
Supplemental Material for WISE: Whitebox
Image Stylization by Example-based Learning

Winfried Lötzsch1, Max Reimann1, Martin Büssemeyer1, Amir Semmo2,
Jürgen Döllner1, and Matthias Trapp1

1 Hasso Plattner Institute, University of Potsdam, Germany
2 Digital Masterpieces GmbH, Germany

Due to space restrictions, some details had to be omitted from the main
paper; we present those details here. In Sec. 1 we describe filter modifications
to obtain gradients using auto-grad enabled frameworks on the example of the
seperated orientation-aligned bilateral filter and color quantization, and elab-
orate on filter pipelines concerning their structure, learnability and memory
consumption. In Sec. 2, we elaborate on training global Parameter Prediction
Networks (PPNs) by presenting three PPN architectures and evaluating their
performance in an ablation study. In Sec. 3, we provide additional details and
results for the architecture ablation study on image-to-image translation tasks
using the APDrawing dataset[22] as well as editability of such effects. In Sec. 4
we give visual examples for the style transfer capability of different effects. Fi-
nally, in Sec. 5, additional results for parametric style transfer, image-to-image
translation, and effect variants are shown. Further, our supplemental video3

demonstrates parametric style transfer optimization and interactive editing for
the images shown in the main paper.

1 Differentiable Filters

In the main paper we note that while most filters are straight-forward to imple-
ment in auto-grad enabled frameworks, for some several filters re-formulations
or approximations are needed. Specifically, for structure-adaptive neighborhood
operations, a re-formulation to retain sub-gradients in adaptive kernel neigh-
bourhoods must be employed, and for non-differentiable operations a numeric
gradient approximation is needed. In the following, we show an example for each.

1.1 Bilateral Filter

Commonly used techniques in image filtering pipelines are bilateral filters. The
bilateral filter [19] using Gaussians G of size σd (distance kernel) and σr (range
kernel) for an image I ∈ RC×W×H is defined for a pixel coordinate x by

Î(x) =
1

W

∑
y∈Ω(x)

I(y)Gσd
(∥y − x∥)Gσr

(∥I(y)− I(x)∥) (1)

3 https://youtu.be/wIndN7cr0PE

https://youtu.be/wIndN7cr0PE

2 Lötzsch and Reimann et al.

where Ω(x) denotes the window centered in x and y ∈ Ω represent pixel co-
ordinates of the kernel neighbourhood. W represents the weight normalization
term, which we omit in the following for the sake of brevity. Computing the
bilateral filter for large images and at large kernel neighbourhoods is, however,
computationally expensive. Several approaches have been proposed to approxi-
mate the filter by separation into multiple passes for improved efficiency.

For image abstraction and stylization, the orientation-aligned separated bilat-
eral filter [15,11] has shown a good trade-off between quality and performance.
The filter is guided in two passes along the gradient and tangent direction of
an edge tangent field. The tangent field of the input image is obtained by an
eigenanalysis of the smoothed structure tensor [2]; for more details the reader
is kindly referred to the work of Kyprianidis and Döllner [15]. The tangent field
computation consists of point-based and fixed-neighbourhood kernels only, and
thus is straightforward to implement using common auto-differentiable func-
tions. However, the following separated bilateral filter is iterative and structure
adaptive (i.e., the size of the kernel neighbourhood depends on the content), and
thus cannot be ported to the fixed-neighbourhood functions (e.g., convolutions)
of auto-grad enabled frameworks in a straightforward way.

Specifically, in the work of Kyprianidis and Döllner [15], the filter response at
a sampling point x of a pass of the separated orientation-aligned bilateral filter
in direction t (gradient or tangent direction) is defined as:

Î(x) = I(x) +
∑

y∈Ωt(x)

I(y)Gσd
(∥y − x∥)Gσr

(∥I(y)− I(x)∥) (2)

where Ωt(x) = {x + kt, | k ∈ [−N,N] ∧ k ∈ Z} represents sampling positions
along the direction t defined in x, and N denotes the cut-off kernel radius. N is
typically based on σd, e.g., set to ⌊2σd/∥t∥⌋, and the kernel size locally depends
on the magnitude of the direction vector t.

