation metrics. The first
type are the direct image content comparison metrics, such as LPIPS [14], PSNR,
and SSIM [9], which measure the similarity between pairs of inpainted images and
original images. The other type are metrics that operate over the distributions
of features within the dataset, such as FID [5] and P/U-IDS [15]. FID measures
distribution similarity on the deep features extracted from Inception network [7]
for a set of inpainted images and a set of natural images. Similarly, P/U-IDS
trains a linear SVM using both deep features of inpainted images and natural
images, and classifies whether a deep Inception feature of an inpainted image is
real or fake to show how realistic the inpainted images are.

Unlike super resolution or image restoration tasks, we feel that direct image
content comparison between the inpainted and original images does not truly re-
flect the inpainted image quality, especially when the holes are large. The reason
is that the inpainted content could looks natural and realistic while simulta-
neously being very different from the original content. In practice, we indeed
observe that in many cases that blurry and unnatural results have better scores
for the content comparison metrics than the results that are natural but differ
greatly from the original image. Clearly, this departs from human preference.
Additionally, human do not really need to look at the original image as refer-
ence to tell whether an inpainted image is realistic, so this once again indicates
that content comparison metrics might not be an appropriate metric for image
inpainting. Thus, we think that metrics FID and P/U-IDS are relatively more
appropriate and closer to human perception. This is consistent with the evidence
presented in CoModGAN [15] that FID correlates highly with human preference
rate as does P/U-IDS. Nevertheless, we report all metrics for the comparison
with other state-of-the-art methods in section 4.4, and also conducted extensive
user studies in the main paper. We believe that designing better quantitative
metrics that tailor to inpainting task could be very useful for the community in
the future works.

6 How Do Different Guides Influence Results?

We show an example of how different guides might influence results in Figure
1. In this example, the depth guide (also chosen by our curation module) helps
PatchMatch find the reference patches at the similar depth and defocus to syn-
thesize consistent texture. In general, different guides may be particularly useful
in different cases, as we discuss in detail in the main paper.

7 Additional Quantitative and User Study Experiments

As an extension of Table 3 in the paper, we show that our method can also
effectively boost the performance with older deep inpainting models, as shown
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Fig. 1. The top row shows the input image with hole and the guides, and the middle and
bottom rows show the 8 guided PatchMatch results using different guides. % represents
the guided result that was chosen by the curation module. The results that use a depth
guide generally avoid copying patches that are defocused or have incorrect texture
scale. Please zoom in to see the details.

in Table 1. Although we encourage inpainting models to be evaluated on bench-
marks such as ours that correspond to modern camera sensors, we also show in
Table 2 results on our same benchmark dataset for lower resolutions 1K and 2K,
which correspond to camera sensors released approximately two-and-a-half to
two decades ago, respectively [2,1]. We still find our method is always preferred
the most according to the user studies at 1K and 2K, always preferred by the
quantitative metrics at 2K, and is usually in first or second place according to
quantitative metrics at 1K. Thus, our method helps the most at modern sensor
resolutions but also behaves in a graceful way as resolution is lowered.

Methods | LPIPS| | FID|

MEDFE + SR / Ours |0.05170 / 0.04442|33.97 / 21.81
EdgeConnect + SR / Ours|0.05017 / 0.04350|35.06 / 21.77
Deepfillv2 + SR / Ours  ]0.05295 / 0.04349|32.87 / 20.50

Table 1. A comparison for older models between results upsampled by Real-ESRGAN
and results upsampled by our proposed method.
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Methods| LPIPS | FID | P-IDS 1 U-IDS 1 User Pref. 1
Full ‘ Patch Full ‘ Patch Full ‘ Patch Full
CoMoD  |0.0598/0.0617|20.76,/23.10(13.99/19.26|21.57/18.88]19.85/13.89| 10.10/8.70 |7.55/4.54 22/21

MADF  |0.0548/0.0564|20.02/22.24|15.21/21.76|15.96/12.85|14.33/10.75| 5.05/3.53 |3.92/2.60|  13/10
ProFill  |0.0631/0.0574|20.64/22.83|16.52/22.37|16.37/13.97|12.80/10.59| 5.75/3.94 |2.86/2.66|  22/14
LaMa  |0.0509/0.0537|17.10/18.43|11.82/20.05|23.77/20.72|20.73/13.96| 12.04/9.33 |8.05/4.13|  59/36
Ours [0.0522/0.0525[16.01/17.88|10.23/12.41|23.62/22.88|22.83/20.82|11.95/11.51]9.78/9.87|  84/119
Table 2. A comparison study with the state-of-the-art methods at lower resolution of
1K / 2K corresponding to older camera sensors released approximately two-and-a-half
and two decades ago, respectively [2,1]. The top 3 methods are colored: 1, 2, 3.

