
WISE: Whitebox Image Stylization by
Example-based Learning
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Abstract. Image-based artistic rendering can synthesize a variety of
expressive styles using algorithmic image filtering. In contrast to deep
learning-based methods, these heuristics-based filtering techniques can
operate on high-resolution images, are interpretable, and can be param-
eterized according to various design aspects. However, adapting or ex-
tending these techniques to produce new styles is often a tedious and
error-prone task that requires expert knowledge. We propose a new
paradigm to alleviate this problem: implementing algorithmic image fil-
tering techniques as differentiable operations that can learn parametriza-
tions aligned to certain reference styles. To this end, we present WISE,
an example-based image-processing system that can handle a multitude
of stylization techniques, such as watercolor, oil or cartoon stylization,
within a common framework. By training parameter prediction networks
for global and local filter parameterizations, we can simultaneously adapt
effects to reference styles and image content, e.g., to enhance facial fea-
tures. Our method can be optimized in a style-transfer framework or
learned in a generative-adversarial setting for image-to-image transla-
tion. We demonstrate that jointly training an XDoG filter and a CNN
for postprocessing can achieve comparable results to a state-of-the-art
GAN-based method. https://github.com/winfried-loetzsch/wise

1 Introduction

Image stylization has become a major part of visual communication, with mil-
lions of edited and stylized photos shared every day. At this, a large body of
research in Non-photorealistic Rendering (NPR) has been dedicated to imitat-
ing hand-drawn artistic styles [31,47]. Traditionally, such heuristics-based algo-
rithms [51] for image-based artistic rendering emulate a certain artistic style
using a series of specifically developed algorithmic image processing operations.
Thus, creating new styles is often a time-consuming process that requires the
knowledge of domain experts.

Recently, deep learning-based techniques for stylization and image-to-image
translation have gained popularity by enabling the learning of stylistic abstrac-
tions from example data. In particular, Neural Style Transfer (NST) [22,21] that
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(a) Content/Style (b) WISE / without edits (c) WISE / with local edits

Fig. 1: Example-based effect adjustment. WISE optimizes effect parame-
ters, e.g., of a watercolor stylization effect, to match stylized outputs to a ref-
erence style a. The results b can then be interactively adjusted by tuning the
obtained parameters globally and locally for increased artistic control c3.

transfers the artistic style of a reference image and Generative Adversarial Net-
work (GAN)-based [11,19] methods for fitting style distributions have achieved
impressive results and are increasingly used in commercial applications [1].

Classical heuristics-based filters and filter-based image stylization pipelines,
such as the eXtended difference-of-Gaussians (XDoG) filter [59], cartoon ef-
fect [60], or watercolor effect [2,57], expose a range of parameters to the user
that enable fine-grained global and local control over artistic aspects of the styl-
ized output. By contrast, learning-based techniques are commonly limited in
their modes of control, i.e., NST [6] only offers control over a general content-
style tradeoff. Furthermore, their learned representations are generally not in-
terpretable as a set of design aspects and configurations. Thus, these approaches
often do not meet the requirements of interactive image editing tasks that go
beyond one-shot global stylizations towards editing with high-level and low-level
artistic control [18,14,10]. Additionally, deep network-based methods are often
computationally expensive in both training and inference on high image reso-
lutions [6,24,25]. This further limits their applicability in interactive or mobile
applications [9] and their capability to simulate fine-grained (pigment-based)
local effects and phenomena of artistic media such as watercolor and oil paint.

3 View examples of editing in our supplemental video: https://youtu.be/wIndN7cr0PE

https://youtu.be/wIndN7cr0PE
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Fig. 2: Overview of WISE . Differentiable effects can be adapted to example
data, demonstrated for three use-cases: parametric style transfer (A) optimizes
parameter masks to match a hand-drawn or synthesized stylization target (e.g.,
from NST as in Fig. 1) which enables style transfer results to remain editable
and resolution-independent. Local parameter prediction (B) trains PPNs to pre-
dict parameter masks to adapt the effect to the content (e.g., for facial structure
enhancement as shown here). Combined with a postprocessing CNN, local pa-
rameter prediction can learn sophisticated image-to-image translation tasks such
as learning hand-drawn sketch-styles (C).

