
Controllable Video Generation through
Global and Local Motion Dynamics

Aram Davtyan and Paolo Favaro

Computer Vision Group, University of Bern, Switzerland
{aram.davtyan, paolo.favaro}@inf.unibe.ch

Abstract. We present GLASS, a method for Global and Local Action-
driven Sequence Synthesis. GLASS is a generative model that is trained
on video sequences in an unsupervised manner and that can animate
an input image at test time. The method learns to segment frames into
foreground-background layers and to generate transitions of the fore-
grounds over time through a global and local action representation.
Global actions are explicitly related to 2D shifts, while local actions are
instead related to (both geometric and photometric) local deformations.
GLASS uses a recurrent neural network to transition between frames and
is trained through a reconstruction loss. We also introduce W-Sprites
(Walking Sprites), a novel synthetic dataset with a predefined action
space. We evaluate our method on both W-Sprites and real datasets,
and find that GLASS is able to generate realistic video sequences from
a single input image and to successfully learn a more advanced action
space than in prior work. Further details, the code and example videos
are available at https://araachie.github.io/glass/.

Keywords: video generation; unsupervised action discovery; control-
lable generation

1 Introduction

A long-standing objective in machine learning and computer vision is to build
agents that can learn how to operate in an environment through visual data [12].
A successful approach to do so is to use supervised learning, i.e., to train a model
on a large, manually annotated dataset [25]. However, if we take inspiration from
how infants learn to move, we are brought to conclude that they may not rely on
extensive guidance. In fact, while supervision from adults might come through
language [30], the signal is certainly not detailed enough to fully define the
locomotion dynamics. One approach that does not require direct supervision is to
learn just through direct scrutiny of other agents, i.e., through passive imitation.
In fact, infants have an abundance of sensory exposure to the activities of adults
before they themselves learn how to perform them [29].

The first step for an observing agent to learn how to operate in an environ-
ment through passive imitation and without explicit supervision is to build a
model that: 1) separates an agent from its environment, 2) captures the appear-
ance of the agent and its environment, and 3) builds a description of the agent’s

https://orcid.org/0000-0001-5156-3741
https://orcid.org/0000-0003-3546-8247
https://araachie.github.io/glass/


2 A. Davtyan and P. Favaro

Fig. 1: W-Sprites dataset sample videos. To play them use Acrobat Reader.

dynamics. The first requirement implies that the model incorporates some seg-
mentation capability, and it allows to explain transitions over time more easily.
The second requirement is dictated by the fact that we exploit the reconstruction
of visual observations as our indirect supervision signal. Thus, our model also
relates to the video generation literature. Finally, the third requirement is that
the model includes an action space, which serves two purposes: i) it allows the
model to decode a video into a sequence of actions (which is a representation of
the agent’s dynamics) and ii) it allows the model to control the generation of
videos by editing the action sequence.

We introduce GLASS, a method for Global and Local Action-driven Sequence
Synthesis. As shown in Fig. 2, GLASS first learns to segment each frame of a
video into foreground and background layers. A basic principle to do that is to
use motion as a cue, i.e., the fact that agents exhibit, on average, a distinct
motion flow compared to the environment. Motion-based segmentation could be
achieved through background subtraction, which is however restricted to station-
ary backgrounds, or instead, more in general, via optical flow. For simplicity, we
propose to use an explicit foreground-background motion segmentation based on
2D shifts. Then, GLASS regresses the relative shift between the foregrounds of
two subsequent frames, which we call the global action, and between the back-
grounds (see Fig. 3). The local actions are learned only from the foregrounds. The
decomposition of the agent’s motion into global and local components provides a
computationally efficient representation of the video. In contrast, a global action
space would require the much larger Cartesian product of the local and global
action spaces. In practice, given an action space of finite size, global models tend
to learn only global motions and to ignore local deformations. We train an RNN
to predict, through a decoder, the next foreground by using an encoding of a
foreground, the previous state, and an encoding of the local and global actions
as input. All networks are trained via reconstruction losses.

