
Supplementary Material of Long Video
Generation with Time-Agnostic VQGAN and

Time-Sensitive Transformer

A Implementation Details

In this section, we provide additional details on our proposed TATS model,
including designs to stabilize training 3D-VQGAN with GAN losses, discussions
on the undesired temporal dependence induced by the zero padding, ablations
on different potential solutions, and description of our interpolation attention.

A.1 Training video VQGAN with GAN losses

Discriminator loss Decoder loss Reconstruction loss

(b) Vanilla video 

VQGAN

(Losses start at 

10k steps.)

(a) VideoGPT + 

GAN losses

(Losses start at

20k steps.)

Fig. 10: Training VideoGPT with GAN losses leads to discriminator collapse.

In this section, we describe how we train 3D-VQGAN with GAN losses and
clarify several major architecture choices of our proposed vanilla video VQGAN
compared with VQGAN [11] and VideoGPT [52]. We find that directly applying
GAN losses to VideoGPT leads to severe discriminator collapse. As shown in
Figure 10 (a), after adding GAN losses at the 20k step, the discriminator losses
saturate quickly and thus provide nonsensical gradient to the decoder. As a
result, the decoder (generator) loss and reconstruction loss entirely fall apart.
We found that the tricks proposed in VQGAN [11] such as starting GAN losses
at a later step and using adaptive weight, do not help the situation. We present
several empirical methods we found effective in stabilizing the GAN losses.

First, we find that the axial-attention layers introduced in VideoGPT interact
poorly with the GAN losses and exacerbate the collapse, which is also noticed in



2 S. Ge, T. Hayes, H. Yang, X. Yin, G. Pang, D. Jacobs, J. Huang, D. Parikh

Input Frame Intermediate feature map Reconstructed Frame

Higher resolutionsLower resolutions

Fig. 11: Blob-shaped artifacts due the the normalization layers in VQGAN.

recent work on training ViT with GAN losses [27]. Therefore, we utilize a pure
convolution architecture similar to VQGAN [11] for video compression. Second, a
more powerful decoder helps the reconstruction follow the discriminator closely.
We doubled the number of feature maps whenever the resolutions are halved, in
contrast to VideoGPT where all the layers have a constant number of channels.
As a consequence, similar to the previous observation [6], we find that training
large VAE models would cause exploded gradients. Furthermore, similar to the
proposed solution of gradient skipping [6], we always clip the gradient to have
the Euclidean norm equal to 1 during the training. Last, we notice that the blob-
shaped artifacts often appear in the reconstruction and exaggerate along with
the intermediate feature maps as shown in Figure 11, which was also observed
in StyleGANs [21,22] and can be attributed to the normalization layers. This is
especially pronounced in the training video VQGAN due to the small batch sizes.
We use Synced Batch Normalization as a replace of Group Normalization [49]
used in original VQGAN [11] and accumulate gradients across multiple steps
and successfully mitigate this issue. Our vanilla video VQGAN can be steadily
trained with the GAN losses with the above choices of architecture designs.

A.2 Zero paddings inhibit sliding attention window

(a) Conditioned semantic map.

(b) High-resolution images generated by 2D-VQGAN through sampling the tokens in the center.

(c) High-resolution images generated by 2D-VQGAN through sampling the tokens near the border.

Fig. 12: 2D-VQGAN generates larger images by generating tokens in the center.



Supplementary Material of TATS 3

Following the intuition in method section, we provide a more detailed discus-
sion on why zero paddings in VQGAN inhibit the usage of the sliding attention
window. We aim to show that when zero padding is used, there are barely to-
kens starting with z(1:t−1) in the training set. However, this is necessary for the
transformer to generate z(t) using a sliding window.

For simplicity, we absorb the quantization step q into fE(x). In order for
there to be tokens starting with z(1:t−1) in the transformer training data, there
need to be real video clips that can be encoded in z(1:t). It is desired that fE is
temporally shift-equivariant given 3D convolutions so that z(1:t) is the output of
the clips slightly shifted from the original position, i.e. z(1:t) = fE(x

(d:T+d−1)),
where d is the compression rate of fE in the temporal dimension. However, we
find that the encoder is not temporally shift-equivariant and encodes x(d:T−1)

differently when these frames are positioned at different places, i.e.