To counterbalance these limitations, this work aims to combine the strengths
of heuristics-based and learning-based image stylization by implementing algo-
rithmic effects as differentiable operations that can be trained to learn filter-
based parameters aligning to certain reference styles. The goal is to enable (1)
the creation of complex, example-based stylizations using lightweight algorith-
mic approaches that remain interpretable and can operate on very high image
resolutions, and enable (2) the editing with artistic control on a fine-granular
level according to design aspects. To this end, we present WISE , a whitebox
system for example-based image processing that can handle a multitude of styl-
ization techniques in a common framework. Our system integrates existing al-
gorithmic effects such as XDoG-based stylization [59], cartoon stylization [60],
watercolor effects [2,57], and oilpaint effects [50], by creating a library of dif-
ferentiable image filters that match their shader kernel-based counterparts. We
show that the majority of filters (e.g., bilateral filtering) can be transformed into
auto-differentiable formulations, while for the remaining filters, gradients can be
approximated (e.g., for color quantization). Using our framework, effects can be
adapted to reference styles using popular, deep network-based image-to-image
translation losses. We train exemplary effects using both NST and GAN-based
losses and show qualitatively and quantitatively that the results are comparable
to state-of-the-art deep networks while retaining the advantages of filter-based
stylization. To summarize, this paper contributes the following:

1. It provides an end-to-end framework for example-based image stylization us-
ing differentiable algorithmic filters. Fig. 2 shows an overview of the system.

2. It demonstrates the applicability of style transfer-losses to adapt stylization
effects to a reference style (Fig. 1 and Fig. 2 A). The results remain editable
and resolution-independent.



4 Lötzsch and Reimann et al.

3. It shows that both global and local parametrizations of stylization effects
can be optimized as well as predicted by a parameter prediction network
(PPN). The latter can be trained on content-adaptive tasks (Fig. 2 B).

4. It demonstrates that filters can be trained in combination with CNNs for
improved generalization on image-to-image translation tasks. Combining the
XDoG effect with a simple post-processing Convolutional Neural Network
(CNN) (Fig. 2 C) can achieve comparable results to state-of-the-art GAN-
based image stylization for hand-drawn sketch styles, but at much lower
system complexity.

2 Related Work

Heuristics-based Stylization. In NPR, image-based artistic rendering deals with
emulating traditional artistic styles, using a pipeline of rendering stages [31,47,51].
Commonly, edge detection and content abstraction are important parts of such
pipelines. The XDoG filter [59,60] is an extended version of the Difference-of-
Gaussians (DoG) band-pass filter, and can be used to create smooth edge styliza-
tions. Furthermore, edge-aware smoothing filters such as bilateral filtering [56] or
Kuwahara filtering [30] can abstract image contents, and can be combined with
image flow to adapt the results to local image structures [32,34]. These tech-
niques can be found in heuristics-based effects such as cartoon stylization [60],
oil-paint abstraction [52] and image watercolorization [2,57], each consisting of a
series of rendering stages such as image blending, wobbling, pigment dispersion
and wet-in-wet stylization. For a comprehensive taxonomy of techniques, the
interested reader is referred to the survey by Kyprianidis et al . [31].

These effects are typically parameterized globally, and can be further ad-
justed within pre-defined parameter ranges, or locally on a per-pixel level using
parameter masks [52]. In this work, we implement variants of the XDoG, car-
toon filtering, and watercolor pipeline in our framework using auto-differentiable
formulations of each rendering stage. At runtime, users choose between one of
these different effect pipelines; and results are generally achieved by optimizing
the exact chain of filters as introduced in [59,60,2,57,50].

Deep Learning-based Methods. With the advent of deep learning, CNNs for image
generation and transformation have led to a range of impressive results.

In NST, first introduced by Gatys et al . [6], the stylistic characteristics of
a reference image are transferred to a content image by matching deep feature
statistics using an optimization process. Fast feed-forward networks have been
trained to reproduce a single [22] or even arbitrarily many styles [17,12,41]. Fur-
thermore, there have been efforts to increase controllability of NSTs, e.g., by
control over color [7], sub-styles [45] or strokes [20,44], however, the represen-
tations are not interpretable. Recently, style transfer has been formulated as a
neurally-guided stroke rendering optimization approach [29], that retains inter-
pretability, however, is slow to optimize. We show that our method can obtain
comparable results to a state-of-the-art NST [27], while retaining interactive
editing control.
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GANs, first introduced by Goodfellow et al . [11], learn powerful generative
networks that model the input distribution. They have been widely used for
conditional image generation tasks, with both paired [19] and unpaired [65]
training data. In the stylization domain, it has found applications for collection
style transfer [3,49], cartoon generation [4,55], and sketch styles [62]. However,
domain-specific applications often require sophisticated losses and multiple net-
works to prevent artifacts [4,63]. We show that our differentiable implementation
of the XDoG filter can be trained as a generator network in a GAN frame-
work and can produce comparable sketches to state-of-the-art (CNN-based)
GANs [62,63].