We evaluate GLASS on both synthetic and real data. As synthetic data we
introduce W-Sprites (Walking Sprites [23,1,2]) (see Fig. 1), a dataset with a
pre-defined action space, and where the action labels between pairs of frames
(as well as the agent segmentation and location, and the background shift) are
known. We find that GLASS learns a robust representation of both global and
local dynamics on W-Sprites. Moreover, GLASS is able to decode videos into
sequences of actions that strongly correlate with the ground truth action se-
quences. Finally, users can generate novel sequences by controlling the input
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Fig. 2: GLASS Global Motion Analysis. Two input frames It and It+1 are fed
(separately) to a segmentation network M to output the foreground masks mt

and mt+1 respectively. The masks are used to separate the foregrounds ft and
ft+1 from the backgrounds bt and bt+1. The concatenated foregrounds are fed
to the network Pf to predict their relative shift ∆F . We use ∆F to shift ft and
match it to ft+1 via an L2 loss (foregrounds may not match exactly and this loss
does not penalize small errors). In the case of the backgrounds we also train an
inpainting network before shifting them with the predicted ∆B and matching
them with an L1 loss (unlike foregrounds, we can expect backgrounds to match).

action sequences to GLASS. On real data, we find that GLASS can also gener-
ate realistic sequences by controlling the actions between frames.
Contributions: i) We introduce GLASS, a novel generative model with a global
and local action space; the shifts estimated and generated through the global
actions have an accuracy comparable to or higher than SotA; moreover, local
actions allow a fine-grained modeling of dynamics that is not available in prior
work; ii) We introduce W-Sprites, a novel dataset for the evaluation of action
identification and generation; iii) We demonstrate GLASS on both synthetic and
real datasets and show that it can: 1) segment an agent from its environment and
estimate its global shift over time; 2) learn a disentangled action space that is
consistent across agents; 3) decode videos into sequences of actions; 4) synthesize
realistic videos under the guidance of a novel action policy.

2 Prior work

Video generation. Because GLASS is trained based on reconstruction losses,
and it is built as a generative model, it relates to the generation of videos. Re-
cent success in deep generative models for images [10,17,28] has aroused renewed
interest in video generation. Several formulations tackling the problem of video
generation exploit adversarial losses [3,4,9,22,32,35,36,37], autoregressive models
[39] and use a wide range of architectures from RNNs [31] to transformers [40].
Controllable video generation. Video generation models can also differ in
how they apply conditioning. While some prior work uses per-video class la-
bels [19,38], e.g., actions performed in a short sequence of frames, others, as in
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Fig. 3: GLASS Local Motion Analysis. We feed the segmented foreground ft, its
shifted version and ft+1 separately as inputs to an encoder network E to obtain
features ϕt, ϕ̃t and ϕt+1 respectively. The latter two features are then mapped
to an action at by the action network A. A further encoding of ϕt into et, the
previous state st, and the local action at and global action ∆F are fed as input
to the RNN to predict the next state st+1. Finally, a decoder maps the state
st+1 to the next foreground f̂t+1, which is matched to the original foreground
ft+1 via the reconstruction loss.

GLASS, use conditioning at each step [7,12,18,26,27]. For instance, in [12] the au-
thors train a model to simulate the behavior of a robotic arm given the performed
actions. Kim et al. [18] introduce GameGAN, a powerful generative model that
can replace a game engine. It is trained to render the next frame given the current
frame and the pressed keyboard action. One limitation of these methods is that
they require knowledge of the ground truth actions and hence are restricted to
synthetic data, such as video games. To become applicable to real data, several
recent methods that learn an action space of the agent from raw videos without
fine-grained annotations have been proposed. For instance, Rybkin et al. [29]
propose a continuous latent space for the actions. They introduce arithmetical
structure into their action space by exploiting the fact that two actions can be
composed to get another action that would lead to the same result as when
applying the original actions sequentially. [13] generates high-quality videos of
moving agents with controllable actions. However, it builds an autoregressive
model on top of pose maps obtained from supervised training, while our method
is completely unsupervised. In [24] the continuous action space is replaced by
a finite set. This allows a simpler control (playability) of the generated videos
and favors interpretability of the learned actions. More recent work by Huang
et al. [15] explicitly separates the foreground from the background and trains a
network to predict the next frame given the current frame and the next segmen-
tation mask. GLASS relates to this last family of methods as it also does not
require any supervision signal.
Unsupervised learning of structured representations. In GLASS we pro-
pose to learn the global and local actions from video frames. While the global
ones are defined as foreground 2D shifts, the local ones are represented as a dis-
crete set of action codes. This leads to a latent clustering problem. In GLASS,
we propose to solve it through variational inference [21]. Some recent work learns
structured representations from raw input data [6,5]. The VQ-VAE [34] formula-
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tion instead uses a discrete latent space and assumes a uniform distribution over
the latent features. Recent advances in image and video generation has shown
that such VQ-VAE based models have a remarkable performance [28,40] and
this has encouraged us to adopt this approach.

