
StyleHEAT: One-Shot High-Resolution Editable
Talking Face Generation via Pre-trained

StyleGAN

Fei Yin1, Yong Zhang2†, Xiaodong Cun2, Mingdeng Cao1, Yanbo Fan2, Xuan
Wang2, Qingyan Bai1, Baoyuan Wu3, Jue Wang2, and Yujiu Yang1†

1 Tsinghua Shenzhen International Graduate School, Tsinghua University
2 Tencent AI Lab

3 School of Data Science, Secure Computing Lab of Big Data, The Chinese
University of Hong Kong, Shenzhen

Abstract. One-shot talking face generation aims at synthesizing a high-
quality talking face video from an arbitrary portrait image, driven by a
video or an audio segment. In this work, we provide a solution from a
novel perspective that differs from existing frameworks. We first inves-
tigate the latent feature space of a pre-trained StyleGAN and discover
some excellent spatial transformation properties. Upon the observation,
we propose a novel unified framework based on a pre-trained StyleGAN
that enables a set of powerful functionalities, i.e., high-resolution video
generation, disentangled control by driving video or audio, and flexible
face editing. Our framework elevates the resolution of the synthesized
talking face to 1024×1024 for the first time, even though the training
dataset has a lower resolution. Moreover, our framework allows two types
of facial editing, i.e., global editing via GAN inversion and intuitive edit-
ing via 3D morphable models. Comprehensive experiments show superior
video quality and flexible controllability over state-of-the-art methods.
Code is available at https://github.com/FeiiYin/StyleHEAT.

1 Introduction

One-shot talking face generation refers to the task of synthesizing a high-quality
talking face video from a given portrait image, guided by a driving video or audio
segment. The synthesized face inherits the identity information from the portrait
image, while its pose and expression are transferred from the driving video or
generated based on the driving audio. Talking face generation has a variety of
important applications such as digital human animation, film production, etc..

Recent one-shot talking face generation methods [47,38,28] have made no-
table progress in driving expression and pose. However, they fail to generate
high-resolution video frames. The video resolution of the ordinary methods still
remains at 256×256. Few methods such as [38] and [47] have achieved the res-
olution of 512×512 by exploiting newly collected high-resolution datasets, but
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Fig. 1. Our unified framework enables high-resolution talking face generation, disen-
tangled control by a driving video or audio, and flexible face editing.

they are still bounded by the resolution of the training data. More importantly,
improving the resolution requires properly designed network architectures and
training strategies. Adding upsampling layers in a straightforward way into the
network usually does not work well. Warping-based methods can be directly
applied to higher-resolution images but will introduce inevitable artifacts. [28]
and [14] utilize a post refining network to eliminate the artifacts, but limit the
resolution of the finally synthesised results at the same time.

Face editing is an useful technique to enhance talking face videos, e.g., the
modification of facial appearance, pose, and expression. It has two categories, i.e.,
intuitive editing (e.g., pose and expression) and semantic facial attribute editing
(e.g., makeup, beard, and age). Only few talking face generation methods [28,14]
enable intuitive editing via 3D morphable models (3DMMs). But there is no
existing work that incorporates semantic attribute editing into the talking face
generation framework. Besides, almost all previous methods provide frameworks
for either the video-driven case or the audio-driven case, but few consider both
except for [28]. Therefore, it is another challenge to integrate the driving and
editing modules of different modalities into a unified framework.

We raise two ambitious questions: can we further improve the resolution of
one-shot talking face to 1024×1024 even though the existing datasets have a
lower resolution? Can we build a unified framework that enables different types
of driving modalities as well as semantic and intuitive face editing? To achieve
these goals, we resort to a powerful pre-trained generative model: StyleGAN [23].
StyleGAN has shown impressive results in various applications, e.g., facial at-
tribute editing [11], blind image restoration [39], portrait stylization [34], etc..
These methods utilize the learned image prior of StyleGAN to facilitate down-
stream tasks, removing the need of training a large model from scratch. The
resolution is retained at 1024×1024 and visual details are also reserved. Despite
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these successes, to the best of our knowledge, there is no existing work that uses
a pre-trained StyleGAN for one-shot talking face generation.