It would be possible to implement a custom kernel with associated back-
ward pass for the above to manually compute (sub-) gradients for both input
and parameters, and similarly repeat the procedure for every other structure-
adaptive filter in Tab. 1 of the main paper. However, as our goal is to mini-
mize the effort of porting existing (shader-based) filters to our framework while
maximizing reusability and portability, we propose to implement the filters us-
ing common auto-differentiable components. To this end, we reformulate Eq. (2)
into a grid sampling-based operation. Specifically, we use spatial coordinate grids
C ∈ R2×W×H and T ∈ RW×H×2D that represent the mapping of output pixel
locations to input pixels for grid sampling. Grid C is the identity mapping, i.e.,
contains coordinates Cwh = (w, h). Grid T contains the sampling offsets in di-
mension D: Twh = {ktwh, | k ∈ [−D,D] ∧ k ∈ Z}. Then the neighbourhood
sampling values V ∈ RC×W×H×2D for the entire image I are computed as:

V = I(C + T)δ [Gσd
(∥T∥)]Gσr

(∥I(C + T)− I∥) (3)

where in slight abuse of notation, I(C +T) denotes bilinear grid sampling [9] of
I over the coordinate grid of unfolded kernels. It is thus equivalent to retrieving

WISE: Whitebox Image Stylization by Example-based Learning 3

I(Ωt(x)) for every pixel x with fixed number of samples. To clip values outside
of the adaptive kernel neighborhood, δ is computed as:

δwhd(v) =

{
v if ∥Twhd∥ ≤ Nwh

0, otherwise
(4)

Note that multiplications between tensors in Eq. (3) are performed elementwise.
Filter responses in dimension D are then folded (summed) to obtain the response
over the full kernel neighborhood (i.e., the filtered image Î):

Î = I +

D∑
d=1

Vd (5)

The size of dimension D can be varied for performance-quality trade-offs (as
shown in Fig.4 in the main paper).

1.2 Color Quantization

Color quantization is often applied to achieve a flat, cartoon-like impression (Fig
3., main paper). It is usually defined using the floor function: y = ⌊xb⌋ + 0.5/b [21],
where x denotes the color value before and y the color value after quantization,
and b (number of quantization bins) is the parameter that should receive gra-
dients. Due to the non-differentiable nature of the floor function, we introduce
a differentiable approximation. Common differentiable proxies like the straight-
through estimator[1] work well for approximating the gradient of quantization
functions with fixed numbers of quantization bins. However, for color quantiza-
tion we want to differentiate with respect to the strength of the quantization or
the number of bins, which is not possible using common differentiable proxies.
As reasoning about the number of quantization bins requires information about
the complete image, a global optimization is formulated instead:

f(r) =
∑
i

sign

(
yi −

⌊rxi⌋+ 0.5

r

)
sign(gi) (6)

where x denotes a vector containing the input pixel values, y the outputs of
y(x), and g the gradient vector for y.

Intuitively, f sums values for each pixel, which are positive if the pixel’s
gradient points in the direction of r and negative otherwise. The maximum
number of per-pixel gradients should point in the direction of r.

We choose b̂ = argmaxr f(r) to derive the optimal value for the parameter b,
which minimizes the learning target. This value is obtained in a single optimiza-
tion step. To obtain a continuous gradient, the difference b − b̂ is scaled by the
gradient magnitude |gi| of the loss function computed with respect to all pixels
yi ∈ y, such that gradients for b decrease, once the optimal value is approached:

∂y

∂b
:=

∑
i

|gi|(b− b̂) (7)

4 Lötzsch and Reimann et al.

Filter operating on
Lab image data

Filter operating on
RGB image data

Filter operating on
structure tensor data

Filter operating on
intensity data

Input Color
Adjustment

Image Flow / Color Smoothing

Adaptive
Gaussian

Smoothing

Tangent
Flow Map

Flow-based
Laplacian of

Gaussian

Paint Texture

Noise Flow-based
Gaussian

Smoothing

Bump Mapping /
Phong Shading

Image
Composition

Output

Pre-abstraction

Smoothed
Structure

Tensor

RGB2Lab

Orientation-
aligned
Bilateral

Flow-based
Gaussian

Smoothing

Tangent
Flow
Map

Lab2RGB

Fig. 1: Oilpaint filter pipeline adapted from Semmo et al . [18].