[fE(x
(0:T−1))](1:t−1) ̸= [fE(x

(d:T+d−1))](0:t−2) (1)

To see this theoretically, we consider a shift-equivariant version of fE by moving
all the internal zero paddings to the input. We denote this encoder as f̂E such
that

fE(x) = f̂E([0
N x 0N ]), (2)

where [0N x 0N ] is the concatenation of x with N zero paddings 0 ∈ Rh×w.
One can show that the number of paddings needed is N = O(Ld), where L is
the number of convolutional layers in the encoder. Given the shift equivariance
of f̂E , we can derive the desired latent tokens for transformer training as

z(1:t) = f̂E([0
N−d x(d:T−1) 0N+d]).

However, we cannot find such real videos corresponding to x̂ = [0N−d x(d:T−1) 0N+d]
as the input to fE based on the Equation 2 for two reasons. First, according to
Equation 2 the input to fE should be x̂(N :N+T ) = [x(T+d:T ) 0d]. There are
rare videos whose last d frames are blank in the real datasets. In addition,
x̂(N−d:N) = x(d:T+d) indicates that real frames are used to pad the input, while
fE only uses zeros. Therefore, we show that no such tokens are starting with
z(1:t−1) in the training set. As a result, the transformer cannot generalize to the
sequence starting with z(1:t−1) using a sliding attention window.

This problem occurs in all the generative models that utilize VQVAE and
transformers. However, it is often disguised and ignored in previous studies.
In practice, the severity of this issue depends on the receptive field, and the
relative position of the generated token to the border. In the case of the original
VQGAN [11] that uses a sliding window to generate high-resolution images, this
issue is disguised as the spatially centered token is always chosen to generate,
which is far away from the border and much less affected by the zero-padding
given the large spatial size (256). We show in Figure 12 that, when generating
the tokens near the border using a sliding window using the high-resolution
VQGAN, the quality of images degrades quickly, similar to our observation in
video generation. Furthermore, tokens at any position are close to the borders
for synthesizing long videos due to the small temporal length (16).



4 S. Ge, T. Hayes, H. Yang, X. Yin, G. Pang, D. Jacobs, J. Huang, D. Parikh

A.3 Quantifying the time agnostics of different padding types

3 4 5 6 7 0 00 0

3 4 5 6 7 6 55 4

3 4 5 6 7 7 73 3

3 4 5 6 7 3 46 7

3 4 5 6 7 8 91 2

E
n

co
d

er
 F

L
O

P
s 

Equivariance Score

(a) Demonstration of different padding types. 

The numbers represent the index of frames 

except that 0 represents a frame of 0s.

(b) Trade-off between equivariance scores and FLOPs. The 

relative GPU memory utilization is indicated by the volume, 

and the level of padding-free is indicated by the transparency.

Fig. 13: Demonstration of different padding types and their computational costs
as well as effects on the consistency score. Note that when using less or no
paddings, extra real paddings are added to the input videos.

Adding real frames makes the VQGAN fully time-agnostic but increases the
computational cost. Using other paddings is less effective but brings no over-
heads. Therefore, it is essential to quantify the temporal dependence to under-
stand the trade-off between the desired property and the cost to achieve it. To
that end, we propose an equivariance score as a measure of time agnostic shown
in Equation 1, which calculates the percentage of tokens that are identical when
the same frames are positioned at the beginning of the end of the clips, which
are the two extreme cases that are mostly affected by the paddings from either
side:

t∑
i=1

h−1∑
j=0

w−1∑
k=0

1 ([fE(x0:T )]i,j,k, [fE(xd:T+d)]i−1,j,k)

t× h× w
, (3)

where 1 is an identity function. We report the mean and standard deviation
across 1024 clips using a video VQGAN trained on the UCF-101 dataset across
different padding strategies. We visualize the trade-off between the costs and
effects on the consistency score in Figure 13. We also partially remove the zero
paddings from different numbers of layers to picture the trade-off varies more
accurately, where the padding type is called “Padding-Less”.