Learnable Filters. While the previous end-to-end CNNs deliver impressive re-
sults, they are limited in their output resolution. A few recent methods have
proposed training fast algorithmic filters to operate efficiently at high resolu-
tions. Getreuer et al . [8] introduce learnable approximations of algorithmic im-
age filters, such as of the XDoG filter. At run-time, a linear filter is selected
per image pixel according to the local structure tensor; filters can be combined
in pipelines for image enhancement [5]. Gharbi et al . [9] train a CNN to pre-
dict affine transformations for bilateral image enhancement, e.g., to approximate
edge-aware image filters or tone adjustments. The transform filters are predicted
at a low resolution and then applied in full resolution to the image. “Exposure”
framework [16] combines learning linear image filters with reinforcement learn-
ing, where an actor-critic model decides which filters to include to achieve a
desired photo enhancement effect.

These methods have in common that they learn several simple, linear func-
tions to approximate image processing operations [8,61,9,16,39]. Our framework
consists of pipelines of differentiable filters as well. However, in contrast to pre-
vious work, we make a variety of heuristics-based stylization operators differ-
entiable and learn to predict their parameterizations. Thereby, sophisticated
stylization effects (e.g., those found in stylization applications) can be ported
and directly used in our framework.

3 Differentiable Image Filters

Heuristics-based stylization effects consist of pipelines of image filtering oper-
ations. To compute gradients for effect input parameters, all image operations
within the pipeline are required to be differentiable with respect to their pa-
rameters and the image input. Gradients throughout the pipeline can then be
obtained by applying the chain rule. Fig. 3 outlines the gradient flow from a
loss function to the effect parameters by the cartoon pipeline example, gradients
for parameters can be obtained both globally as well as locally using per-pixel
parameter masks.

In previous works, individual operations in such pipelines are typically im-
plemented as shader kernels for fast GPU-based processing. To achieve an end-
to-end gradient flow, we implement these operations in an auto-grad enabled
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Fig. 3: Exemplary differentiable effect pipeline. Shown for the cartoon ef-
fect proposed by Winnemöller et al . [60]. Gradients are backpropagated from the
loss to the filter parameter masks. In the effect, colors are first adjusted based
on parameters such as saturation S, contrast C or gamma γ, and then, using an
Edge Tangent Flow (ETF) [23], orientation-aligned bilateral filtering [32], and
XDoG [59] are computed. Additionally, the image is quantized with respect to
the number of bins b and softness s.

framework, the implemented filtering stages are listed in Tab. 1. Point-based
and fixed-neighbourhood operations such as color space conversions, structure
tensor computation [32], or DoG [59] can generally be converted into differ-
entiable filters by transforming any kernelized function into a sequence of its
constituent auto-differentiable transformations. The exception to this are func-
tions which are inherently not differentiable, such as color quantization, and
which require the approximation of a numeric gradient. An example for numeric
gradient approximation of color quantization is shown in the supplemental mate-
rial. Structure-adaptive neighborhood operations, such as the orientation-aligned
bilateral filter and flow-based Gaussian smoothing filter, iteratively determine
sampling locations based on the structure of the content (often oriented along a
flow field). To preserve gradients and make use of the in-built fixed-neighborhood
functions of auto-grad enabled frameworks, per-pixel iteration is transformed
into a grid-sampling operation where neighborhood values are accumulated into
a new dimension with size D which represents the expected maximum kernel
neighbourhood. A structure-adaptive filter transformation by example of the
orientation-aligned bilateral filter is shown in the supplementary material.

Implementation Aspects. We implement differentiable filters in PyTorch and
create reference implementations of the same effects using OpenGL shaders.
The learnability of each effect parameter is validated in a functional bench-
mark (shown in supplemental material) by optimizing the differentiable effect to
match reference effects with randomized parameters. At inference time, OpenGL
shaders can be interchangeably used with the differentiable effect, and can be
efficiently executed on high-resolution images using parameters predicted on low-
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Table 1: Differentiable filters by type and effect. Filters can be classified by
their sampling approach, which is either point-based (PB) or in a fixed neigh-
borhood (FN) or structure-adaptive neighborhood (SN). Some filters are non-
differentiable and require numerical gradient (NG) approximations for training.