8 Additional Ablation Studies

8.1 Inpainting on Cropped Images vs. Full Images

Here we study whether it will be helpful if deep inpainting models are run on
cropped patches centered around the hole rather than on the full images. The
cropped patches are generated by using the auto crop mechanism discussed pre-
viously. As shown in Table 3, we observe that the results generated from full
image inpainting slightly outperforms the cropped variant. We believe that the
main reason for this is that the holes used in our experiments are sufficiently
large, which also leads to fairly large cropped patch. Thus, inpaintings on the
cropped patches will need to go through a similar amount of subsequent upsam-
pling as inpainting on the full images, however, full images have relatively more
context. Due to our observations in this study, we report the inpainting results
from deep inpainting models running on the full images in the main manuscript.

Methods |LPIPS ||FID ||P-IDS 1|U-IDS 1
CoModGAN [15] on Crop| 0.05244 ‘25.05 16.68 ‘ 5.46

CoModGAN [15] on Full | 0.05099 | 24.8 14.72 4.47
MADEF [16] on Crop 0.04774 | 28.21 4.52 0.50
MADF [16] on Full 0.04773 |23.62| 10.48 2.14
ProFill [13] on Crop 0.04925 | 24.34 | 10.32 2.72
ProFill [13] on Full 0.04783 | 24.25| 11.35 2.26
LaMa [6] on Crop 0.04600 |19.19| 17.03 5.43
LaMa, [6] on Full 0.04588 | 19.20 | 17.24 5.62

Table 3. Quantitative comparison between inpainting methods running on cropped
patches vs. full images.
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8.2 LaMa Inference on 2K Images

The concurrent work LaMa [6] mentions that their model can run directly on
higher-resolution 2K images than the 256x256 images that it was trained on. We
found that for our experiments, the best high-resolution inpainting results are
obtained by running Lama [6] by resizing down to a maximum size of 512 x 512
while preserving aspect ratio combined with a larger scale upsampling by Real-
ESRGAN [8]. In Table 4, we show a high-resolution quantitative comparison
between LaMa [6] computing 2K output with a 2x SR and LaMa [6] computing
512 x 512 output with a 8x SR. The results show that LaMa [6] computed
on 512 x 512 with a 8x SR outperforms the alternative on most metrics. A
typical visual comparison between the two options can be found in Figure 2. In
general, we observe that LaMa [(] computed at 512 resolution generates both
better texture and more coherent structure reconstruction than the alternative.
Therefore, based on our quantitative and qualitative investigations, we report
the results from LaMa [6] computing at 512 resolution in the main manuscript.

Methods |LPIPS ||FID ||P-IDS 1|U-IDS ¢
LaMa [6] on 2K | 0.03982 | 25.53 | 5.18 1.18
LaMa [6] on 512| 0.04588 |19.20| 17.24 5.62

Table 4. Comparison between LaMa [6] direct computing on 2K resolution images with
2x super resolution and LaMa [6] computing on 512 images with 8x super resolution.
Both cases use the Real-ESRGAN [3] for super resolution step.

8.3 Comparison with Bicubic Upsampling

The most naive way to upsample the inpainted outputs from deep network is
bicubic upsampling. In this section, for the LaMa [6] model, we compare bicu-
bic upsampling with Real-ESRGAN [6] both qualitatively and quantitatively.
The visual results in Figure 3 shows a trade-off that the bicubic upsampling
approach generates very blurry results compared to Real-ESRGAN [(] outputs,
while Real-ESRGAN [6] sometimes produces slightly sharper boundary around
the hole. Quantitatively, Table 5 shows that Real- ESRGAN [6] outperforms bicu-
bic upsampling. Thus, we chose Real-ESRGAN [6] over bicubic upsampling for
upsampling the competing methods.