In this work, we first investigate the latent style space and the feature space of
a pre-trained StyleGAN. The style space is also called W space. The style space
is extensively explored by GAN inversion methods for face editing. The feature
space is also called F space. In a talking face video, different facial expressions are
achieved by deforming different facial regions in different ways. Given that style
codes do not contain accurate spatial information, the style space might not be
an appropriate choice for injecting facial motion. We then systematically study
the feature space by applying a set of spatial transformations on the feature map
of StyleGAN. Interestingly, we discover that the pre-trained model is robust to
some geometric transformations as it can steadily generate high-quality images
accordingly, indicating that the feature space has satisfying spatial properties.

Upon the above observation, we propose a novel unified framework for high-
quality one-shot talking face generation based on a pre-trained StyleGAN. Specif-
ically, we directly deform the StyleGAN spatial features using flow fields pre-
dicted by the video-based or audio-based motion generator, and then a cali-
bration network is proposed to modulate the warped features. Such a design
preserves the facial prior of the StyleGAN, enabling our model to generate high-
resolution results while eliminating warping-induced flaws. Thanks to the pre-
trained StyleGAN, our framework also allows two types of face editing, i.e.,
global editing via GAN inversion and intuitive editing pose and expression based
on 3DMM. Fig. 1 illustrates the functionalities of the proposed framework.

Our main contributions are as follows:

– We propose a unified framework based on a pre-trained StyleGAN for one-
shot talking face generation. It enables high-resolution video generation, dis-
entangled control by driving video and audio, and flexible face editing.

– We conduct comprehensive experiments to illustrate the various capabilities
of our framework and compare it with many state-of-the-art methods.

2 Related Work

3D structure-based talking-face generation. Traditionally, 3D faces model
priors (such as 3DMM [7]) provide a powerful tool for rendering and editing the
portrait images by the parameters modulation. For example, DVP [25] modifies
the parameters from source and target, then, a network is used to render the
shading to video. Recent 3D model-based methods [25,16,14,28,10] can also do
a good job for subject-agnostic face synthesis. HeadGAN [14] pre-processes the
3d mesh as input. PIRenderer [28] predicts a flow field for feature warping.
2D-based talking-face generation. Instead of controlling the model parame-
ters, mimicking the motions of another individual by the neural network is also a
popular direction. Subject-agnostic approaches [9,4,30,32,38,31], which only need
a single image of the target person are the most popular type. For the represen-
tative methods, Monkey-Net [31] propose a network to transfer the deformation
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Fig. 2. Latent feature space investigation of a pre-trained StyleGAN. Different geo-
metric transformations are applied to modify the feature maps.

from sparse to dense motion flow. FOMM [30] extends Monkey-Net via the first-
order local affine transformations. Then, Face-vid2vid [38] improves FOMM via
a learned 3D unsupervised key-points for free-view talking head generation. A
concurrent work [8] also tries to explore the style space for face animation, but
they need to fine-tune the pre-trained StyleGAN on the specific domain.

3 Investigating Feature Space of StyleGAN

StyleGAN2 [24] draw attention from the community since it can generate high-
quality face images and the feature space is highly disentangled. To allow a
pre-trained StyleGAN [24] for high-resolution talking-head video generation, one
possible direction is StyleGAN based video generation [35,15], where they learn
to generate videos via discovering an ideal trajectory in W+ latent space. How-
ever, the motion is randomly sampled without any control and the content is
corrupted when the current pose differs from the initial one. This is because
W+ is a highly semantic-condensed space and lacks explicit spatial prior [37].
Moreover, editing in W+ space [29,41,3,2,1,36] only allows changing high-level
facial attributes, which cannot generate out-of-alignment images [20] since the
StyleGAN is trained on aligned faces.

Thus, image editing in F feature space draws our close attention. Specifi-
cally, the latent code f in F feature space represents a spatial feature map in
the generator. For StyleGAN [24], we define f as the feature map after a pair
of upsampling and convolution layers at a certain scale. There are only a few
previous methods [37,48,20,39,5] that edit the spatial features for GAN inver-
sion [37,20,5], image composition [48], and blind face enhancement [39]. These
approaches harvest the potential of spatial feature space editing and apply the
spatial modulation (e.g. spatial feature transformation [40]) to the features. How-
ever, it has not been fully investigated whether the feature space of a pre-trained
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StyleGAN can still be used to generate realistic images after various geometric
transformations.