As shown in Figure 13, we find that the more paddings are removed, the more
time agnostic the encoder becomes. Note that when removing all the paddings
and concatenating enough real frames to the input, we obtain a perfectly time-
agnostic encoder that achieves the equivariance score = 1. However, it also sig-
nificantly increases the memory and computational costs of the training. As for



Supplementary Material of TATS 5

the other padding types, although the reflect and circular paddings provide more
realistic video changes, they could drift further from the real frames and yield
a smaller equivariance score than the replicate padding. For example, a walking
person is more likely to stop than walk backward in the following frames. We find
that the replicate padding, which gives 0.75 consistency score, already resolves
the time-dependence issue well in practice. Given the little extra cost it brings,
we use replicate paddings and no real frames in our experiments.

A.4 Details of the interpolation attention

(b) Interpolation attention (×)(a) Vanilla causal attention

Anchor

Frame

Target

Frame

Target

Frame

Target

Frame

Anchor

Frame

Anchor

Frame

Target

Frame

Target

Frame

Target

Frame

Anchor

Frame
Anchor

Frame

Target

Frame

Target

Frame

Target

Frame

Anchor

Frame

Anchor

Frame

Target

Frame

Target

Frame

Target

Frame

Anchor

Frame

(c) Interpolation attention (√)

Fig. 14: Illustration of the vanilla causal attention and the interpolation causal
attention. For simplification, every frame is assumed to have 2 tokens.

We implement the interpolation transformer based on designed attention
called interpolation causal attention, as shown in the right scheme of Figure 14(c).
Specifically, the anchor frame (dark) is given during the inference, and the tar-
get frame (light) needs to be generated. In the vanilla causal attention shown
in Figure 14(a), tokens attend to the tokens in front of it. In the interpolation
causal attention, tokens attend to both the tokens before it and the anchor to-
kens, which allows acquiring information from the anchor frames at both ends
generated by the autoregressive transformer. We want to stress that it is impor-
tant to not attend the last anchor frame on the frames to be generated like the
one in the Figure 14(b), since a multi-layer self-attention will form a shortcut
and leak the information of the frames in the middle to themselves and cause
the training to collapse.

B Experiment setups

In this section, we provide additional details of our experiments.



6 S. Ge, T. Hayes, H. Yang, X. Yin, G. Pang, D. Jacobs, J. Huang, D. Parikh

Number of frames in each video

(a) UCF-101

(e) MUGEN

(b) Sky Time-lapse (c) Taichi-HD

(d) AudioSet-Drum

N
u

m
b

er
 o

f 
v

id
eo

s

Number of frames in each video
N

u
m

b
er

 o
f 

v
id

eo
s

Number of frames in each video Number of frames in each video

Number of frames in each video

Fig. 15:Dataset statistics. Distribution of the number of videos in each dataset
that have at least a certain number of frames.

B.1 Dataset and evaluation details

We validate our approach on the UCF-101 [41], Sky Time-lapse [50], Taichi-
HD [39], AudioSet-Drum [13], and MUGEN [15] datasets. Below we provide
basic descriptions of these datasets and our data processing steps on each of
them. We also report the relevant dataset statistics such as the number of long
videos and the number of frames per video in Figure 15.

– UCF-101 is a dataset designed for action recognition which contains 101
classes and 13, 320 videos in total. We train our model on its train split which
contains 9, 537 videos following the official splits.1 We also report number of
frames in videos of every class in Figure 16.

– Sky Time-lapse contains time-lapse videos that depict the sky under dif-
ferent time and weather conditions. The paper [50] claims that 5, 000 videos
are collected but only 2, 647 are actually released in the official dataset.2 We
follow [53] to train our model on the train split and test using videos from
the test split.

– Taichi-HD has 2, 668 videos in total recording a single person performing
Taichi.3 We follow [53] to sample frames from every 4 frames when train-
ing our TATS-base model for a fair comparison. However, training TATS-
Hierarchical with this setting would drop 60% of videos for not having enough
frames as shown in Figure 15. Therefore we do not skip frames for TATS-
Hierarchical.