8.4 Reference-Based Super Resolution

To upsample the outputs of competing methods, we chose Real-ESRGAN [(]
since it is the state-of-the-arts super resolution algorithm and is also robust to
visual artifacts in the natural image inputs. We also wondered whether reference-
based super resolution could do a better job at upsampling the inpainting outputs
of baselines. To answer this question, we tried a state-of-the-arts reference-based
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Input LaMa on 2K LaMa on 512

Fig. 2. Visual comparison between LaMa [6] run on 2K images with 2x SR and LaMa
[6] run on maximum size of 512 x 512 images with 8x SR.

Methods |LPIPS ||FID ||P-IDS 1|U-IDS
+ Bicubic Upsampling| 0.05043 | 23.66 | 16.46 5.14
+ Real-ESRGAN [5] | 0.04588 |19.20| 17.24 | 5.62

Table 5. Quantitative comparison between upsampled inpainting results using bicubic
upsampling and Real-ESRGAN [3].

super resolution method named TTSR [10]. In the reference-based SR setting, we
feed inpainted images with a maximum size of 512 x 512 (maintaining aspect
ratio) as inputs and the 2K original image with hole as the reference images,
generate the 4x upsampled outputs at 2K resolution, and finally upsample the
outputs 2x to 4K resolution with Real-ESRGAN [8]. Both methods share the
same low resolution inpainted images computed from LaMa [6].

The current reference-based super resolution tasks mainly focus on upsam-
pling images from like 128 to 512, while our starting resolution is 512. When
we try to upsample images from 512 to 2048 with TTSR model [10], it requires
approximately 118 GB per image, which cannot fit in available GPU memory.
This leaves us the only option to run the inference code on CPU. Due to the
extremely slow computation time, we did this “TTSR vs. Real-ESRGAN” com-
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Input + Bicubic + Real-ESRGAN

Fig. 3. Qualitative comparison for the LaMa [6] model between upsampled inpainting
results using bicubic upsampling and Real-ESRGAN [3].

Methods |LPIPS ||FID ||P-IDS 1|U-IDS 1

+ TTSR [10] 0.04391 | 25.93 | 3.09 1.03
+ Real-ESRGAN [8]| 0.04571 |25.03| 6.33 | 1.66

Table 6. Quantitative comparison between upsampled inpainting results using TTSR
[8] and Real-ESRGAN [g].

parison study on a subset of 650 randomly sampled test images, which cost
around 3 days computation time on a AMD Ryzen Threadripper 3960X 24-Core
CPU. As shown in Table 6, the quantitative results show that Real-ESRGAN
[8] is better than TTSR [10] in terms of FID and P/U-IDS and slightly worse in
terms of LPIPS. Qualitatively, we observe that TTSR, tends to consistently gen-
erate bumpy artifacts that are visually more unnatural than the Real-ESRGAN
[8] outputs, as shown in Figure 4. Therefore, based on the quality comparison
and computation feasibility, we use Real-ESRGAN [8] as the upsampling method
for the competing methods in our paper.
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Input +TTSR + Real-ESRGAN

Fig. 4. Qualitative comparison between upsampled inpainting results using TTSR, [3]
and Real-ESRGAN [3].

8.5 Guided PatchMatch using RGB Images

While our proposed method uses depth, structure map, and panoptic segmen-
tation computed as the guides for PatchMatch, we also evaluate the inpainting
quality when using the RGB image produced by the deep inpainting backbone
as the guide directly. As shown in Figure 5, we observe that the RGB guided
PatchMatch tend to produce very blurry results, and thus make the texture visu-
ally unnatural. The quantitative evaluation shown in Table 7 also indicates that
the RGB guided PatchMatch outputs do not achieve very good results. Thus,
we decided not to incorporate the RGB guided PatchMatch as an option in our
curation stage. More discussion of guide choices can be found in section 3.2 in
the main manuscript.