We therefore conduct a detailed experiment to verify the spatial property
of StyleGAN features and fully excavate its potential capability. We first ran-
domly sample the style latent code w in W+ space to generate a random face
image with the pre-trained StyleGAN. At the same time, various spatial features
[f4×4,f8×8, . . . ,f1024×1024] in F space can be obtained. We choose the feature
resolution of 64× 64 for a balanced trade-off between the inversion quality and
editing capacity. To test the spatial property of the pre-trained StyleGAN fea-
tures, several geometric transformations, including translation, rotation, zoom,
shear, occlusion and Thin Plate Spline (TPS [42]), are used to manipulate f64×64

directly. Finally, the transformed image can be generated by the forward pass
with the edited feature map as input. Our experimental results are shown in
Fig. 2. Either with simple affine transformations or complicated TPS defor-
mations, we observe that the generated images maintain the same geometric
changes as the deformations applied in the feature space. The generated images
also share the same identity and appearance with a minor difference. This phe-
nomenon demonstrates that the learned convolution kernels in the pre-trained
generator perform in a transformation-invariant manner.

Based on the above observation, we can conclude that the features in a pre-
trained StyleGAN preserve strong spatial prior and can be directly modified with
geometric transformations. This spatial property makes it a promising direction
to edit the feature space for talking face generation.

4 Methodology

We are interested in the task of controllable talking-head generation. Let I be
the source image and {d1, d2, · · · , dN} be a talking-head video, where di is the
i-th video frame and N is the total number of frames. An ideal framework is
supposed to generate video {y1, y2, · · · , yN} with the same identity as I and the
consistent motions derived from {d1, d2, · · · , dN}.

Inspired by our observation in Sec. 3, we propose a unified framework based
on the F space excavation of the pre-trained StyleGAN G. As shown in Fig. 3,
our approach contains several steps to achieve this goal. Given a single source
image, we first use the GAN inversion method [37] to get the latent style code
w and feature maps f of the source image. Then, to inject the accurate mo-
tion guidance, we predict a dense flow field by the motion generator Φwarp from
video (Sec. 4.1). Since the warping operation may introduce artifacts due to the
occlusions and error mapping, a calibration network Φcali is introduced to reno-
vate the edited spatial feature map (Sec. 4.2). Our framework can be extended to
audio-driven via similar flow prediction module (Sec. 4.3). The whole framework
can be summarized as:

Îi = G (Φcali(Φwarp(I, di) ◦ f),w) , (1)

where ◦ denotes the warping transformation.
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Fig. 3. The pipeline of our unified framework. The framework consists of four compo-
nents, i.e., a pre-trained StyleGAN, a video-driven motion generator, an audio-driven
motion generator, and a calibration network. Given a source image, we can obtain the
style codes and feature maps by the encoder of GAN inversion. The driven video or au-
dio along with the source image are used to predict motion fields by the corresponding
motion generator. The selected feature map is warped by the motion fields, followed
by the calibration network for rectifying feature distortions. The refined feature map
is then fed into the StyleGAN for the final face generation.

4.1 Video-Driven Motion Generator

The goal of the video-driven motion generator is to generate dense flows with the
driving video and the source image as inputs. Then, these flow fields will manip-
ulate the feature map of the pre-trained StyleGAN for talking face generation.
In this part, we first demonstrate the intermediate motion representation in our
settings. Then, we give the details of the network structure and the training
process for the dense motion field generation.
Motion Representation. To achieve accurate and intuitive motion control,
semantic medium plays an important role in the generation process. Follow-
ing previous works [28,14], we take advantage of the 3DMM [6] parameters for
motion modeling. In 3DMM, the 3D shape S of a face can be decoupled as:

S = S +αUid + βUexp, (2)

where S is the average shape, Uid and Uexp are the orthonormal basis of iden-
tity and expression of LSFM morphable model [7]. Coeffcients α ∈ R80 and
β ∈ R64 describe the person identity and expression, respectively. To preserve
pose variance, coefficients r ∈ SO(3) and t ∈ R3 denote the head rotation and
translation. Then, we can model the motion of the driving face with a parameter
set p = {β, r, t} extracted by an existing 3D face reconstruction model [13].
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Due to the inevitable prediction errors between consecutive frames in the
same video, the parameters from a single input frame will cause jitter and insta-
bility in the finally generated video. Hence, we adopt a windowing strategy for
better temporal consistency, where the parameters of the neighboring frames are
also taken as the descriptor of the center frame to smooth the motion trajectory.
Thus, the motion coefficient of the i-th driving frame is defined as:

pi ≡ pi−k:i+k ≡ {βi−k, ri−k, ti−k, . . . ,βi, ri, ti, . . . ,βi+k, ri+k, ti+k} , (3)

where k is the radius of the window.
Network Structure. Our network is built on a U-Net structure that requires
the source image and the driving video as inputs, and the outputs are the de-
sired flow fields for feature warping. It contains a 5-layer convolutional encoder
and a 3-layer convolutional decoder for multi-scale feature extraction. We use
the 3DMM parameters pt from the driving frame dt as the motion representa-
tion. Specifically, these parameters are first mapped to a latent vector via a 3-
layer MLP to aggregate the temporal information. Then, the motion parameters
are injected into each convolutional layer via the adaptive instance normaliza-
tion (AdaIN [18]). Next, the network can be trained by the source image I and
the motion condition pt as inputs. Finally, the loss functions will be calculated
between the target image dt and the generated image by the backward warping.
Pre-training Strategy. As we have investigated in Sec. 3, the feature warping
shares the same geometry deformation with the final image. Thus, to simplify
the learning of the whole framework, before joint training we first pre-train the
video-based motion generator on the widely-used talking-face datasets (Vox-
Celeb [26]) to generate trustful flow fields in a self-supervised manner. Then,
the low-resolution flow field are used to drive the spatial feature map of the pre-
trained StyleGAN. Specifically, as the ground truth flow fields are not available,
we predict the flow fields n using the network, and then the source frame I will
be used to calculate the warped frame by În = I ◦ n. Then, given the target
frame It, we use the perceptual loss [19] to calculate the L1 distance between
the activation maps of the pre-trained VGG-19 network [33]:

Lv =
∑
i

∥ϕi(În)− ϕi(It)∥1, (4)

where ϕi denotes the activation map of the i-th layer of the VGG-19 network.
Similar to [30], we calculate the perceptual loss on a number of resolutions by

applying pyramid down-sampling on It and În. After training, the generated
flow field can be used to edit the feature map of StyleGAN.

4.2 Feature Calibration and Joint Training

The video-driven motion generators are pre-trained without considering any in-
formation about the pre-trained StyleGAN. Though the predicted motion fields
can be used to warp the feature map of StyleGAN, it will inevitably introduce
artifacts. For example, making a closed mouth open through 2D warping cannot
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fill correct teeth within the mouth. To alleviate the feature map distortion, we
introduce a calibration network to rectify artifacts in the feature space.
Calibration Network. A calibration network is needed since the warped fea-
tures still suffer from artifacts. As shown in Fig. 3, we adopt a U-Net architecture
to extract multi-resolution spatial features. It consists of a 4-layer encoder and
a 4-layer decoder. We feed the warped feature map fw as the network’s input.
Then, the multi-scale conventional layers are used to refine the warped features.
However, due to the high complexity of the intermediate features, instead of
directly predicting the features, our calibration network performs the spatial
feature transformation (SFT [38]) to the warped features, which is defined as:

f̂c = SFT (fw|r, t) = r ⊙ fw + t, (5)

where ⊙ denotes element-wise multiplication. Then, the final high-quality and
high-resolution result can be achieved as Î = G(f̂c,w).
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Fig. 4. Illustration of the domain loss.

Overall End-to-end Training.Directly
applying the introduced calibration net-
work is easy to encounter blur results (as
shown in Fig. 12) since the quality
of the frames in the video dataset is
much lower than the high-resolution face
dataset for training StyleGAN. Further-
more, inevitable detail lost of identity, at-
tribute, texture, and background raised
by the GAN inversion method will enlarge
the gap between the generated images and
the real images, which will further mislead
the direction of the optimization.