Table 1: Parameter optimization to compare learned and target stylizations.
Scores are computed on Non-photorealistic Rendering (NPR) benchmark [17]
for both high-quality (level I) and low-quality (level III) portraits.

NPR level I NPR level III
Loss SSIM PSNR SSIM PSNR

Cartoon ℓ2 0.937 28.144 0.958 34.124
Cartoon ℓ1 0.931 26.939 0.947 30.429
Watercolor ℓ2 0.922 30.634 0.897 32.342
Watercolor ℓ1 0.883 31.032 0.895 29.048

1.3 Differentiable filter pipeline - Oilpaint

As noted in the main paper, we implement differentiable filter pipelines anal-
ogous to their originally published versions and show an example for the toon
pipeline in Fig. 3 of the main paper. In Fig. 1 we further show the filter pipeline
of the oilpaint effect [18]. In contrast to Semmo et al . we do not use color palette
extraction and color quantization and instead use a color adjustment layer.

1.4 Functional Benchmark

To verify that all parameters of an effect pipeline can be learned, we set up a
functional benchmark to evaluate how well effects can be adapted to an example
stylization in the same domain. We developed an OpenGL-based “ground truth”
implementation to generate reference stylizations, where parameter values are
randomized during the benchmark. Using an image-based loss, gradients are
then backpropagated to optimize the parameters of the differentiable effect using
gradient descent. We measure the Structural Similarity Index Measure (SSIM)
and Peak Signal-to-Noise Ratio (PSNR). Tab. 1 shows that both the cartoon

WISE: Whitebox Image Stylization by Example-based Learning 5

(a) 0.98GiB, 0.12 s (b) 1.51GiB, 0.17 s (c) OpenGL reference

Fig. 2: GPU VRAM and run-time in seconds for varying kernel sizes D = 1 a
and D = 5 b for XDoG. (Image resized to 1MP from [3]).

and watercolor effect achieve very high similarity to their reference using both
ℓ1 and ℓ2 losses. The photographic quality level of the input images does not seem
to play a role in the style-matching capability. As the eXtended difference-of-
Gaussians (XDoG) filter is contained in both cartoon and watercolor pipelines,
it is not evaluated separately.

1.5 Implementation Aspects - Memory

During training, limiting the memory consumption of individual filters is im-
portant, as they operate in the full input resolution. Generally, filters that ac-
cumulate sampling of multiple different locations in a single tensor have the
highest memory usage. For our filters, wet-in-wet stylization, Kuwahara, and
bilateral filtering are the most expensive with 3GB to 5GB peak memory us-
age for 1MP input images. The trade-off between the quality of the generated
results and computing resources can be controlled by the kernel size parameter
D as shown in Fig. 2. To further reduce memory consumption during training,
we use gradient checkpointing to recompute intermediate gradients on the fly.
Thereby, activations are stored only at the end of each filter, which is usually a
single RGB image. Intermediate activations are re-computed on the fly during
back-propagation. The peak memory usage thus then depends on the single most
memory-intensive filter. For example, the non-checkpointed XDoG uses 4GB of
GPU memory at peak for 1MP resolution input, while the checkpointed version
uses 2GB. The loss in speed is small and can be mitigated through the larger
batch size that can be processed with the available memory.

2 Global PPN

This section provides details on the global PPN, as well as an ablation study for
architecture variants and losses.

2.1 Architecture

The network architecture receives two images: an input image and a stylized
image, which has been generated with unknown parameters. We develop and
benchmark three network architectures for parameter prediction, as follows:

6 Lötzsch and Reimann et al.

1. SimpleNet: A simple convolution network with three Conv-ReLU layers
(channel count: 16,32,64) followed by MaxPooling layers. All features are
concatenated at the end and transformed with an additional linear layer to
yield the global parameters. Input and stylized image are concatenated along
the channel dimension and subsequently passed through the network.

2. ResNet + Multi-head: A ResNet50 architecture [6] without BatchNor-
malization layers is used to extract features. We initialize the ResNet with
pre-trained weights on the ImageNet dataset [4]. Again, input and stylized
image are concatenated along the channel dimension before passing them
through the network. Features F are extracted after the last convolution
layer and passed to a custom multi-head module depicted in Fig. 3b. The
streams of linear layers process the features for each global parameter inde-
pendently.