Methods |LPIPS ||FID ||P-IDS 1|U-IDS 1
RGB Guide 0.04112 | 24.65 ‘ 16.39 5.41

Our Full Model| 0.04156 |18.74| 22.46 10.70

Table 7. Quantitative comparison between using RGB guided PatchMatch and our
full model.
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Fig. 5. Qualitative comparison between using RGB guided PatchMatch and our full
model.

8.6 All Metrics

As promised in the main manuscript, we show all the evaluation metrics for the
comparison with competing methods in Table 8. More discussion of the results
can be found in Section 4.3 in the main manuscript, and discussion of evaluation
metrics can be found in Section 3 in the supplemental material.

Methods LPIPS ||PSNR 1[SSIM | FID | | P-IDS 1 | U-IDS 1 |User Pref. {| User Pref. 1
Full |Patch| Full |Patch| Full |Patch| Full Image |Boundary Patch
EdgeConnect [4] | 0.05017 | 21.54 | 0.7831 |35.06|41.05|0.04 | 4.56 | 0.00 | 0.55 - -
Deepfillv2 [12] | 0.05295 | 21.46 | 0.7862 |32.87|36.06|5.54 | 5.47 | 1.35 | 0.84 - -
MEDFE [3] 0.05170 | 22.03 | 0.7858 |33.97|60.87|0.48 | 2.23 | 0.00 | 0.26 - -
HiFill [11] 0.05213 | 20.82 | 0.7416 |34.39|31.74|4.15 | 5.20 | 0.75 | 0.97 - -
CoModGAN [15]| 0.05099 | 21.63 | 0.7869 |24.81|32.08|14.72| 7.01 |4.47 | 1.51 28 17
MADF [16] 0.04773 | 22.84 | 0.8047 [23.62]33.21|10.48| 6.81 | 2.14 | 1.48 6 12
ProFill [13] 0.04783 | 22.59 | 0.7990 |24.25|31.26{11.35| 6.89 | 2.26 | 1.31 10 16
LaMa. [(] 0.04588 | 23.11 | 0.8111 |19.20]35.95|17.24| 6.86 | 5.62 | 1.38 28 22
GPFill (Ours) | 0.04156 | 22.73 | 0.7969 |18.74|15.63 |22.46|19.77]10.70] 10.22 128 \ 133

Table 8. A comparison study with the state-of-the-art inpainting methods. The top 3
methods are colored: 1, 2, 3.
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Fig. 6. Limitations of our method. In (a) and (b), undesirable repetitions of the salient
yellow and red objects occur in the inpainted region. In (c) and (d), structures under
perspective can be broken for the window at the top of the house, while LaMa [0] (e)
reconstructs better structure at the window region but has visual artifacts in other
regions. In (f) and (g), our patch-based synthesis method fails to inpaint the Ferris
wheel, since the image lacks good reference content to directly copy from to fill the
hole and requires hallucinating new structure. In this case, LaMa [(] builds some new
structure to better fill the Ferris wheel but produce over-smooth pixels in the water
region, in (h). In (f) - (k), the curation network sometimes does not pick the best option
from eight Guided PatchMatch outputs. In this case, the curation network picks (j)
instead of (k), and thus a human manually picking could help for this case. The last
section of our main manuscript discusses ways these limitations could potentially be
mitigated in future work.

9 Failure Cases

As discussed in the last section of our main manuscript, our method has some
limitations. In this section, we provide several visual demonstration in Figure 6
to show the limitations we mentioned in the main paper, and more discussion
can be found in the caption of Figure 6.

10 More Qualitative Results

We show more inpainting results at 4K or above resolution in Figure 7, Figure 8,
Figure 9, and Figure 10 in the following pages.
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Input Image Resolution: 6720 X 4416

LaMa + Real-ESRGAN |

Ours
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Fig. 7. In each of the two examples, the top left is the input image with a real object
mask, the right giant image is the inpainted result from our method, the other two
images on the bottom left are the zoom in insets for the closet competing method
LaMa [6] upsampled by Real-ESRGAN [8] and ours, where the zoom in location are
indicated by the bounding box on the right image. The guides used for each image is
shown at the top right corner of the inpainted result.
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Fig. 9. In each of the two examples, the top left is the input image with a real object
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