Thus, we joint train the whole network except the pre-trained StyleGAN and
design loss functions to solve the above problem. We first design a domain loss
to restrict the differences between the reconstructed image of the warped feature
map and that of the calibrated feature map in the generated image domain. As
shown in Fig. 4, given a natural source image Is in the aligned StyleGAN space
Fx, the GAN inversion method can invert and reconstruct the image in the
latent space and the generated image domain, respectively. Differently, for the
target image It which is out of the aligned domain, GAN inversion is hard to be
applied. Thus, to obtain the desired latent space sc, the proposed method utilizes
the flow fields to edit the images in the latent space. After editing, the warped
feature sn may not be in the aligned StyleGAN latent space anymore but it can
still generate a high-quality image În by forwarding pass as we have discussed
in Sec. 3. Unfortunately, the warping artifacts may occur because of the low
quality of the flow fields. Thus, we propose the calibration network to further
edit the feature map as introduced previously. However, the results Îc become
blurry due to the feature shift. To preserve both advantages of În and Îc, the
domain loss is defined to measure their difference. Further, we take a masking
strategy to enhance the weight of different areas. The calibration mask M is
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comprised of the bounding boxes of the eyes and mouth because the artifacts
often occur around them. Thus, the domain loss is:

Lc
domain =

∑
i

∥(1−M) · ϕi(În)− (1−M) · ϕi(Îc)∥1. (6)

Besides, for eliminating the artifacts of local facial features, the driving image
It provides the most accurate high-frequency information. Hence, we calculate
the L1 loss and the perceptual loss with the ground truth, which is weighted on
the masked region:

Lc
t =

∑
i

∥M · ϕi(It)−M · ϕi(Îc)∥1 + λc
1 · ∥M · It −M · Îc∥1, (7)

where λc
1 is the weight of the L1 loss.

Finally, to maintain the high fidelity of face generation, we also impose ad-
versarial loss. Note that we freeze the parameters of the discriminator since the
low-quality video frames may decline its performance. The adversarial loss is:

Lc
adv = −E[log(D(Îc))], (8)

where D is a well-trained discriminator of StyleGAN2.
The framework is trained in an end-to-end manner together with the loss

of the corresponding motion generators. Here, we calculate the perceptual loss
between the intermediate results from the motion generator and the ground
truth, which is the same as Eq. 4. The weight of other components (the StyleGAN
generator and the inversion encoder) are frozen.

In summary, the overall loss is a weighted summation as follows:

Lc = Lc
t + λc

d · Lc
domain + λc

adv · Lc
adv + βv · Lv, (9)

where λc
d, λ

c
adv, and βv are the corresponding weights.

4.3 Extension on Audio-Driven Reenactment

(a) Source Image (b) Proxy Input (c) Target Image

Fig. 5. Paired training data gener-
ation for audio-driven motion gen-
erator training.

We can further extend our framework to
tackle the audio-driven facial reenactment
task by extracting sequential motions from
audio input. Audio-driven motion transfer is
similar to video-driven motion transfer, but
requires modeling the relationships between
audio and face motions. Directly predicting
the visual semantic parameters from audio
information only is a difficult task and the
two-stage converting procedure may accumu-
late errors. Consequently, we directly predict
the motion from audio features as shown in
the audio-based motion generator of Fig. 3.



10 Fei Yin et al.

In detail, we train the generator to predict the flow fields in the lower half
face, since audio is closely related to lip movements. However, a major challenge,
generating a video from audio lacks a paired dataset because the videos with the
same pose but different lip shapes are hard to obtain. To address this issue, we
construct the paired data with the same pose but different expressions under
different audio conditions by utilizing the pre-trained video-driven motion gen-
erator in Sec. 4.1. Specifically, we generate the proxy input by mixing the 3DMM
parameters extracted from the source and driving frame, i.e., the proxy input
has the same pose as the driving frame and the same expression as the source
frame. We illustrate the main process in Fig. 5, where the head pose of the proxy
input is high-aligned with the driving frame. By training on the paired dataset,
our audio-driven generator will focus on the flow generation of expression.

After training the audio-driven motion generator, it can be added to the
framework as a plugin to control the lip movement independently. The details
of the network structure and the training procedure will be discussed in the
supplementary materials.