3 Training GLASS

GLASS consists of two stages: One is the Global Motion Analysis (GMA) (shown
in Fig. 2) and the other is the Local Motion Analysis (LMA) (shown in Fig. 3).
GMA aims to separate the foreground agent from the background and to also
regress the 2D shifts between foregrounds and backgrounds. LMA aims to learn
a representation for local actions that can describe deformations other than 2D
shifts. Towards this purpose it uses a Recurrent Neural Network (RNN) and a
feature encoding of a frame and of the global and local actions as input. Both
GMA and LMA stages are jointly trained in an unsupervised manner.

3.1 Global Motion Analysis

Let us denote a video as a sequence of T frames It ∈ R3×H×W , where t =
1, . . . , T , and 3, H and W denote the number of color channels, the height and
the width of the frame. Although GLASS is trained with video sequences, we can
illustrate all the training losses with a single pair (It, It+1) of frames. Each frame
is fed to a mask network M to output masks mt and mt+1. The masks can take
values between 0 and 1 (a sigmoid is used at the output), but are encouraged to
take the extreme values through the following binarization loss

LBIN =
∑

t min{mt, 1−mt}. (1)

We also discourage the mask from being empty or covering the whole frame by
using a mask size loss

LSIZE =
∑

t |E[mt]− θ|, (2)

where E[·] denotes the average over all pixels and θ ∈ [0, 1] is a tuning parameter
(the percentage of image pixels covered by a mask on average). The masks are
then used to extract the foregrounds ft = It ⊙mt and ft+1 = It+1 ⊙mt+1 and
the backgrounds bt = It ⊙ (1 −mt) and bt+1 = It+1 ⊙ (1 −mt+1) (⊙ denotes
the element-wise product). We assume that the foregrounds are approximately
matching up to a relative shift ∆̄F , i.e., that ft+1[p] ≃

(
ft ◦ ∆̄F

)
[p]

.
= ft[p+∆̄F ],

for all pixel coordinates p ∈ Ω ⊂ R2. We then concatenate the foregrounds
and feed them as input to the pose network Pf to regress the relative shift
∆F = Pf ([ft, ft+1]) between ft and ft+1. Since we do not have the ground truth
shift ∆̄F , we cannot train Pf via supervised learning. In alternative, we rely on
the modeling assumption and define a reconstruction loss for the foreground by
applying the estimated shift ∆F to ft and by matching it to the frame ft+1 in
the L2 norm (to allow for some error tolerance), i.e.,

LRECF =
∑

t

∥∥ft+1 − ft ◦∆F

∥∥2
2
. (3)
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A similar derivation pertains to the backgrounds. We concatenate the back-
grounds and feed them as input to the pose network Pb to regress the relative
shift ∆B = Pb([bt, bt+1]) between bt and bt+1. However, because of the holes
left by the masks, learning the relative shift via a direct matching of the back-
grounds would not work. Therefore, we also introduce an inpainting network N.
To indicate the masked region to N we simply fill it with a value out of the
image range (we use [-1.1,-1.1,-1.1] as RGB values at the masked pixels). The
inpainted regions are then copied to the corresponding backgrounds so that we
obtain b̂j = bj ⊙ (1 −mj) + N(bj) ⊙mj , with j = {t, t + 1}. The background
reconstructions are then matched with both an L1 norm and a perceptual loss
LVGG based on VGG features1 [16]

LRECB =
∑

t

∥∥∥b̂t+1 − b̂t ◦∆B

∥∥∥
1
+ λVGGLVGG

(
b̂t+1, b̂t ◦∆B

)
. (4)

Finally, we also have a joint reconstruction loss where we compose the foreground
with the estimated foreground shift ∆F and the inpainted background with the
estimated background shift ∆B

LRECJ =
∑

t

∥∥∥(ft ⊙mt) ◦∆F + (b̂t ◦∆B)⊙ (1−mt ◦∆F )− It+1

∥∥∥
1
. (5)

These losses are all we use to train the mask network M, the inpainting network
N and the pose estimation networks Pf and Pb. The inpainting network and the
other networks could be further improved, but we find that the choices above
are sufficient to obtain accurate segmentation masks and good shift estimates.