3. Multi-feature + Multi-head: A VGG backbone without BatchNormaliza-
tion and pre-trained weights on ImageNet is used. Input and stylized image
are passed separately through the feature extractor in two passes and all
compact features are accumulated afterward. We extract features and com-
pute Gram matrices for every convolution step as depicted in Fig. 3a. As the
Gram matrices contain essential information about style, we hypothesize
that these features help understand the input stylizations. The accumulated
features F from both images are passed to the multi-head module of Fig. 3b
to predict the final global parameters.

The design of the PPN architectures is motivated by two assumptions: (1)
using a multi-head module for independent processing of each parameter should
improve the accuracy as parameters for algorithmic effects model independent
aspects of the stylization process and thus benefit from learning parameter-
specific representations; (2) extraction of features at multiple scales (multi-
feature) should be beneficial for the PPN’s performance, as parameter changes
can affect larger parts of the image as well as small details. As Huang et al .
[7] find that normalization layers also perform normalization of style, we sus-
pect that leaving out BatchNormalization in all architectures would yield better
results

WISE: Whitebox Image Stylization by Example-based Learning 7

64

92
0

920

128
46
0

460

256
23
0

230

F

24
92
0

920

24
46
0

460

24
23
0

230

?

gram matrix

?

gram matrix

?

gram matrix

8
23
0

230

8
11
5

115

8
57

57

(a) Multi-feature extractor

F

20
48

20
48

20
48

20
48

1
global
param-
eter 1

1
global
param-
eter 2

(b) Multi-head module

Fig. 3: Multi-feature extractor a: Features are extracted from all convolution
stages of a pre-trained VGG-11 network. We only show the first 3 convolution
stages of the VGG-11 here for brevity. The features are passed through small
stacks of strided convolutions with stride 4 and kernel size 4× 4 pixels to gener-
ate compact representations. In parallel, the same features are passed through a
single 1× 1 pixel convolution and a subsequent operation to calculate the Gram
matrices. All compact features F are concatenated. Convolution operations are
visualized in yellow, ReLU layers in orange, and pooling layers in red. Multi-
head module b: After the extraction of all features, we continue with multiple
streams of linear layers. A separate stream of 3 linear layers is created for each
global parameter: The first two layers process the features and have ReLU ac-
tivations. The last layer outputs the final prediction as a single number. Fully
connected layers are visualized in light violet and ReLU layers in dark violet.

8 Lötzsch and Reimann et al.

2.2 Ablation Study

We conduct an ablation study for the previously discussed PPN architectures
and loss functions. We use the XDoG filter effect [20] and compute the SSIM and
PSNR metric in image space between the predicted and reference stylizations.
We also indicate the mean absolute difference (ℓ1) between the predicted and
ground truth global parameters.

Loss Functions. For our ablation study, we compare parameter space- and image
space losses. Parameter space losses are computed from the output of the PPN
directly (i.e., in parameter space), thus the differentiable effect is not used during
training. For image space losses, the predicted parameters are used to parame-
terize the differentiable effect, its output is then compared to the target output
image using a pixel-wise similarity metric and gradients are back-propagated
through the effect back to the PPN.

Network Training. For training, we use a random extract of 7000 images from
the FFHQ-dataset of portrait images [12] at a resolution of 1024× 1024 pixels.
For data augmentation, images are randomly cropped to resolution 920 × 920
pixels. We use Adam [13] with a learning rate of 10−5 and train for 25 epochs,
using a virtual batch size of 64. For testing, we use all 60 portrait images of the
NPR benchmark portrait [17] and randomly generated global parameters. The
final parameter predictions are passed through a tanh activation function for all
networks and multiplied by 0.5 to yield parameters in the range [−0.5, 0.5].