– AudioSet-Drum is a collection of drum kit videos with audio available in
the dataset. The train split contains 6, 000 videos, and the test split contains

1 https://www.crcv.ucf.edu/data/UCF101.php
2 https://github.com/weixiong-ur/mdgan
3 https://github.com/AliaksandrSiarohin/first-order-model/blob/master/

data/taichi-loading/README.md

https://www.crcv.ucf.edu/data/UCF101.php
https://github.com/weixiong-ur/mdgan
https://github.com/AliaksandrSiarohin/first-order-model/blob/master/data/taichi-loading/README.md
https://github.com/AliaksandrSiarohin/first-order-model/blob/master/data/taichi-loading/README.md


Supplementary Material of TATS 7

Fig. 16: Average number of frames for each of class in the UCF101 dataset.

1, 000 videos. All the video clips have 90 frames. We use the STFT features
extracted by [5] as the audio data4, and follow its evaluation setting to
measure the image quality of the 45th frames on the test set.

– MUGEN is a dataset containing videos collected from the open-sourced
platform game CoinRun [8] by recording the gameplay of trained RL agents.
We use their template-based algorithm auto-text, which generates textual
descriptions for videos with arbitrary lengths. The train and test splits con-
tain 104, 796 and 11, 802 videos, respectively, each at 3.2s to 21s (96 to 602
frames) long.

To calculate the VFDs and DVDs, we generate 2, 048 and 512 videos for short
and long video evaluation, respectively, considering time cost. To calculate the
IS, we generate 10, 000 videos. To calculate the CCS and ICS for long video
evaluation, we also generate 512 videos. We run the evaluations for 10 times and
report the standard deviations.

B.2 Training and inference details

VQGAN. Suggested by the VQGAN training recipe [11], we start GAN losses
after the reconstruction loss generally converges after 10K steps. We adopt a
codebook with vocabulary size K = 16, 384 and embedding size c = 256. We do
not use the random start trick for codebook embeddings [10,52]. Following [47],
we set λrec = λmatch = 4.0 and λdisc = 1.0. We use the ADAM optimizer [24]
with lr = 3e−5 and (β1, β2) = (0.5, 0.9). As discussed in Section A.1, we always
clip the gradients to have euclidean norm = 1. We train the VQGAN on 8
NVIDIA V100 32GB GPUs with batch size = 2 on each gpu and accumulated
batches = 6 for 30K steps. Each model usually takes around 57 hours to train.

4 https://sites.google.com/site/metrosmiles/research/research-projects/

sound2sight

https://sites.google.com/site/metrosmiles/research/research-projects/sound2sight
https://sites.google.com/site/metrosmiles/research/research-projects/sound2sight


8 S. Ge, T. Hayes, H. Yang, X. Yin, G. Pang, D. Jacobs, J. Huang, D. Parikh

Transformers. Both autoregressive and interpolation transformers contain 24
layers, 16 heads, and embedding size = 1024. We use the AdamW optimizer [29]
with a base learning rate of 4.5e−6, where we linearly scale up by the total batch
size. We train the transformers on 8 NVIDIA V100 32GB GPUs with batch size
= 3 on each GPU until the training loss saturates. Specifically, we train the au-
toregressive transformers for 500K steps as a general setting except that we train
TATS-base on the UCF-101 dataset for 1.35M as it keeps improving the results.
It takes around 10 days to train the transformer models. In practice, we find that
the interpolation setting simplifies the problem dramatically, so we only train
the interpolation transformers for 30K for the best generalization performance.
At the inference time, we adopt sampling strategy where temperature t = 1,
top-k with k = 2048, and top-p with p = 0.80 as our general setting (for interpo-
lation transformers, a smaller q and k usually produces better results). Sampling
1 video with 1024 frames takes around 30 minutes using TATS-base on a single
Quadro P6000 GPU, while TATS-hierarchical reduces this time to 7.5 minutes
for autoregressive transformer and 23 seconds for interpolation transformer.