3.2 Local Motion Analysis

The LMA stage works directly on the foreground frames ft and ft+1. It first
shifts ft with ∆F . This is done to remove the global shift information from the
input frames and to make the action network focus on the local variations. It
further encodes the foreground frames with a convolutional neural network E
and obtains ϕt = E(ft), ϕ̃t = E(ft ◦∆F ) and similarly for ϕt+1 = E(ft+1). The
convolutional feature ϕt is then projected via C to give et = C(ϕt).

In the action network A there are a few pre-processing steps. First, both
feature maps ϕ̃t and ϕt+1 are fed to a CNN and flat features ψt and ψt+1 are
obtained from the resulting feature maps through global average pooling. In
CADDY [24] the actions are determined through a direct difference between
Gaussian samples around ψt and ψt+1. On average this means that the differ-
ence between features of images with the same action must align with the same
direction. Although this works very well for CADDY, we find that this may be
restrictive, especially if one wants to represent periodic motion (e.g., in our case,
an agent walking in place). Thus, we propose to learn a modified mapping of
ψt+1 conditioned on ψt. We compute ψi

t+1 = Ti(ψt, ψ
i−1
t+1) with i = 1, . . . , P ,

1 VGG was obtained through supervised training, but GLASS can be trained equally
well by replacing VGG with a similar network trained in a self-supervised manner.
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Ti are bilinear transformations, ψ0
t+1 = ψt+1, and we choose P = 4. We then

compute the action direction dt = ψP
t+1 − ψt. Finally, the action at is predicted

through vector quantization after one additional MLP U to give at = VQ[U(dt)].
The vector quantization VQ relies on K learnable prototype vectors ck, with
k = 1, . . . ,K. The method identifies the prototype cq closest in L2 norm to
U(dt), i.e., q = argmink ∥ck − U(dt)∥22, and uses that as the quantized action
VQ[U(dt)] = cq. To train the VQ prototypes, we use the following loss [34]

LV Q = ∥sg[cq]− U(dt)∥22 + λVQ∥cq − sg[U(dt)]∥22, (6)

where λVQ > 0 is a tuning parameter and sg[·] denotes stop-gradient. Vector
quantization allows us to obtain latent space clustering in a simpler way com-
pared to the Gaussian priors and the explicit tracking of cluster centroids as done
in CADDY [24]. Moreover, our ablation studies show that VQ works better than
the Gumbel-softmax trick (see Section 6 and Table 3).

Now, we have all the inputs needed for the RNN. We introduce an RNN state
st and feed it together with the encoding et as input. Our RNN is split into 6
blocks as in CADDY [24]. Both the global action ∆F and the local action at
are first mapped to embeddings of the same size and then fed to the modulated
convolutional layers of the RNN similarly to StyleGAN [17]. To differentiate the
roles of ∆F and at we feed the embeddings of ∆F to the first two blocks of the
RNN and that of at to the remaining four blocks. The rationale is that early
blocks correlate more with global changes, such as translations, and the later
blocks correlate more with local deformations.

Finally, the decoder D takes the RNN prediction st+1 as input and outputs
the frame f̂t+1 = Df (st+1) and the predicted mask m̂t+1 = Dm(st+1). Moreover,
the decoder predicts frames at 3 different scales (as also done in CADDY [24]).
We introduce a reconstruction loss for each scale

LRECU =
∑

t

∥∥∥sg[ωUNS]⊙
(
ft+1 − f̂t+1

)∥∥∥
1
, (7)

where ∀p ∈ Ω, ωUNS[p] = ∥ft[p]− ft+1[p]∥1 + ∥f̂t[p]− f̂t+1[p]∥1 are weights that
enhance the minimization at pixels where the input and predicted foregrounds
differ, and also a perceptual loss