Results. Results are summarized in Tab. 2. Interestingly, the simple network
architecture performs better than or similar to the ResNet in most experiments.
We argue that for the ResNet, too much spatial information gets lost, as fea-
tures are derived only after all downsampling and convolution operations. The
multi-feature architecture effectively recovers the ability to derive representa-
tive features at all scales, as shown by Zhang et al . [24], and outperforms the
other two options. We observe that computing the loss in image space instead
of parameter space generally yields better results in terms of SSIM and PSNR,
even though the ground-truth parameters are not directly available to the net-
work in this case. As expected, computing the loss in parameter space still leads
to a closer approximation of the ground truth parameters as measured by the
ℓ1 distance between ground truth and predicted parameters. If gradients are
used as a learning signal, the model learns to use parameters more effectively
to achieve better results, sometimes deviating more from the ground truth pa-
rameters. Some parameter changes within the XDoG effect (e.g., changing either
contour or blackness) can similarly impact the final outcome. We reason that the
gradients, which are derived from our differentiable effects, enable the model to
build a better understanding of how the various parameters influence the final
outcome.

WISE: Whitebox Image Stylization by Example-based Learning 9

Table 2: Global parameter prediction: ablation study for XDoG on FFHQ[12].
For network variants SimpleNet (SN), ResNet + Multi-head (R+M), Multi-
feature + Multi-head (M+M), using image space-based losses I[ℓ1/2] and pa-
rameter space-based losses P [ℓ1/2].

Network Loss SSIM PSNR P [ℓ1]
– across all NPR levels –

M+M I[ℓ2] 0.764 13.286 0.190
SN I[ℓ2] 0.733 12.523 0.218
R+M I[ℓ2] 0.726 12.234 0.235

M+M P [ℓ2] 0.738 12.530 0.158
SN P [ℓ2] 0.686 11.277 0.197
R+M P [ℓ2] 0.677 10.874 0.205

M+M I[ℓ1] 0.780 13.875 0.183
SN I[ℓ1] 0.728 12.407 0.227
R+M I[ℓ1] 0.721 12.038 0.236

M+M P [ℓ1] 0.737 12.927 0.162
SN P [ℓ1] 0.697 11.805 0.200
R+M P [ℓ1] 0.692 11.408 0.200

3 Ablation study for APDrawing Stylization

Fig. 4: Learned task seperation. Results on APDrawing[22] after XDoG (top)
and then after convolution (bottom) are shown.

Here, we provide additional details to the ablation study in the section on
combining algorithmic effects and Convolutional Neural Networks (CNNs) in
the main paper. The results are summarized in Tab. 3. For the ResNet-50 back-
bone of the PPN, we compare initialization with random weights and weights
pre-trained on ImageNet. For the convolutional postprocessing network in our
generator, we compare the ResNet-based network architecture of Johnson et al .

10 Lötzsch and Reimann et al.

Table 3: Ablation study for our model on the APDrawing [22] dataset. The
Fréchet Inception Distance (FID) score between the train and the test set can
be used as a baseline for all results.
XDoG PPN weights Postrocessing Architecture Dropout FID score Key in Fig. 12

✗ - U-Net ✓ 75.27 -
✗ - U-Net ✗ 71.26 -
✗ - ResNet ✓ 70.00 -
✗ - ResNet ✗ 62.44 (a)

✓ Random U-Net ✓ 86.73 -
✓ Random U-Net ✗ 89.93 -
✓ Random ResNet ✓ 71.92 -
✓ Random ResNet ✗ 60.55 (c)

✓ ImageNet U-Net ✓ 100.41 -
✓ ImageNet U-Net ✗ 79.56 -
✓ ImageNet ResNet ✓ 76.25 -
✓ ImageNet ResNet ✗ 64.81 -

✓ - U-Net ✓ 71.64 -
✓ - U-Net ✗ 75.40 -
✓ - ResNet ✓ 71.56 -
✓ - ResNet ✗ 73.77 -

APDrawing GAN [22] 62.14 (b)
Train vs. Test 49.72 -

[10] and a classical U-Net[16] without residual blocks following Isola et al . [8]4.
We also investigate the effect of dropout. As it decreases the FID compared
to architectures trained without dropout, the model clearly benefits from hav-
ing the full learning capacity at its disposal during training. Also, pre-trained
weights on ImageNet do not increase the ability of the model to adapt to data
successfully.