Baselines Apart from those that have been discussed in the related work sec-
tion, we provide additional descriptions on the baselines we compared with and
other GAN-based video generation models in this section. TGAN [37] proposes
to generate a fixed number of latent vectors as input to an image generator to
synthesize the corresponding frames. MoCoGAN [44] utilizes a RNN to sample
motion vectors to synthesize different frames. MoCoGAN-HD [43] leverages a
LSTM to predict a trajectory in the latent space of a trained image generator.
DVD-GAN [7] adopts a similar architecture as MoCoGAN with a focus on scal-
ing up training. TSB [34] further improves MoCoGAN by mixing information
of adjacent frames using an operation called temporal shift. TGAN2 [38] pro-
poses to divide the generator into multiple small sub-generators and introduces
a subsampling layer that reduces the frame rate between each pair of consecutive
sub-generators. HVG [4] further introduces a hierarchical pipeline to interpolate
and upsample low-resolution and low-frame-rate videos gradually. ProgressiveV-
GAN [1] extends ProgressiveGAN [20] to video generation by simultaneously
generating in the temporal direction progressively. LDVD-GAN [19] analyzes
the discriminators used in video GANs and designs improved discriminators
considering the convolution kernel dimensionality. CCVS [26] utilizes VQVAE
to compress frames for training transformer and a flow module to improve tem-
poral consistency. VideoGPT [52] further leverages 3D convolution and axial
self-attention in the VQVAE to encode the temporal dimension as well. DI-
GAN [53] first generalized the idea of implicit neural representations to video
generation by decomposing the network weights for the spatial and temporal
coordinates. StyleGAN-v [40] maps a continuous temporal positional embedding
to the input feature map of the StyleGAN.



Supplementary Material of TATS 9

B.3 Comparison of the computational costs

We compute the time to generate a single video of 1024 frames using different
methods in Table 1. The slow inference speed of autoregressive models is often
criticized. However, among all the methods that build on VQVAE and trans-
former framework, our TATS-hierarchical is the fastest – 1/3 the time of CCVS
and 1/5 the time of VideoGPT. Accelerating autoregressive transformers is an
active research area. Further improvements can be achieved by methods such as
sparse attention, which we leave for future exploration.

Table 1: Time for generating a 1024-frame video.

DIGAN MoCoGAN-HD CCVS VideoGPT TATS-base TATS-hierarchical

4.2 sec 28.5 sec 22 min 42 min 30 min 7.5 min

C Additional results on long video generation

More videos with repeated actions and smooth transitions. Video gener-
ation results with repeated actions can be widely seen in other UCF-101 classes as
well as shown in Figure 18. In addition to the generated sky videos with smooth
transitions, we also show that there are such cases in UCF-101 and Taichi-HD
datasets in Figure 19. We can see in the example of UCF-101 Sky Diving video
that the transition proceeds clearly with unrealistic content as only limited data
are available per class. In the example of Taichi video, we can see that the color
of the pants transforms smoothly. However, there is still unrealistic content in
such videos. Therefore, we argue that a split of content and motion generation
could be helpful in these cases [44,53,43].

Failure cases. Errors could occur and accumulate during the application of
sliding window attention. We show several typical failure examples in Figure 20.
In the example of Boxing Punching Bag, an error occurs at around 300 frames,
and the general quality of the video deteriorates after that. Repeated tokens
are generated in the deteriorated area, which is a commonly observed issue in
sequence generation [16,18]. We also find that this kind of issue happens more
often in the areas which contain large motions. The video quality could also de-
grade quickly if the thematic event of the video has a clear end. For example, the
generated Long Jump video quickly transits to the other scene and degenerates
when the person finishes the action.

Additional comparison with DIGAN. We find that DIGAN presents clear
quality degradation on the Sky dataset. To show this, we calculate the aver-
age difference between the 1000th and 1024th frames generated by DIGAN and
our method in Figure 17. DIGAN results show periodic artifacts induced by



10 S. Ge, T. Hayes, H. Yang, X. Yin, G. Pang, D. Jacobs, J. Huang, D. Parikh

(a) TATS (b) DIGAN

Fig. 17: The 1000th generated frame and the average pixel difference w.r.t. the
1024th frame. DIGAN generations contain clear periodic artifacts.

the sinusoidal positional encodings (repeated changes in the diagonal direction).
However, this is not reflected in the FVD metric, which we conjecture is due
to the domain gap with respect to the Kinetics dataset which the I3D model is
trained on. So to quantify this, we conduct human evaluation to compare TATS
with DIGAN. We randomly sampled 100 generated videos for each method and
cropped the videos to the last 128 frames. We showed raters a pair of videos (one
from each method), and asked them to select the video with fewer artifacts. Each
video pair was evaluated by around 5 raters. TATS was chosen over DIGAN 67%
of the time (355 vs. 175). Under a binomial test, TATS is statistically signifi-
cantly better than DIGAN with confidence > 0.95.