Filtering operation Differentiable Car- Water- Oil-
Filter Type toon color paint

Anisotropic Kuwahara [34] SN ✓

Bilateral [56] FN ✓ ✓

Bump Mapping / Phong Shading [42] FN ✓

Color Adjustment PB ✓ ✓ ✓

Color Quantization [60] PB,NG ✓

Flow-based Gaussian Smoothing [32] SN ✓ ✓ ✓

Gaps [38] FN ✓

Joint Bilateral Upsampling [28] SN ✓

Flow-based Laplacian of Gaussian [33] SN ✓

Image Composition [43] PB ✓

Orientation-aligned Bilateral [32] SN ✓ ✓

Warping / Wobbling [2] FN ✓

Wet-in-Wet [57] SN ✓

XDoG [59] SN ✓ ✓ ✓

resolution images. At training time, memory usage of differentiable filters can
be reduced by controlling their kernel-size (shown in supplemental material).

4 Parameter Prediction

With the introduced differentiable filter pipelines, parameters can be optimized
using image-based losses. To generalize to unseen data, we explore Parameter
Prediction Networks (PPNs) that are trained to predict global parameters or
spatially varying (local) parameters.

4.1 Parameter Prediction Networks

Global Parameter Prediction. We construct a PPN that predicts the effect pa-
rameters of a stylized example image, given both the stylized and source image.
Thereby, the network is trained to effectively reverse-engineer the stylization
effect. During training, gradients are back-propagated through the effect, the
parameters, and finally to the PPN. Formally, let I denote the input image, T
the target image, O(·) the differentiable effect, PG(·) the PPN network. The loss
for the global PPN is computed using an ℓ1 image space-based loss as:

Lglobal = ∥O(I, PG(I)))− T∥1 (1)

Our global PPN architecture consists of a VGG backbone [53] that extracts
features of the input and stylized image and computes layer-wise Gram matrices



8 Lötzsch and Reimann et al.

Table 2: Global PPN loss functions. The PPNs are trained with different
loss functions on the NPR benchmark [48]. Networks trained in parameter space
use reference parameters as the loss signal directly. We measure the Structural
Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR)

Loss domain SSIM PSNR Parameter loss

Parameter space ℓ1/ℓ2 0.738/0.737 12.530/12.927 0.158/0.162
Image space ℓ1/ℓ2 0.780/0.764 13.875/13.286 0.183/0.190

to encode important style information [6]. The accumulated features are passed
to a multi-head module to predict the final global parameters. We found this
network architecture to perform superior against other common architecture
variants, please refer to the supplementary material for an ablation study and
details on the architecture.

Local Parameter Prediction. While the global PPN can predict settings of sim-
ilar algorithmic effects, real-world, hand-drawn images often vary significantly
based on the local content, which cannot be modeled by a global parameteriza-
tion. Therefore, we construct a PPN to predict local parameter masks. We use
a U-Net architecture [46] for mask prediction at input resolution, where each
output channel represents a parameter. Gradients are back-propagated to the
PPN through the differentiable effects for all parameter masks.

For training, a paired data GAN approach is used, where a patch-based
Pix2Pix discriminator [19] matches the distribution of patches in the reference
image and an additional weighted ℓ1 image space loss enforces a more strict
pixel-wise similarity. Formally, let D(·) denote the discriminator, LTV (·) the
total variation regularizer [22] to enforce smooth parameter masks, and PL(·)
the local PPN which acts as the generator network. The final loss L for the PPN
generator is computed as:

L = E
[
α log(1−D(I,O(I, PL(I))))

+ β∥O(I, PL(I))− T∥1 + γLTV (PL(I))
] (2)

4.2 PPN Experiments

We conduct several experiments to validate our approach for global and local
parameter prediction.

Global Parameter Prediction. We compare the loss function and loss space of
global PPNs in (Tab. 2). We find that while directly predicting in parameter
space (without obtaining gradients from the effect) yields closer parameter val-
ues, the highest visual accuracy is achieved using an ℓ1 image space-based loss.
This validates the usefulness of the differentiable effect being part of the train-
ing pipeline. Global PPNs can accurately match reference stylizations created by
the same effect, as shown in Fig. 4b. Furthermore, they can approximate similar
hand-drawn styles, albeit with significant local deviations, as shown in Fig. 4e.