We also test whether parameter prediction and thus differentiable effects
are necessary by comparing our method to the same approach using a fixed
parameter preset, which is optimized for portrait data specifically. Our PPN
network can dynamically adapt parameters locally to input images. As the results
using our PPN and those with a fixed preset differ by a large margin, we conclude
that parameter prediction and thus differentiable effects play an important role
in the success of our method. Fig. 4 visualizes the results after the XDoG stage
and after post-processing using a CNN; the learned separation of edge detection
and abstraction is apparent.

We do not include results using only the differentiable XDoG effect in con-
junction with a PPN. All experiments without a separate convolution network
failed with mode collapse of the generator, i.e., the PPN started to predict the
same parameters regardless of the input. We argue that this behavior is related
to the missing ability of the XDoG effect to model the artist’s style accurately.

4 We adapt the implementation of https://github.com/junyanz/

pytorch-CycleGAN-and-pix2pix

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

WISE: Whitebox Image Stylization by Example-based Learning 11

4 Style Transfer Capability

(a) Watercolor ℓ1 optim (b) Oilpaint LC + LS (c) Watercolor LC + LS

Fig. 5: Optimization of parametric style transfer with different losses. In a), the
effect is optimized by matching the result of STROTSS style transfer [14] using
an ℓ1 loss, as described in the main paper. In b) and c), the effect is directly
optimized using neural style transfer [5] losses LC+LS . The content/style image
are the same as in the teaser figure.

In our parametric style transfer, we use Style Transfer by Relaxed Optimal
Transport and Self-Similarity (STROTSS) [14] to create references which are
then matched during optimization using ℓ1 losses in image space. We also inves-
tigate directly optimizing effect parameters using the neural style transfer losses
introduced by Gatys et al . [5]. The results are shown in Fig. 5. The optimization
does not fail, however, the resulting style elements are less pronounced and more
artifacts are generated. As optimizing effect parameters to affect the output is
harder than direct pixel optimization (as done in NST), stricter supervision (i.e.,
pixel-wise losses) is necessary to achieve similar outputs. Directly using LS+LC

could however be appropriate for photographic style transfer.
In Tab. 2 of the main paper we compared the potential of our differentiable

effects to be optimized in a (general) style transfer framework. In Fig. 6 we show
example images from the in-domain optimization for the implemented effects.
For this, we used content images from the NPR benchmark dataset[17] (e.g.,
Fig. 6a) and several style images from the same artistic domain for each effect
(one example per effect is shown Fig. 6 b,f,j,n). The reference for optimization is
created by a neural style transfer [14]. Note that it does not necessarily produce
references that would be considered strictly in-domain with the style image (e.g.,
cartoon or line drawing domains) as the style transfer method has no concept of
the actual drawing techniques used. The created reference (e.g., Fig. 6k) is then
matched as closely as possible during local parameter optimization. As is visible,
only the Watercolor and Oilpaint effects are able to produce closely matching
results Fig. 6l. The Cartoon and XDoG effects can, on the other hand, only be
optimized with references that are closer to their range of achievable effects and
are not suited for the general style transfer case. In Fig. 7 and Fig. 8 we further
show the general style transfer capability of oilpaint and watercolor on the set
of common NST styles measured in Tab. 2. It is visible that oilpaint achieves
a decent matching on most styles, but fails to create structure in some regions,
while watercolor achieve an almost perfect matching of all references.

12 Lötzsch and Reimann et al.

(a) Content image (b) Style image (c) STROTSS [14] (d) XDoG optim

(e) Content image (f) Style image (g) STROTSS [14] (h) Cartoon optim

(i) Content image (j) Style image (k) STROTSS [14] (l) Watercolor optim

(m) Content image (n) Style image (o) STROTSS [14] (p) Oilpaint optim

Fig. 6: Local parameter optimization using different algorithmic effects

WISE: Whitebox Image Stylization by Example-based Learning 13

Style STROTTS[14] Watercolor Oilpaint

Fig. 7: Style transfer capability on common NST styles.

14 Lötzsch and Reimann et al.

Style STROTTS[14] Watercolor Oilpaint

Fig. 8: Style transfer capability on common NST styles.

