
Controllable Video Generation through
Global and Local Motion Dynamics

– Supplementary Material –

Aram Davtyan and Paolo Favaro

Computer Vision Group, University of Bern, Switzerland
{aram.davtyan,paolo.favaro}@inf.unibe.ch

Abstract. In the main paper we present GLASS, a method for Global
and Local Action-driven Sequence Synthesis. GLASS, trained on unla-
beled video sequences, allows to animate an input image at test time.
The method builds a global and local action representation that is used
to generate transitions of the segmented foreground sequences. Moreover,
we introduced a novel dataset (W-Sprites) with a predefined action space
for analysis. This supplementary material provides details and visual ex-
amples that could not be included in the main paper due to the space
limitations. In section A we describe the implementation details, such as
network architecture and training parameters. Section B provides details
on the dataset generation protocol. In Section C we include more visual
examples of the evaluation of our method. Further details, the code and
example videos are available at https://araachie.github.io/glass/.

A Implementation

In this section we report further details regarding the implementation of GLASS.

A.1 Network architecture

In our code we mostly adopt convolutional blocks from the publicly available
implementation of CADDY [5]. Those include residual blocks, upsampling and
downsampling blocks. The blocks mainly incorporate Leaky-ReLu activations
and Batch Normalization layers. Exceptions are the blocks that output masks
(sigmoid activation), the blocks that output images (tanh activation) and the
LSTM blocks (sigmoid and tanh activations) [1].
GMA. The architecture of our Global Motion Analysis (GMA) module is de-
picted in Fig. 1. GMA consists of 4 networks: the masking network, 2 identical
shift predictors and the inpainter.
LMA. The architecture of our Local Motion Analysis (LMA) module is depicted
in Fig. 2. The encoder E and the decoder D are mostly adopted from Menapace
et al. [5]. However, we introduce an additional 1 × 1-convolutional block C to
compress the feature vector before feeding it to the RNN. This is supposed to
prevent overfitting to the appearance of the agent. We also change the RNN to

https://orcid.org/0000-0001-5156-3741
https://orcid.org/0000-0003-3546-8247
https://araachie.github.io/glass/


2 A. Davtyan and P. Favaro

Masking Network Shift Predictor Inpainter

Fig. 1: The architectures of the Global Motion Analysis (GMA) module blocks.
The number of output channels is indicated in the center of each block. GAP
stands for Global Average Pooling.

take the action codes as input through the modulated convolution, as in Style-
GAN [2]. Note, that the recurrent units leveraged in our RNN’s implementation
are in fact convolutional LSTM blocks. Moreover, we upgrade the architecture of
the action network A by incorporating delayed bilinear blocks and using Vector
Quantization [3] for estimation of the performed action. We would also like to
clarify the intuition behind using a sequence of bilinear transformations to model
actions instead of the difference between ψt+1 and ψt, as done in [5]. By using the
difference as an action direction, the model only discriminates linear transitions
in the latent space. This, in addition to the low dimensional action space used in
[5], results in the fact that CADDY mostly discovers global 2D transformations,
such as shifts. However, local actions are mostly periodic (consider an agent that
rotates or walks in place). With our sequence of bilinear transformations we let
the network unfold the latent space trajectories first before taking the difference
between the features. Our ablation studies in the main paper suggest that this
approach helps.

A.2 Training details

GMA and LMA scheduling. To start training the LMA on a valid input
data, we first train the GMA module for 3k iterations to warm it up. Then, the
LMA begins to train together with the GMA. But, no gradient flows back to
GMA from LMA.
Loss terms coefficients. The configuration of the λ coefficients used in the
linear combination of the separate loss terms is shown in Table 1. We found that
this selection of λ works well across all the datasets.
Sequence length scheduling. As described in the main paper, we choose a
sequence length Tf , 0 < Tf < T , after which the encodings of the reconstructed



Controllable Video Generation through Global and Local Motion Dynamics 3

Fig. 2: The architecture of the Local Motion Analysis (LMA) module of GLASS.

Table 1: The coefficients of the loss terms used in the training of GLASS
GMA λBIN λSIZE λRECF λRECB λVGG λRECJ

0.5 0.1 1.0 2.0 0.01 1.0

LMA λVQ λRECU λRECS λMSK λCYC λLMA-VGG

0.25 1.0 1.0 0.2 0.2 1.0

foregrounds are fed to the RNN. For all the datasets we start from Tf = 5, T = 6
and gradually decrease Tf to 1 in 25000 iterations after the GMA pretraining
stage has ended. On the BAIR dataset T remains also constant, while on the
Tennis and on the W-Sprites datasets we gradually increase T from 6 to 12 in
order to favor the quality of long generated sequences.