WISE: Whitebox Image Stylization by Example-based Learning 9

(a) Source (b) Predicted (c) Reference (d) Source (e) Predicted (f) Reference

Fig. 4: Predictions using the global PPN for XDoG. The stylized reference
c is synthetic (generated using the reference XDoG implementation), while the
reference f is hand-drawn, taken from APDrawing [62].
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Fig. 5: Local PPN results. Networks are trained on CelebAMask-HQ [35] to
generate selective enhancements by predicting parameter masks. The default
result is created by a global parameter configuration, while the shown predicted
parameter masks create the content-adaptive result.

Content-adaptive Effects. Using the previously described approach for local PPN
training, we demonstrate its applicability to several common problems that are
often present in purely algorithmic image-stylization techniques. We consider
three tasks to improve stylization quality: (1) highlighting facial features, for
example by increasing contours at low-contrast edges such as the chin (Fig. 5a),
(2) selectively reducing details such as small wrinkles in the face (Fig. 5b), and (3)
background removal (refer to supplemental material). We use the CelebAMask-
HQ dataset [35] for training, which consists of 30,000 high-resolution face images
and segmentation masks for all parts of the face. For the above tasks, we each
create a synthetic training dataset by stylizing images using a reference effect
and adjusting its parameters for certain parts of the face (obtained from dataset
annotations) according to the task, e.g., increasing the amount of contours in the
chin area. In Fig. 5 trained PPN networks are evaluated by plotting the predicted
local parameter masks together with the generated stylizations. It shows that the
networks learn to predict parameter masks for the relevant regions accurately
solely by observing pixels without additional supervision.
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(a) Content image (b) Style image (c) Stylized result (d) Locally edited

Fig. 6: Parametric style transfer. Effect parameters are optimized (watercolor
effect in top row, oilpaint effect in bottom row) to match the stylistic reference
image b. Users can then interactively edit the result c by adjusting resulting
parameter masks. In the top row, the saturation parameter mask is adjusted to
highlight foreground objects d. In the bottom row, the oilpaint-specific bump
scale and flow-smoothing are adjusted in d to make the background appear to
be painted wet-in-wet with long brushstrokes.

5 Applications

Using our framework for global and local parameter prediction for differentiable
algorithmic pipelines, example-based stylization with closely related references
is made possible. To adapt to real-world, more diverse example data, our frame-
work can be integrated with existing stylization paradigms. In the following, we
demonstrate our approach for the task of (statistics-based) style transfer recon-
struction and GAN-based image-to-image translation based on the APDrawing
dataset [62].

5.1 Style Transfer

We investigate the combination of iterative style transfer and algorithmic ef-
fects. We use Style Transfer by Relaxed Optimal Transport and Self-Similarity
(STROTSS) by Kolkin et al . [27] to create stylized references for our effect. We
subsequently try to recreate the style transfer result with our algorithmic effects
by optimizing parameter masks (Fig. 6). For this, a ℓ1 loss in image space is
again used to match effect output and reference image.

Optimization. We run the style transfer algorithm [27] for 200 steps to create a
stylized reference with a resolution of 1024 × 1024 pixels. The local parameter
masks are then optimized using 1000 iterations of Adam [26] and a learning rate
of 0.1. The learning rate is decreased by a factor of 0.98 every 5 iterations starting
from iteration 50. To avoid the generation of artifacts in parameter masks, we
smooth all masks at increasing iterations (10, 25, 50, 100, 250, 500) using a
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Table 3: Comparison of our method to STROTSS [27] for style loss LS , content
loss LC , and the ℓ1 difference between respective results. We test against in-
domain style images and against a set of common (arbitrary domain) NST styles.
In each case, results are averaged over 10 styles and NPRB [48] as content4

XDoG Cartoon Watercolor Oilpaint
style domain: bw-drawing cartoon watercolor common oilpaint common

LS
STROTSS 0.340 0.289 0.351 0.39 0.209 0.39
Our results 0.246 0.406 0.359 0.42 0.384 0.52

LC
STROTSS 0.099 0.094 0.081 0.036 0.037 0.036
Our results 0.172 0.148 0.092 0.034 0.023 0.033

ℓ1 Difference 0.188 0.136 0.007 0.021 0.036 0.039

Gaussian filter. Alternatively to image-space matching, parameters can also be
directly optimized using NST [6] losses LS + LC , however this often fails to
transfer more complex stylistic elements (shown in the supplemental material).