WISE: Whitebox Image Stylization by Example-based Learning 15

5 Additional Results

This section provides additional results of our method, i.e., content-adaptive ef-
fects Sec. 5.1, and parametric style transfer Sec. 5.2. For a demonstration of inter-
active style transfer adjustment, please watch the provided supplemental video.
Sec. 5.3 shows additional results for our model trained on APDrawing [22]. Com-
parisons to the state-of-the-art are shown in Fig. 12. Further, results depicted in
Fig. 15 demostrates that our model generalizes to portraits from other datasets,
such as the NPR benchmark[17]. Finally, we show baseline results of our im-
plemented algorithmic differentiable effects with different parameter variants in
Sec. 5.4.

5.1 Content-adaptive Effects

Fig. 9: Facial feature enhancement and predicted local parameter maps.

Fig. 10: Background removal. The PPN learns to reduce details and stroke-width
for the XDoG filter in such a way that background details seen in the default
output (middle) are removed the output with locally adapted parameters (right).

16 Lötzsch and Reimann et al.

5.2 Style Transfer

S
ty
le

Content

Fig. 11: Additional results for style transfer optimization. Our parametric style trans-
fer can match a wide variety of styles and remains editable after optimization (not
performed here). While the presented parameter smoothing schedule removes most
artefacts stemming from parameters falling into local optima, some can remain in the
final image (best seen zoomed in). These can be easily removed in a final, manual
parameter editing step, as shown in the supplemental video.

WISE: Whitebox Image Stylization by Example-based Learning 17

5.3 Image Translation on APDrawing

(a) APDrawing
GAN[22] (b) Our method (c) CNN-only (d) Ground truth

Fig. 12: Results on the APDrawing [22] dataset, our method uses XDoG and a
postprocessing CNN. Our method, in contrast to APDrawing Generative Ad-
versarial Networks (GANs)[22,23], often produces more consistent lines e.g., for
the eyes, and does not need any known facial landmarks at both training and
inference time.

18 Lötzsch and Reimann et al.

Fig. 13: In addition to the generated outputs in figure 12, we show the parameter
masks that have been predicted for the first stage of our method (XDoG). See
figure 4 for a plot of the intermediate results after processing with XDoG.

WISE: Whitebox Image Stylization by Example-based Learning 19

bl
ac
kn

es
s

co
nt
ou

r
st
ro
ke

w
id
th

de
ta
ils

A
PD

ra
w

in
g+

+
+

bl
ac

kn
es

s

co
nt

ra
st

br
ig

ht
ne

ss

Fig. 14: Adjusting parameters of the XDoG effect after prediction using our
XDoG+CNN method trained on APDrawing [22]. Each row corresponds to
global changes of one parameter from lowest to highest value in the visual range,
where unedited results (i.e., the predicted parameters) are shown in the middle
column. While the postprocessing CNN reduces the stylistic variance that can
be achieved with XDoG, results main editable vs. results of APDrawingGAN
[22] and also remain stylistically close to the reference. Combining pretrained
GANs such as APDrawingGAN++ [23] with a XDoG effect for postprocessing,
on the other hand, does not yield visually appealing results and results deviate
from the style of the reference, as shown in the last row, thus validating our
integrated training approach.

20 Lötzsch and Reimann et al.

Fig. 15: Our model generalizes to example images drawn from the NPR bench-
mark [17] (not part of APDrawing trainset). Our method retains only salient
lines in the face, abstracting irrelevant details. Furthermore, lines generally flow
consistently without unnatural discontinuities. Our model has been trained on
portraits with uniform background only, thus prediction on images with non-
uniform backgrounds (e.g., images in bottom row) may lead to background arte-
facts in the stylization.

WISE: Whitebox Image Stylization by Example-based Learning 21

5.4 Effect Variants

(a) XDoG variant A (b) Cartoon variant A (c) Watercolor variant A

(d) XDoG variant B (e) Cartoon variant B (f) Watercolor variant B

(g) Oilpaint variant A (h) Oilpaint variant B

Fig. 16: A selection of global parametrization variants of our differentiable effects
are shown. These represent default states of the effect without any parameter
learning applied.