Optimization and Batching. As mentioned in the main paper, the models are
trained using the Adam optimizer [4] with a learning rate equal to 0.0004 and
weight decay 10−6. We decrease the learning rate by a factor of 0.3 after 300K
iterations. On W-Sprites and Tennis we used batch size equal to 4. However, on
the BAIR dataset due to the high resolution of the frames, we had to decrease
the batch size to 2.

B W-Sprites dataset

Here we describe how the W-Sprites dataset was synthesized. In particular, we
provide details on the random walk used to generate the global motion of the
sprite. First, a starting point (x0, y0) is sampled uniformly within the frame. At
each step i, an action ĝi is sampled uniformly from the list of available actions:
left, right, up, down and stay (on the edges of the image the corresponding



4 A. Davtyan and P. Favaro

action is removed from the list). The transition probabilities are given by

p(gi = gi−1|gi−1) = pinertia (1)

p(gi = ĝi|gi−1) = 1− pinertia (2)

p(xi = xi−1 + s, yi = yi−1|xi−1, yi−1, gi = “right”) = 1 (3)

p(xi = xi−1 − s, yi = yi−1|xi−1, yi−1, gi = “left”) = 1 (4)

p(xi = xi−1, yi = yi−1 + s|xi−1, yi−1, gi = “down”) = 1 (5)

p(xi = xi−1, yi = yi−1 − s|xi−1, yi−1, gi = “up”) = 1 (6)

p(xi = xi−1, yi = yi−1|xi−1, yi−1, gi = “stay”) = 1. (7)

We set pinertia to 0.9 and s to 7 pixels. The described process generates a sequence
of coordinates (xi, yi) and global actions gi. The global actions are further used
to animate the sprite. In case of right, left, up and down global actions the
corresponding walking actions are applied. The stay action is animated with
one of slash left, slash right, slash front, spellcast left, spellcast
right and spellcast front chosen at random.

The same random walk is used to generate the background motion. For the
background we set pinertia = 0.95 and s = 2. We also restrict the maximum
background motion to 25 pixels.

The code used to generate the dataset will be made publicly available on
github.

C Additional Visual Examples

In this section we provide some additional qualitative evaluation of our method,
that could not be included in the main paper due to the paper length limitations.
Visual results of ablations and prior work. Fig. 3 provides some visual
results for the ablations from the main paper. We observe that the full version
of GLASS has a more disentangled local action space than under the other
settings. We attribute this property to the use of a separate global and local
action spaces (see Fig. 9). This separation provides a more efficient and richer
action space than in prior work (see Fig. 4). For example, CADDY [5] trained on
W-Sprites tends to learn global motion of both the agent and the background
while ignoring some local variations. This means that CADDY yields action
spaces of the background and the foreground that are tangled.
More reconstruction and transfer examples. We include more examples of
reconstruction and motion transfer using GLASS in this section. We start from
an original video, which is decoded to a sequence of global and local actions.
This sequence is used for both reconstructing the original video from the first
frame and transfer the motion to a different scene. The results on the BAIR and
the Tennis datasets are shown in Figs. 5 and 6.
Global action space. In the main paper we included some visualizations of
the global action space on the BAIR and Tennis datasets. Here we provide
more videos in order to reiterate the consistency of the global actions learnt by



Controllable Video Generation through Global and Local Motion Dynamics 5

Plain directions

Gumbel

No modulated convs

Joint input

���LRECS

GLASS 200k

Fig. 3: Visualization of local action spaces per ablation. Each row corresponds to
a specific ablation. Each column depicts a certain local action being performed,
global actions are set to zero-shift. To play use Acrobat Reader.



6 A. Davtyan and P. Favaro

Fig. 4: Action space of CADDY [5] trained on the W-Sprites dataset. Each row
corresponds to a different initial frame. Column j shows the result of applying
action j multiple times in a row. To play use Acrobat Reader.

o
ri
g
in
a
l

re
co
n
st
ru
ct
ed

tr
a
n
sf
er

Fig. 5: Reconstruction and motion transfer examples on the BAIR dataset. Note
the ability of GLASS to generate very diverse videos from the same initial frame.
To play use Acrobat Reader.