5 Experiments

Datasets. We train the two motion generators on the VoxCeleb dataset [26]
which consists of over 100K videos of 1, 251 subjects. We joint train the whole
framework on the HDTF dataset [47] which consists of 362 videos of over 300 sub-
jects. HDTF is split into non-overlapping training and test sets. The test set con-
tains 20 videos with around 10K frames. For cross-identity motion transfer eval-
uation, we select 1K high-resolution images from the CelebA-HQ dataset [21].
Implementation Details. We train the two motion generators and the cali-
bration network in two stages. In the first stage, we pre-train the video-based
motion generator on VoxCeleb. Then, we pre-train the audio-based generator
with synthesized audio-motion pairs. As the motion from the pre-trained gen-
erators cannot be seamlessly applied to feature maps of StyleGAN, we need to
finetune them along with the calibration network in the second stage. During
inference, the two motion generators can be used individually or jointly.

The GAN inversion [44] is used to get the spatial feature maps in our frame-
work. We exploit a learning-based inversion method [37] during training and an
optimization-based inversion method [48] to optimize latent feature maps for
more accurate reconstruction during inference.
Evaluation Metrics. We use the following metrics for evaluation: Learned Per-
ceptual Image Patch Similarity (LPIPS) [46], Peak signal-to-noise ratio (PSNR),
Structural Similarity (SSIM), Frechet Inception Distance (FID) [17], the cosine
similarity (CSIM) of identity embeddings extracted from ArcFace [12], Average
Expression Distance (AED) [28], and Average Pose Distance (APD) [28].

5.1 Video-Driven Face Reenactment

To evaluate the performance of video-driven motion transfer, we conduct two
facial reenactment tasks, i.e., same-identity reenactment and cross-identity reen-
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Source X2Face Bi-layer FOMM PIRenderer OursDriving

Fig. 6. Qualitative comparisons with state-of-the-art methods on the task of same-
identity reenactment and cross-identity reenactment.

Same-Identity Reenactment Cross-Identity Reenactment

FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ CSIM ↑ AED ↓ APD ↓ FID ↓ CSIM ↑ AED ↓ APD ↓

X2Face [43] 44.32 0.2687 31.09 0.5926 0.6965 0.1680 0.03719 128.19 0.4449 0.3415 0.05156
Bi-layer [45] 118.46 0.5758 28.23 0.2906 0.3033 0.1219 0.01322 189.64 0.2252 0.2654 0.02054
FOMM [30] 29.17 0.2036 31.12 0.6353 0.8121 0.0946 0.00914 108.93 0.4517 0.2692 0.02576

PIRenderer [28] 27.14 0.2252 30.96 0.6028 0.7797 0.1073 0.01459 108.56 0.4812 0.2554 0.02962
Ours 18.02 0.1729 31.21 0.6019 0.7475 0.1151 0.01664 91.28 0.4890 0.2630 0.03484

Table 1. Quantitative comparisons on talking face motion transfer.

actment. For the same-identity reenactment, the identity of the source portrait
is the same as that of the driving video. For cross-identity reenactment, the
identity of the source portrait differs from that of the driving video.

Qualitative Evaluation. The visual results of the same-identity and cross-
identity are shown in Fig. 6. Our method can achieve superior image resolu-
tion and quality over other methods. Here we focus on other aspects. In the
same-identity case, all methods perform well in transfer pose except X2Face.
For expression, our method outperforms other methods when there is a large
expression difference between the source and driving images, especially when
the mouth of the source is closed while that of the driving image is opened by
a large margin. In the cross-identity case, more issues occur for other methods
while our method can work stably.
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Bi-Layer + FR FOMM + FR PIRenderer + FR OursSource & Driving

Fig. 7. Comparisons with enhanced state-of-the-art methods. We use face restoration
(FR) method GFP-GAN [39] to enhance the visual quality of these competing methods.

Fig. 8. Global attribute editing via GAN inversion. The attribute is gradually modified
in each generated talking video.