22 Lötzsch and Reimann et al.

References

1. Yoshua Bengio, Nicholas Leonard, and Aaron Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 3

2. Thomas Brox, Rein Van Den Boomgaard, François Lauze, Joost Van De Weijer,
Joachim Weickert, Pavel Mrázek, and Pierre Kornprobst. Adaptive structure ten-
sors and their applications. In Visualization and Processing of Tensor Fields, pages
17–47. 2006. 2

3. Benoit Brummer and Christophe De Vleeschouwer. Natural image noise dataset.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, pages 1777–1784, 2019. 5

4. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 248–255, 2009. 6

5. Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image Style Transfer
Using Convolutional Neural Networks. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2414–2423, 2016. 11

6. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. 6

7. Xun Huang and Serge Belongie. Arbitrary Style Transfer in Real-time with Adap-
tive Instance Normalization. In Proc. IEEE International Conference on Computer
Vision (ICCV), pages 1501–1510, 2017. 6

8. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-Image
Translation with Conditional Adversarial Networks. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1125–1134, 2017. 10

9. Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. In Advances in Neural Information Processing Systems (NIPS), pages
2017–2025, 2015. 2

10. Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses for Real-Time
Style Transfer and Super-Resolution. In Proc. European Conference on Computer
Vision (ECCV), pages 694–711, 2016. 10

11. Henry Kang, Seungyong Lee, and Charles K. Chui. Flow-Based Image Abstraction.
IEEE Transactions on Visualization and Computer Graphics, 15(1):62–76, 2009. 2

12. Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture
for Generative Adversarial Networks. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4401–4410, 2019. 8, 9

13. Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
In Proc. International Conference on Learning Representations (ICLR), 2015. 8

14. Nicholas Kolkin, Jason Salavon, and Gregory Shakhnarovich. Style Transfer by
Relaxed Optimal Transport and Self-Similarity. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 10051–10060, 2019. 11,
12, 13, 14

15. Jan Eric Kyprianidis and Jürgen Döllner. Image Abstraction by Structure Adaptive
Filtering. In Proc. EG UK Theory and Practice of Computer Graphics (TPCG),
pages 51–58, 2008. 2

16. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. In Proc. International Conference
on Medical Image Computing and Computer-assisted Intervention, pages 234–241,
2015. 10

WISE: Whitebox Image Stylization by Example-based Learning 23

17. Paul L. Rosin, Yu-Kun Lai, David Mould, Ran Yi, Itamar Berger, Lars Doyle,
Seungyong Lee, Chuan Li, Yong-Jin Liu, Amir Semmo, Ariel Shamir, Minjung
Son, and Holger Winnemöller. NPRportrait 1.0: A three-level benchmark for non-
photorealistic rendering of portraits . Computational Visual Media, 8(3):445–465,
2022. 4, 8, 11, 15, 20

18. Amir Semmo, Daniel Limberger, Jan Eric Kyprianidis, and Jürgen Döllner. Image
Stylization by Interactive Oil Paint Filtering. Computers & Graphics, 55:157–171,
2016. 4

19. Carlo Tomasi and Roberto Manduchi. Bilateral Filtering for Gray and Color Im-
ages. In Proc. IEEE International Conference on Computer Vision (ICCV), pages
839–846, 1998. 1

20. Holger Winnemöller. XDoG: Advanced Image Stylization with eXtended
Difference-of-Gaussians. In Proc. ACM SIGGRAPH/Eurographics Symposium on
Non-Photorealistic Animation and Rendering (NPAR), pages 147–156, 2011. 8

21. Holger Winnemöller, Sven C Olsen, and Bruce Gooch. Real-Time Video Abstrac-
tion. ACM Transactions On Graphics (TOG), 25(3):1221–1226, 2006. 3

22. Ran Yi, Yong-Jin Liu, Yu-Kun Lai, and Paul L Rosin. APDrawingGAN: Generat-
ing Artistic Portrait Drawings from Face Photos with Hierarchical GANs. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
10743–10752, 2019. 1, 9, 10, 15, 17, 19

23. Ran Yi, Mengfei Xia, Yong-Jin Liu, Yu-Kun Lai, and Paul L Rosin. Line Drawings
for Face Portraits from Photos using Global and Local Structure based GANs. In
Proc. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2020. 17, 19

24. Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
586–595, 2018. 8

	Supplemental Material for WISE: Whitebox Image Stylization by Example-based Learning