LLMA-VGG = LVGG(ft+1, f̂t+1). (8)

To better learn local deformations, we also introduce a reconstruction loss that
focuses on the differences between the foregrounds after aligning them with the
estimated relative shifts, i.e.,

LRECS =
∑

t

∥∥∥sg[ωALIGN]⊙
(
ft+1 − f̂t+1

)∥∥∥
1
, (9)

where ωALIGN[p] = ∥ft ◦∆F [p]− ft+1[p]∥1 + ∥f̂t+1[p]− ft+1[p]∥1. To encourage
the consistency between the predicted mask m̂t+1 and the mask mt+1 obtained
from It+1, we also minimize

LMSK =
∑

t ∥m̂t+1 −mt+1∥1. (10)
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Moreover, we encourage a cyclic consistency between the encoded features via

LCYC =
∑

t ∥sg[ϕt+1]− E(f̂t+1)∥1. (11)

Our final loss consists of a linear combination of all the above losses (both from
the GMA and LMA) through corresponding positive scalars λVQ, λLMA-VGG,
λRECU, λRECS, λMSK, λCYC, λRECF, λRECB, λRECJ, λBIN, and λSIZE.

4 Implementation details

At inference time, GLASS can generate a sequence of frames given only the first
one. This setting is slightly different from training, where the model only predicts
the next frame given the previous one. In order to prepare the model for test
time, we adopt the mixed training procedure (Teacher Forcing) also used in [24].
That is, we select a video duration Tf , 0 < Tf < T , and if t ≤ Tf we feed the
encodings of the real frames to the RNN, otherwise if t > Tf we use the encodings
of the reconstructed frames. During the training we gradually decrease Tf to 1
and increase T to adapt the network to the generation of longer sequences. To
speed up the convergence, we pretrain the GMA component for 3000 iterations.
The coefficients before the loss terms are estimated on the training set. We found
that the selected configuration works well across all datasets. The models are
trained using the Adam optimizer [20] with a learning rate equal to 0.0004 and
weight decay 10−6. For more details, see the supplementary material.

5 W-Sprites dataset

In order to assess and ablate the components of GLASS, we build a synthetic
video dataset of cartoon characters acting on a moving background. We call
the dataset W-Sprites (for Walking Sprites). Each sequence is generated via
the following procedure. First, one of 1296 different characters is sampled from
the Sprites dataset [1,23,2]. This character is then animated in two stages. A
random walk module produces a sequence of global coordinates of the sprite
within a 96 × 128 resolution frame. We then sample one of 9 local actions con-
ditioned on the shift induced by the global motion component. Those actions
include: walk front, walk left, walk right, spellcast front, spellcast
left, spellcast right, slash front, slash left, and slash right. The in-
tuition under conditioning is that the global actions and the local ones should
be correlated for more realism. For instance, when the global action module
dictates a right shift, the only possible local action should be walk right. Anal-
ogously, the left shift induces the walk left action. The up and down shifts
are animated with the walk front action. The remaining actions are used to
animate the static sprite. To incorporate more generality and to reduce the gap
with real data, we apply an independent random walk to the background im-
age (this simulates camera motion). We use a single background image sampled
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Table 1: Global Motion Analysis (GMA). mIoU evaluations

Configuration ���LRECB ���LRECF ���LSIZE ���LRECJ ���LBIN ���LVGG GLASS

mIoU 0.01 0.08 0.08 0.08 0.87 0.89 0.88

Table 2: Global Motion Analysis (GMA). Shift error estimation

Configuration
Background Shift Error Foreground Shift Error

mean min max ∡-ACC mean min max ∡-ACC
���LBIN 0.55 0.01 1.16 1.00 4.46 0.05 8.50 1.00

���LVGG 0.52 0.02 0.90 1.00 4.38 0.01 8.51 1.00
GLASS 0.51 0.00 0.86 1.00 4.34 0.02 8.32 1.00

from the “valleys” class of ImageNet [8]. Each video in the W-Sprites dataset is
annotated with per frame actions (i.e., global shifts and local action identifiers),
background shifts and character masks. We show sequence samples from our
dataset in Fig. 1 (to play the videos view the pdf with Acrobat Reader). The
dataset contains videos with 10 to 90 frames per sprite. For testing purposes, we
split the dataset into training (about 8/9 th) and validation sets (about 1/9 th).
The validation set contains sprites never seen during training. For more details,
see the supplementary material.