Quantitative Evaluation. Quantitative results of the two reenactment tasks
are shown in Table 1. Our FID is the best in the cases, which indicates our syn-
thesized faces are more realistic than those of other methods. Our better LPIPS
and PSNR mean that we have better reconstruction performance. As our method
uses a GAN inversion method to get the feature maps, it inevitably loses some
identity information in the reconstruction. This might cause our lower CSIM
in the same-identity case. On the contrary, our best CSIM in the cross-identity
case indicates that our method can work stably in this more challenging setting
and suffer from less distortion. Meanwhile, our AED and APD show comparable
results to other methods although the StyleGAN inversion is imperfect and the
extracted facial parameters will be further distorted.
Comparisons with Enhanced Methods. To eliminate the effect of resolution
on our comparisons, we combine competing methods with a state-of-the-art blind
face restoration method, i.e., GFP-GAN [39], to improve the resolution and
image quality. GFP-GAN improves the resolution of these methods to 1024 ×
1024, which is shown in Fig. 7. We can observe that GFP-GAN greatly improves
the visual quality for these low-resolution methods. However, it brings some side
effects, including skin over-smoothing, details missing and color tone changing.
Moreover, the face restoration cannot remedy the generated artifacts. The results
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demonstrate that our method outperforms the competing methods in terms of
image quality even though they are enhanced by the face restoration method.

5.2 Audio-Driven Talking Face Generation

In our framework, the audio-based motion generator can work either individually
or jointly with the video-based motion generator. We compare with the state-
of-the-art audio-driven method, wav2lip [27]. As shown in Fig. 9, our method
have much better visual quality. The mouth of wav2lip is blurred and no teeth
are synthesized. More results are shown in the supplementary material.

5.3 Talking Face Video Editing

Global Attribute Editing. As our model is built upon a pre-trained Style-
GAN, it inherits a powerful property of StyleGAN, i.e., facial attribute editing
in the latent style space via existing GAN inversion methods. Our framework is
convenient to edit attributes globally. We apply the GAN inversion method [37]
to obtain the latent style codes for the first frame. Then, we can freely apply pre-
defined style directions to change the style codes with a controllable extent in
the video generation process at any timestamp. The results are shown in Fig. 8.
Intuitive Editing. Our video-based motion generator uses 3DMM parameters
of the driving image to guide the motion generation for the source image. As
3DMM based talking face generation methods [28,14] always enable the intuitive
editing on pose and expression, this also enables us to control the motion gen-
eration by directly modifying the 3DMM parameters, resulting in the intuitive
editing on the final synthesis. The results are shown in Fig. 10.
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Driven w/o Calibration w/ Calibration

Fig. 11. Ablation study of calibration net

Source w/o Domain Loss w/ Domain Loss

Fig. 12. Ablation study of the domain loss

5.4 Ablation Study

Calibration Network. Directly applying the flow fields to the feature map will
lead to apparent artifacts around eyes and mouth, e.g., 2D warping is unable to
generate teeth for a closed mouth. Hence, we design the calibration network to
rectify the artifacts. We compare the performance with or without the calibra-
tion network. The results are shown in Fig. 11. The calibration network greatly
improves the shape and content around the eyes and mouth.
Domain Loss. The calibration network modifies the feature maps. To prevent
the edited feature maps from going far away from the original feature maps,
we design the domain loss. We compare the performance with or without it. As
shown in Fig. 12, we can observe that dropping the loss makes the synthetic
images blurry and lose facial details such as wrinkles and hair texture.

6 Conclusion

We propose a novel framework for one-shot talking face generation based on a
pre-trained StyleGAN by exploring the properties of the latent feature space.
Our framework supports video-driven and audio-driven reenactment. Besides,
our framework allows two types of face editing, i.e., global attribute editing via
GAN inversion and intuitive editing based on 3DMM.We conduct comprehensive
experiments to illustrate various capabilities of our unified framework.
Limitation and Discussion. As proposed in [22], there exist texture-sticking
artefacts of images generated by StyleGAN2, which means the hair and face in
synthesised videos typically do not move in unison. Alias-Free GAN [22] designs
a specific architecture to overcome the problem. Our framework can be migrated
to the new generator when high-quality GAN inversion methods are studied.
Acknowledgement. This work was supported in part by the National Natural
Science Foundation of China under grant No. 61991450 , the Shenzhen Key Labo-
ratory of Marine IntelliSense and Computation under grant NO.ZDSYS20200811
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