D Additional related works

The implicit bias of zero padding. The positional inductive bias introduced
by zero padding has drawn increasing attention recently [17,23,51,2]. In most
cases, such inductive bias is helpful in classification [17], generation [51], or object
detection [2]. Our paper observes a case where this inductive bias is harmful.

Video prediction. Video prediction aims at modeling the transformation be-
tween frames and predicting future frames given real frames [36,42,12,45,25,35].
For instance, [45] divides the frames into patches, calculates the affine transfor-
mation between temporally adjacent patches, and predicts such affine transfor-
mation to be applied to the most recent frame. [30] predicts videos of semantic
maps and argues that autoregressive models lead to error propagation when
more frames are predicted while being more accurate in the semantic segmenta-
tion space. Flow-based models [25] and ODE-based models [35] have also been
used for video prediction. Different from video prediction, video generation focus
on producing videos from noise. When applying to long videos, one substantial
difference is that video prediction starts from a real frame while video genera-
tion starts from a generated frame. Some video generation models fall into the
middle part [26] that predicts future frames given frames generated by an image
generator. We have shown that these models also suffer from quality degradation.

Conditional video generation. Text-conditioned video generation has been
studied in multiple papers. SyncDraw [33] first proposes to combine VAE and



Supplementary Material of TATS 11

RNN for video generation while conditioning on texts. T2V [28] uses CVAE to
generate the gist then GANs with 3D convolutions to generate fixed-length low-
resolution videos. The text is encoded in a convolutions filter to process the gist.
TFGAN [3] proposes a multi-scale text-conditioning discriminator and follows
MoCoGAN [44] to use an RNN to model the temporal information. IRC-GAN [9]
proposes to use a recurrent transconvolutional generator and mutual-information
introspection to generate videos based text. Craft [14] sequentially composes
a scene layout and retrieves entities from a video database to create complex
scene videos. GODIVA [48] relies on a pretrained VQVAE model to produce
video frame representations and autoregressively predicts the video representa-
tions based on the input text representations and former frames. Each element’s
prediction in the current frame’s representation attends to the previous row,
column, and time. As for audio-conditioned video generation, Sound2Sight [5]
proposes to model the previous frames and audios with a multi-head audio-
visual transformer and predicts future frames with a prediction network based on
sequence-to-sequence architecture. Vougioukas et al. [46] studies speech-driven
facial animation, which aims at generating face videos given the speech audios.
They propose a framework based on RNNs and a frame generator. Some condi-
tional generation frameworks are also able to generate long videos either when
minimal changes occur in the video scenes [32] or strong conditional information
is given such as segmentation maps [47,31]. Our paper focuses on more realistic
and complex videos with weak or no conditional information available.

(a) UCF-101: Brushing Teeth

(b) UCF-101: Boxing Punching Bag

(c) UCF-101: Fencing

Fig. 18: More class-conditional generation results of UCF-101 videos with 1, 024
frames that contains repeated action.



12 S. Ge, T. Hayes, H. Yang, X. Yin, G. Pang, D. Jacobs, J. Huang, D. Parikh

Every 10th frame between frame 300 to frame 400

Every other frame between frame 450 to frame 470

Every 100th frame between frame 0 to frame 1000

Every 10th frame between frame 100 to frame 200

Every single frame between frame 160 to frame 170

Every 100th frame between frame 0 to frame 1000

(a) UCF-101: Sky Diving 

(b) Taichi-HD

Fig. 19: Unconditional and class-conditional generation results of Sky Diving and
Taichi-HD videos with 1, 024 frames that contain smooth transitions.

Long Jump: Every 50th frame between frame 0 to frame 500

Boxing Punching Bag: Every 100th frame between frame 0 to frame 1000

Fig. 20: Failure cases of class-conditional generation results of long videos on the
UCF-101 dataset.