6 Ablations

In this section we separately ablate the global and local components of GLASS.
We run the ablations on W-Sprites, which has been introduced in section 5.
GMA ablations. For the global motion analysis, we assess the impact of each
loss function. Different loss terms are sequentially switched off and the perfor-
mance of the model trained without those terms is reported. Given that W-
Sprites is fully annotated, we propose several metrics to evaluate the training.
First, we calculate the mean intersection over union (mIoU) between the ground
truth and the predicted segmentation masks. Table 1 shows that the VGG loss
seems to slightly hurt the segmentation performance. However, as shown in Ta-
ble 2 the VGG loss benefits the shift estimation. Notice that in Table 2 we report
only the cases where the masks are good enough (mIoU > 0.8). For the shift
errors we show the L2 norm of the difference between the ground truth fore-
ground/background shift and the predicted one (in pixels). We also show the
accuracy of the predicted foreground/background shift directions (∡-ACC). The
direction is considered to be correctly predicted if the angle between the ground
truth and the predicted shifts is less than 45◦. Each model is trained for 60K
iterations with a batch size of 4. The results are calculated on the validation set.
LMA ablations. For the local motion analysis module we specifically design
5 cases that differ from GLASS in its essential components and show the re-
sults in Table 3. First, we evaluate swapping the modified mapping T of the



10 A. Davtyan and P. Favaro

Table 3: Local Motion Analysis (LMA). Component ablation results

Configuration LPIPS↓ FID↓ FVD↓ mIoURE ↑ NMIG ↑ NMIS ↑ CON ↓
Plain directions 0.402 12.8 204 0.83 0.14 0.17 0.03
Gumbel 0.402 16.8 327 0.84 0.00 0.02 0.02
No modulated convs 0.398 10.4 172 0.89 0.35 0.38 0.03
Joint input 0.399 9.8 146 0.89 0.34 0.37 0.03

���LRECS 0.400 11.3 203 0.89 0.29 0.30 0.01
GLASS 200K 0.399 10.5 175 0.88 0.39 0.41 0.02

CADDY [24] 0.404 6.8 153 - - - -
GLASS 470K 0.398 8.2 129 0.93 0.39 0.40 0.01

features ψt+1 for the direct difference between the features ψt+1 − ψt (as done
in CADDY [24]). We refer to this configuration as “Plain directions”. Second,
we replace the vector quantization with an MLP that predicts the distribution
over actions followed by the Gumbel-Softmax trick to sample a discrete action
identifier. We name this model “Gumbel”. We also ablate the impact of using
modulated convolutional layers by feeding the action embeddings as normal in-
puts to common convolutional blocks. This cases is referred to as “No modulated
convs”. Also we consider the case where we feed the global and local action em-
beddings jointly to all RNN blocks instead of separate ones. We refer to this case
as “Joint input”. The last case that we evaluate for the ablations is the model
trained without LRECS. All the models are trained for 200K iterations with a
batch size of 4. Additionally we report the metrics of GLASS trained for 470K
iterations. As a reference, we also show the performance of CADDY [24] trained
on the W-Sprites dataset with the same configuration from the original paper
for the Tennis dataset. For visual results, please, refer to the supplementary
material.

Following CADDY [24], we generate the sequences from the first frames of
the validation videos conditioned on the actions inferred from the remaining
frames. We measure FID [14], FVD [33] and LPIPS [41] scores on the generated
sequences to asses the quality of the generated videos. Additionally we segment
the reconstructed sequences and report the mean IoU with the ground truth
masks to asses the ability of the RNN to condition on the input global and
local action embeddings. However, the most important aspect of our (and prior)
work on controllable models is the identification of the action space. Thus, one
needs a metric to asses the quality of the learned action space. For this purpose,
we propose to use the normalized mutual information score (NMI) between the
ground truth and inferred local actions

NMI(X,Y ) = 2I(X,Y )
H(X)+H(Y ) , (12)

where I(X,Y ) is the mutual information between X and Y and H(X) is the
entropy of X. In our formulation, X and Y correspond to the predicted and
ground truth actions respectively. One appealing advantage of NMI for GLASS
is that NMI is invariant to permutations of the labels. Another advantage of using
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Fig. 4: Ablation of the number of ac-
tions fitted during the training of
GLASS on the W-Sprites dataset.