Results. As Tab. 3 shows, parametric style transfer works better for effects that
have a high expressivity and are closer to hand-drawn styles, such as the water-
color or oilpaint, compared to more restricted effects such as XDoG or cartoon.
After the generation of local parameter masks, the parameters can be refined
by the user as shown in Fig. 6d. By optimizing parameters, we obtain an in-
terpretable “whitebox” representation of a style that, in contrast to current
pixel-optimizing NSTs [6,22,27], retains controllability according to artistic de-
sign aspects. Furthermore, our method is resolution independent, i.e., parameter
masks can be optimized at lower resolutions and then scaled up to high resolu-
tions for editing. In Fig. 6d (bottom row) the effect is applied at 4096 × 4096
pixels, while current style transfers are mostly memory-limited to much lower
resolutions. We further compare matching performance of in-domain styles with
a set of common NST styles and observe that the ℓ1 difference (Tab. 3) is only
marginally higher for the latter. Thus, highly parameterized effects such as water-
color or oilpaint can emulate any out-of-domain style by per-pixel optimization
of parameter combinations reasonably well. However, as this creates highly frag-
mented parameter masks, a tradeoff between generalizability and interpretability
of masks can be made using a weighted total variation-loss.

5.2 GAN-based image-to-image translation with PPNs

For learning a style distribution, i.e., the characteristics of an artistic style over
a larger collection of artworks, GAN-based approaches have achieved impressive
results [4,58,62]. We investigate training PPNs in a GAN-setting for image-to-
image translation. While the global and local PPNs discussed in Sec. 4 can match
in-domain styles very well (Sec. 4.2), they cannot produce local image structures
that are not synthesizable by their constituent image filters. Artistic reference

4 Exemplary style images and results in suppl. material.
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(a) Input (b) APDraw.
-GAN [62]

(c) APDraw-
ing++ [63]

(d) Ours -
CNN-only

(e) Ours -
XDoG+CNN

(f) Ground
truth

Fig. 7:Results on APDrawing.While APDrawing GAN b and APDrawing++
GAN c can produce inconsistent lines, our proposed method e generally produces
flow-consistent lines. The differentiable filter in our approach is important for
consistent quality, as solely using an image translation CNN [22] often produces
local dithering artefacts (upper row) and patchy features (lower row) d.

styles, however, often contain stylistic elements that have not been modeled in
the heuristics-based filter - this holds especially true for more simple effects such
as xDoG. For reference styles that are stylistically close to such effects (e.g.,
xDoG), such as line-drawings, we hypothesize that combining our filter pipeline
with a lightweight CNN-based post-processing operation and learning them end-
to-end can close the domain gap while retaining the positive properties of the
filter parametrization and beeing computationally efficient.

Dataset. For our experiment, we select the APDrawing [62] dataset which con-
sists of closely matching photos and their hand-drawn stylistic counterparts. Its
hand-drawn images are reasonably similar to the XDoG results, while still con-
taining many stylistic abstractions that cannot be emulated solely by the XDoG.
We hypothesize, that re-creating such an effect entails both edge detection and
content abstraction, which could be performed by our differential XDoG pipeline
combined with a separate convolution network for content abstraction.

APDrawing contains a set of 140 portrait photographs along with paired
drawings of these portraits. The GAN-based local PPN approach introduced
in Sec. 4 is used to train on this paired dataset, where solely the generator is
extended using a CNN N(·) to post-process the XDoG output, i.e., following
Eq. (2) our generator now combines PPN, effect and CNN: N(O(I, PL(I))).

Architecture. We investigate the efficacy of each component in our proposed
approach for APDrawing in Tab. 4. Following Yi et al . [63], we measure the
Fréchet Inception Distance (FID) score [15] and Learned Perceptual Image Patch
Similarity (LPIPS) [64] to the test set. We train for 200 epochs and otherwise use
the same hyperparameters as Pix2Pix [19]. We observed that using the ResNet-
based architecture for image translation introduced by Johnson et al . [22] works
best for the post-processing CNN. Furthermore integrating the XDoG in the
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pipeline improves the results vs. a convolutional-only pipeline. Note that this
combination of algorithmic effects and CNNs in a training pipeline is only made
possible by our introduced approach for end-to-end differentiable filter pipelines
and PPNs. Omitting the PPN and using fixed parameters for XDoG significantly
degrades the results, which validates the integrated training of filter and CNN.
Further, we observe that training with XDoG as a postprocessing instead of as
a preprocessing step does not converge. All architecture choices are extensively
evaluated in an ablation study, please refer to the supplemental material.