Supplementary Material of TATS 13

References

1. Acharya, D., Huang, Z., Paudel, D.P., Van Gool, L.: Towards high resolution
video generation with progressive growing of sliced wasserstein gans. arXiv preprint
arXiv:1810.02419 (2018) 8

2. Alsallakh, B., Kokhlikyan, N., Miglani, V., Yuan, J., Reblitz-Richardson, O.: Mind
the pad – CNNs can develop blind spots. In: ICLR (2021) 10

3. Balaji, Y., Min, M.R., Bai, B., Chellappa, R., Graf, H.P.: Conditional gan with
discriminative filter generation for text-to-video synthesis. In: IJCAI (2019) 11

4. Castrejon, L., Ballas, N., Courville, A.: Hierarchical video generation for complex
data. arXiv preprint arXiv:2106.02719 (2021) 8

5. Chatterjee, M., Cherian, A.: Sound2sight: Generating visual dynamics from sound
and context. In: ECCV (2020) 7, 11

6. Child, R.: Very deep vaes generalize autoregressive models and can outperform
them on images. In: ICLR (2020) 2

7. Clark, A., Donahue, J., Simonyan, K.: Adversarial video generation on complex
datasets. arXiv preprint arXiv:1907.06571 (2019) 8

8. Cobbe, K., Klimov, O., Hesse, C., Kim, T., Schulman, J.: Quantifying generaliza-
tion in reinforcement learning. In: ICML (2019) 7

9. Deng, K., Fei, T., Huang, X., Peng, Y.: Irc-gan: Introspective recurrent convolu-
tional gan for text-to-video generation. In: IJCAI (2019) 11

10. Dhariwal, P., Jun, H., Payne, C., Kim, J.W., Radford, A., Sutskever, I.: Jukebox:
A generative model for music. arXiv preprint arXiv:2005.00341 (2020) 7

11. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image
synthesis. In: CVPR (2021) 1, 2, 3, 7

12. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction
through video prediction. NeurIPS (2016) 10

13. Gemmeke, J.F., Ellis, D.P., Freedman, D., Jansen, A., Lawrence, W., Moore, R.C.,
Plakal, M., Ritter, M.: Audio set: An ontology and human-labeled dataset for audio
events. In: ICASSP (2017) 6

14. Gupta, T., Schwenk, D., Farhadi, A., Hoiem, D., Kembhavi, A.: Imagine this!
scripts to compositions to videos. In: ECCV (2018) 11

15. Hayes, T., Zhang, S., Yin, X., Pang, G., Sheng, S., Yang, H., Ge, S., Hu, Q.,
Parikh, D.: Mugen: A playground for video-audio-text multimodal understanding
and generation. arXiv preprint arXiv:2204.08058 (2022) 6

16. Holtzman, A., Buys, J., Du, L., Forbes, M., Choi, Y.: The curious case of neural
text degeneration. In: ICLR (2020) 9

17. Islam, M.A., Jia, S., Bruce, N.D.: How much position information do convolutional
neural networks encode? In: ICLR (2019) 10

18. Jiang, S., de Rijke, M.: Why are sequence-to-sequence models so dull? understand-
ing the low-diversity problem of chatbots. In: EMNLP Workshop (2018) 9

19. Kahembwe, E., Ramamoorthy, S.: Lower dimensional kernels for video discrimina-
tors. Neural Networks (2020) 8

20. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. In: ICLR (2018) 8

21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: CVPR (2019) 2

22. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: CVPR (2020) 2



14 S. Ge, T. Hayes, H. Yang, X. Yin, G. Pang, D. Jacobs, J. Huang, D. Parikh

23. Kayhan, O.S., Gemert, J.C.v.: On translation invariance in cnns: Convolutional
layers can exploit absolute spatial location. In: CVPR (2020) 10

24. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. ICLR (2015)
7

25. Kumar, M., Babaeizadeh, M., Erhan, D., Finn, C., Levine, S., Dinh, L., Kingma,
D.: Videoflow: A conditional flow-based model for stochastic video generation. In:
ICLR (2019) 10

26. Le Moing, G., Ponce, J., Schmid, C.: Ccvs: Context-aware controllable video syn-
thesis. NeurIPS (2021) 8, 10

27. Lee, K., Chang, H., Jiang, L., Zhang, H., Tu, Z., Liu, C.: Vitgan: Training gans
with vision transformers. arXiv preprint arXiv:2107.04589 (2021) 2