Tennis source video

Tennis target video

Fig. 5: Example of transferring an
action sequence decoded from the
source video to the target. To play
view the paper in Acrobat Reader.

NMI is that NMI does not require the distributions to have the same number
of actions. Thus, even with a given known number of ground truth actions, the
model can be trained and assessed with a different number of actions. Indeed,
the decomposition of a sequence into actions is not unique. For instance the
walk left action can be decomposed into turn left and walk. We introduce
two different protocols of measuring NMI. First, we use the trained model to
map all the pairs of successive frames into actions. Then, the global NMIG is
computed between the ground truth actions and those predictions. Additionally,
we average the per sprite NMI scores to obtain NMIS. Normally NMIS > NMIG.
However, if the gap is large enough, this indicates the overfitting and the lack
of consistency of the learned actions across different sprites. Therefore, we also
report the consistency metric CON = NMIS − NMIG. As a reference we use
the NMIRAND, that is the NMI measured between the ground truth actions and
random actions. The results are provided in Table 3. Given that NMIRAND =
0.02 on the W-Sprites test set, the full GLASS configuration with an NMI of 0.41
shows that the model estimates action sequences with a high correlation to the
ground truth actions. Note that since our main focus is learning the action space
of the agent, the NMI metric is of higher importance than FID/FVD. However,
since the model is based on reconstruction as a supervision signal, it is also
important that the FID/FVD are within the high-quality range. Furthermore,
we ablate the number of actions K used to train GLASS. In Fig. 4 one can see
that K = 6 is optimal in both NMI and CON.

7 Experiments on real data

We evaluate GLASS on 3 datasets. For synthetic data we use W-Sprites. For
real data we use: 1) the Tennis Dataset and 2) the BAIR Robot Pushing
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Table 4: BAIR dataset evaluation

Method LPIPS↓ FID↓ FVD↓
MoCoGAN [32] 0.466 198 1380
MoCoGAN+ [24] 0.201 66.1 849
SAVP [22] 0.433 220 1720
SAVP+ [24] 0.154 27.2 303

Huang et al. [15] w/ non-param control 0.176 29.3 293

CADDY [24] 0.202 35.9 423
Huang et al. [15] w/ positional control 0.202 28.5 333
Huang et al. [15] w/ affine control 0.201 30.1 292

GLASS 0.118 18.7 411

Table 5: Tennis dataset evaluation

Method LPIPS↓ FID↓ FVD↓ ADD↓ MDR↓
MoCoGAN [32] 0.266 132 3400 28.5 20.2
MoCoGAN+ [24] 0.166 56.8 1410 48.2 27.0
SAVP [22] 0.245 156 3270 10.7 19.7
SAVP+ [24] 0.104 25.2 223 13.4 19.2

Huang et al. [15] w/ non-param control 0.100 8.68 204 1.76 0.306

CADDY [24] 0.102 13.7 239 8.85 1.01
Huang et al. [15] w/ positional control 0.122 10.1 215 4.30 0.300
Huang et al. [15] w/ affine control 0.115 11.2 207 3.40 0.317

GLASS 0.046 7.37 257 2.00 0.214

Dataset. The Tennis Dataset was introduced in [24] and contains ∼ 900 videos
extracted from 2 Tennis matches from YouTube at 96×256 pixel resolution. The
videos are cropped to contain only one half of the court, so that only one player
is visible. The BAIR Robot Pushing Dataset [11] contains around 44K clips of
a robot arm pushing toys on a flat square table at 256× 256 pixel resolution.
Baselines. We compare to CADDY [24], because it allows frame-level playable
control, and to Huang et al. [15]. However, the comparison to [15] is not fair,
since it requires a prior knowledge of the future agent masks and also it lacks
the ability to control the agent through discrete actions (playability). We also
report the metrics on other conditional video generation models such as MoCo-
GAN [32], SAVP [22] and their large scale versions introduced in [24].
Quantitative analysis. Following [24] we evaluate GLASS on the video recon-
struction task. Given a test video, we use GMA to predict the global shifts and
LMA to estimate the discrete actions performed along the video. Further, the
agent is segmented using the masking network and the foreground is animated
and pasted back to the shifted background using both global and local actions to
reconstruct the whole sequence from the first frame. We report FID, FVD and
LPIPS scores on the generated videos. On the Tennis dataset we additionally
report the Average Detection Distance (ADD) and the Missing Detection Rate
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walk walk turn spell- walk walk jump walk