Controllable Video Generation through Global and Local Motion Dynamics 7

o
ri
g
in
a
l

re
co
n
st
ru
ct
ed

tr
a
n
sf
er

Fig. 6: Reconstruction and motion transfer examples on the Tennis dataset. Note
the ability of GLASS to generate very diverse videos from the same initial frame.
To play use Acrobat Reader.

Fig. 7: Global action space visualization on the BAIR dataset. Each row starts
with the same frame. Each column corresponds to one of the global actions, from
left to right: right, left, down, up and stay. To play use Acrobat Reader.

GLASS. We sequentially feed the same global shift to the model along with a
fixed local action. The resulting 8 frames long videos are shown in Figs. 7, 8 and
9.
Local action space. Here we provide some visualizations of the local action
space learnt by GLASS on the different datasets. In Figs. 10, 11 and 12 we show
the first frame of the video as well as the result of applying diferent local actions.
We sequentially feed the same local action to the model along with the (0.0, 0.0)
global action to keep the agent static. The 8th frame of the resulting sequence
is shown. We fit 2, 4 and 6 local actions on the BAIR, Tennis and W-Sprites
datasets respectively.



8 A. Davtyan and P. Favaro

Fig. 8: Global action space visualization on the Tennis dataset. Each row starts
with the same frame. Each column corresponds to one of the global actions, from
left to right: right, left, down, up and stay. To play use Acrobat Reader.

Fig. 9: Global action space visualization on the W-Sprites dataset. Each row
starts with the same frame. Each column corresponds to one of the global actions,
from left to right: right, left, down, up and stay. To play use Acrobat Reader.

Fig. 10: Demonstration of the resulting images after applying different local ac-
tions on the BAIR dataset. The actions capture some local deformations of the
robot arm, i.e. the state of the manipulator (open / close).



Controllable Video Generation through Global and Local Motion Dynamics 9

Fig. 11: Demonstration of the resulting images after applying different local ac-
tions on the Tennis dataset. The actions capture some small variations of the
pose of the tennis player, such as rotation and the distance between the legs.
This helps GLASS generate more realistic motions than CADDY and other com-
petitors, e.g. running player (see Fig. 6)

Fig. 12: Demonstration of the resulting images after applying different local ac-
tions on the W-Sprites dataset. The local actions learnt by the model can be
interpreted as turn front, slash front, spellcast, slash left, turn right,
turn left.



10 A. Davtyan and P. Favaro

References

1. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8),
1735–1780 (1997)

2. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., Aila, T.:
Alias-free generative adversarial networks. Advances in Neural Information Process-
ing Systems 34 (2021)

3. Kim, Y., Nam, S., Cho, I., Kim, S.J.: Unsupervised keypoint learning for guiding
class-conditional video prediction. Advances in neural information processing sys-
tems 32 (2019)

4. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

5. Menapace, W., Lathuilière, S., Tulyakov, S., Siarohin, A., Ricci, E.: Playable video
generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 10061–10070 (2021)


	Controllable Video Generation through Global and Local Motion Dynamics – Supplementary Material –