28. Li, Y., Min, M., Shen, D., Carlson, D., Carin, L.: Video generation from text. In:
AAAI (2018) 11

29. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International
Conference on Learning Representations (2018) 8

30. Luc, P., Neverova, N., Couprie, C., Verbeek, J., LeCun, Y.: Predicting deeper into
the future of semantic segmentation. In: ICCV (2017) 10

31. Mallya, A., Wang, T.C., Sapra, K., Liu, M.Y.: World-consistent video-to-video
synthesis. In: ECCV (2020) 11

32. Menapace, W., Lathuilière, S., Tulyakov, S., Siarohin, A., Ricci, E.: Playable video
generation. In: CVPR (2021) 11

33. Mittal, G., Marwah, T., Balasubramanian, V.N.: Sync-draw: Automatic video gen-
eration using deep recurrent attentive architectures. In: MM (2017) 10

34. Munoz, A., Zolfaghari, M., Argus, M., Brox, T.: Temporal shift gan for large scale
video generation. In: WACV (2021) 8

35. Park, S., Kim, K., Lee, J., Choo, J., Lee, J., Kim, S., Choi, Y.: Vid-ode: Continuous-
time video generation with neural ordinary differential equation. In: AAAI. AAAI
(2021) 10

36. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video
(language) modeling: a baseline for generative models of natural videos. arXiv
preprint arXiv:1412.6604 (2014) 10

37. Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with
singular value clipping. In: ICCV (2017) 8

38. Saito, M., Saito, S., Koyama, M., Kobayashi, S.: Train sparsely, generate densely:
Memory-efficient unsupervised training of high-resolution temporal gan. IJCV
(2020) 8

39. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion
model for image animation. NeurIPS (2019) 6

40. Skorokhodov, I., Tulyakov, S., Elhoseiny, M.: Stylegan-v: A continuous video
generator with the price, image quality and perks of stylegan2. arXiv preprint
arXiv:2112.14683 (2021) 8

41. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of 101 human actions classes
from videos in the wild. arXiv preprint arXiv:1212.0402 (2012) 6

42. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video
representations using lstms. In: ICML (2015) 10

43. Tian, Y., Ren, J., Chai, M., Olszewski, K., Peng, X., Metaxas, D.N., Tulyakov, S.:
A good image generator is what you need for high-resolution video synthesis. In:
ICLR (2021) 8, 9

44. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: Decomposing motion and
content for video generation. In: CVPR (June 2018) 8, 9, 11



Supplementary Material of TATS 15

45. Van Amersfoort, J., Kannan, A., Ranzato, M., Szlam, A., Tran, D., Chintala, S.:
Transformation-based models of video sequences. arXiv preprint arXiv:1701.08435
(2017) 10

46. Vougioukas, K., Petridis, S., Pantic, M.: End-to-end speech-driven facial animation
with temporal gans. BMVC (2018) 11

47. Wang, T.C., Liu, M.Y., Zhu, J.Y., Liu, G., Tao, A., Kautz, J., Catanzaro, B.:
Video-to-video synthesis. In: NeurIPS (2018) 7, 11

48. Wu, C., Huang, L., Zhang, Q., Li, B., Ji, L., Yang, F., Sapiro, G., Duan, N.:
Godiva: Generating open-domain videos from natural descriptions. arXiv preprint
arXiv:2104.14806 (2021) 11

49. Wu, Y., He, K.: Group normalization. In: ECCV (2018) 2
50. Xiong, W., Luo, W., Ma, L., Liu, W., Luo, J.: Learning to generate time-lapse

videos using multi-stage dynamic generative adversarial networks. In: CVPR
(2018) 6

51. Xu, R., Wang, X., Chen, K., Zhou, B., Loy, C.C.: Positional encoding as spatial
inductive bias in gans. In: CVPR (2021) 10

52. Yan, W., Zhang, Y., Abbeel, P., Srinivas, A.: Videogpt: Video generation using
vq-vae and transformers. arXiv preprint arXiv:2104.10157 (2021) 1, 7, 8

53. Yu, S., Tack, J., Mo, S., Kim, H., Kim, J., Ha, J.W., Shin, J.: Generating videos
with dynamics-aware implicit generative adversarial networks. In: ICLR (2021) 6,
8, 9