left left right cast left up right

Fig. 6: A sequence generated with GLASS trained on the W-Sprites dataset.
Note that the level of control provided by GLASS allows to generate unseen
motion such as jump. Use Acrobat Reader to play the first frame.

(MDR) suggested in [24]. Those metrics are supposed to assess the action space
quality by detecting the tennis player with a pretrained human detector and by
comparing the locations of the detected agents in the ground truth and gener-
ated sequences. On BAIR (see Table 4) our model performs almost 40% better
in terms of frame-level quality, but lacks in FVD compared to [15]. However, it
is still slightly better than CADDY. On the Tennis dataset (see Table 5) GLASS
is around 50% better than the closest competitor in LPIPS, almost 30% better
in FID, but loses in FVD. However, GLASS provides finer control over the agent
according to ADD and MDR. It is worth noting, that the FVD is largely affected
by the background modeling choices. We found that even different interpolation
methods had a major impact on the FVD. However, since the main focus of this
work is the action space of the foreground agent, we chose the simplest back-
ground model that yielded a performance on par (or better) with the SotA.
Qualitative analysis. A trained GLASS allows a detailed control of the agent.
On W-Sprites, we find that the LMA discovers such actions as turn right,
turn left, turn front, spellcast and slash. Note that despite the differ-
ence between the discovered set of actions and the ground truth, all videos in
the training set can be generated with this reduced set of actions (see Fig. 6).
On Tennis we found that the local actions mostly correspond to some leg move-
ments. On BAIR the LMA component discovers some small local deformations
such as the state of the manipulator (closed or open).

In Fig. 7, we provide visual examples of the GLASS global action space.
Given two different starting foregrounds from the BAIR and Tennis datasets
(shown in the green channel), we show the generated foregrounds (in the red
channel) after applying the right, left, down, up and no motion global shifts.
We can also see that global actions apply consistently across different initial
foregrounds. To show that the learned action space is consistent across different
agents also in their fine-grained dynamics we use GLASS to transfer (both global
and local) motion from one video to another. We first extract the sequence of
actions in the first video using the GMA and LMA components of GLASS and
then sequentially apply these actions to the first frame of the second video. In
Fig. 5, we demonstrate it on the Tennis dataset.

Finally, in Fig. 8 we provide some sample outputs from our GMA module
on test images from all three datasets. Given an input image, we can see that
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left right up down no motion

Fig. 7: Learned global actions on the BAIR and Tennis datasets (foreground-
only generation). We use the green channel for the given initial foreground and
the red channel for the foreground generated with the selected action. For both
datasets we show 2 examples to demonstrate the action consistency.

original mask foreground background

Fig. 8: Sample outputs from our GMA module. From left to right: original image,
predicted segmentation, foreground, and inpainted background.

the segmentation network learns to extract accurate masks with which one can
obtain high quality foreground images. These are necessary to model local dy-
namics. The inpainting of the background is sufficiently accurate to separate the
two layers. For more visual examples, please see the supplementary material.

8 Conclusions and limitations

GLASS is a novel generative model with a global and local action space that
enables a fine-grained modeling and control of dynamics not available in prior
work. GLASS is trained in a completely unsupervised manner. We also intro-
duce W-Sprites, a novel dataset for the evaluation of action identification and
generation. Our experimental evaluation shows that GLASS learns consistent,
and thus transferrable, action representations and is able to synthesize realis-
tic videos with arbitrary action policies. One limitation of GLASS is that it
works only on data where the background dynamics are 2D shifts. This does
not capture, for example, the motion of the background objects in the BAIR
dataset. GLASS is capable of rendering multiple agents within the same frame,
but does not learn the separate action spaces of multiple agents. This remains a
challenging task, which we plan to tackle in future work.
Acknowledgements This work was supported by grant 188690 of the Swiss
National Science Foundation.
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