	anm33: 
	33.6: 
	33.5: 
	33.4: 
	33.3: 
	33.2: 
	33.1: 
	33.0: 
	anm32: 
	32.6: 
	32.5: 
	32.4: 
	32.3: 
	32.2: 
	32.1: 
	32.0: 
	anm31: 
	31.6: 
	31.5: 
	31.4: 
	31.3: 
	31.2: 
	31.1: 
	31.0: 
	anm30: 
	30.12: 
	30.11: 
	30.10: 
	30.9: 
	30.8: 
	30.7: 
	30.6: 
	30.5: 
	30.4: 
	30.3: 
	30.2: 
	30.1: 
	30.0: 
	anm29: 
	29.12: 
	29.11: 
	29.10: 
	29.9: 
	29.8: 
	29.7: 
	29.6: 
	29.5: 
	29.4: 
	29.3: 
	29.2: 
	29.1: 
	29.0: 
	anm28: 
	28.12: 
	28.11: 
	28.10: 
	28.9: 
	28.8: 
	28.7: 
	28.6: 
	28.5: 
	28.4: 
	28.3: 
	28.2: 
	28.1: 
	28.0: 
	anm27: 
	27.12: 
	27.11: 
	27.10: 
	27.9: 
	27.8: 
	27.7: 
	27.6: 
	27.5: 
	27.4: 
	27.3: 
	27.2: 
	27.1: 
	27.0: 
	anm26: 
	26.12: 
	26.11: 
	26.10: 
	26.9: 
	26.8: 
	26.7: 
	26.6: 
	26.5: 
	26.4: 
	26.3: 
	26.2: 
	26.1: 
	26.0: 
	anm25: 
	25.12: 
	25.11: 
	25.10: 
	25.9: 
	25.8: 
	25.7: 
	25.6: 
	25.5: 
	25.4: 
	25.3: 
	25.2: 
	25.1: 
	25.0: 
	anm24: 
	24.12: 
	24.11: 
	24.10: 
	24.9: 
	24.8: 
	24.7: 
	24.6: 
	24.5: 
	24.4: 
	24.3: 
	24.2: 
	24.1: 
	24.0: 
	anm23: 
	23.12: 
	23.11: 
	23.10: 
	23.9: 
	23.8: 
	23.7: 
	23.6: 
	23.5: 
	23.4: 
	23.3: 
	23.2: 
	23.1: 
	23.0: 
	anm22: 
	22.12: 
	22.11: 
	22.10: 
	22.9: 
	22.8: 
	22.7: 
	22.6: 
	22.5: 
	22.4: 
	22.3: 
	22.2: 
	22.1: 
	22.0: 
	anm21: 
	21.7: 
	21.6: 
	21.5: 
	21.4: 
	21.3: 
	21.2: 
	21.1: 
	21.0: 
	anm20: 
	20.7: 
	20.6: 
	20.5: 
	20.4: 
	20.3: 
	20.2: 
	20.1: 
	20.0: 
	anm19: 
	19.7: 
	19.6: 
	19.5: 
	19.4: 
	19.3: 
	19.2: 
	19.1: 
	19.0: 
	anm18: 
	18.7: 
	18.6: 
	18.5: 
	18.4: 
	18.3: 
	18.2: 
	18.1: 
	18.0: 
	anm17: 
	17.7: 
	17.6: 
	17.5: 
	17.4: 
	17.3: 
	17.2: 
	17.1: 
	17.0: 
	anm16: 
	16.7: 
	16.6: 
	16.5: 
	16.4: 
	16.3: 
	16.2: 
	16.1: 
	16.0: 
	anm15: 
	15.7: 
	15.6: 
	15.5: 
	15.4: 
	15.3: 
	15.2: 
	15.1: 
	15.0: 
	anm14: 
	14.7: 
	14.6: 
	14.5: 
	14.4: 
	14.3: 
	14.2: 
	14.1: 
	14.0: 
	anm13: 
	13.7: 
	13.6: 
	13.5: 
	13.4: 
	13.3: 
	13.2: 
	13.1: 
	13.0: 
	anm12: 
	12.7: 
	12.6: 
	12.5: 
	12.4: 
	12.3: 
	12.2: 
	12.1: 
	12.0: 
	anm11: 
	11.7: 
	11.6: 
	11.5: 
	11.4: 
	11.3: 
	11.2: 
	11.1: 
	11.0: 
	anm10: 
	10.7: 
	10.6: 
	10.5: 
	10.4: 
	10.3: 
	10.2: 
	10.1: 
	10.0: 
	anm9: 
	9.7: 
	9.6: 
	9.5: 
	9.4: 
	9.3: 
	9.2: 
	9.1: 
	9.0: 
	anm8: 
	8.7: 
	8.6: 
	8.5: 
	8.4: 
	8.3: 
	8.2: 
	8.1: 
	8.0: 
	anm7: 
	7.7: 
	7.6: 
	7.5: 
	7.4: 
	7.3: 
	7.2: 
	7.1: 
	7.0: 
	anm6: 
	6.5: 
	6.4: 
	6.3: 
	6.2: 
	6.1: 
	6.0: 
	anm5: 
	5.7: 
	5.6: 
	5.5: 
	5.4: 
	5.3: 
	5.2: 
	5.1: 
	5.0: 
	anm4: 
	4.7: 
	4.6: 
	4.5: 
	4.4: 
	4.3: 
	4.2: 
	4.1: 
	4.0: 
	anm3: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	anm2: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