Table 4: Our results on APDrawing [62]

PPN XDoG CNN FID LPIPS
✗ ✗ U-Net 71.26 0.322
✗ ✗ ResNet 62.44 0.275
✗1 ✓ U-Net 75.40 0.329
✗1 ✓ ResNet 71.56 0.305
✓ ✓ U-Net 89.93 0.366
✓ ✓ ResNet 60.55 0.285

APDrawing GAN 62.142 0.2912

APDrawing++ 54.40 0.2582

Train vs. Test 49.72 -
1 a fixed parameter preset is used
2 results obtained from [62][63]

Results. While the CNN alone
(without XDoG) already achieves
good FID and LPIPS scores, we
show in Fig. 7 that it creates ma-
jor artifacts especially around eye-
brows and eyes, which are not
detected by those metrics. Com-
pared to the APDrawing GAN
approach by Yi et al . [62], our
model improves the FID score
(Tab. 4). The state-of-the-art AP-
Drawing++ [63] improves on these
metrics and quantitatively per-
forms better than our model, how-
ever qualitatively it can suffer from
artifacts in small structures such
as the eyes (Fig. 7c) whereas our
approach leads to more consistent
lines. We note that their approach
consists of a sophisticated combi-
nation of several losses and task-specific discriminators that require facial land-
marks to train multiple local generator networks for facial features such as eyes,
nose, and mouth separately. This limits their generalizability to other datasets,
while our approach, on the other hand, represents a general setup for image-
to-image translation consisting of a globally trained CNN and a simple effect,
making it applicable to any paired training data without further annotation
requirements.

6 Discussion

Applicability. In the previous sections, we have demonstrated the applicability of
differentiable filters to several example-based stylization tasks using four estab-
lished heuristics-based filter pipelines. Their constituent image filters (Tab. 1)
form a common basis of many image-based artistic rendering approaches [31]. We
expect that other filtering-based effects, such as pencil-hatching [37], or stippling
[54], can be transferred to our framework with relative ease due to their pipeline-
based, GPU-optimized formulations. Stroke-based rendering approaches, on the
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other hand, are typically optimized globally [40] or locally [13], and are thus chal-
lenging to transform into differentiable formulations. However, a recent approach
by Liu et al . [36] has shown that strokes can be predicted in a single feedforward
pass of a CNN, which could be regarded as a complementary approach.

Limitations. Our PPN-based approaches make use of a paired data training
regime. While paired data can be synthetically generated for content-adaptive
effects aiming at solving filter-specific problems, datasets with paired real-world
paintings are subject to limited availability. As our training approach follows
Pix2Pix GAN [19], future work extending the method to train with unpaired
training losses, such as cycle-consistency losses [65], could alleviate this limita-
tion. An inherent limitation of predicting parameters in comparison to directly
predicting pixels (as with convolutional GANs), remains the constraint of only
being able to produce styles that lie in the manifold of achievable effects of the
underlying image filters. While this can be mitigated using a post-processing
CNN, this represents a trade-off with respect to interpretability and range of
low-level control (we examine this aspect in the supplemental material). On the
other hand, our parametric style transfer is able to match arbitrary styles when
optimizing highly parameterized effects such as watercolor. Training a PPN with
such an effect on a large dataset, e.g., using unpaired training, could similarly
already have sufficient representation capability without postprocessing CNNs.

7 Conclusions

In this work, we propose the combination of algorithmic stylization effects and
example-based learning by implementing heuristics-based stylization effects as
differentiable operations and learning their parametrizations. The results show
that both optimization of parameters, e.g., to achieve style transfers, and their
global and local prediction, e.g., for content-adaptive effects, are viable ap-
proaches for example-based algorithmic stylizations. Our experiments demon-
strate that our approach is especially suitable for applications that require fast
adaptation to new styles while retaining full artistic control and low computation
times for high image resolutions. Furthermore, stylizations beyond the filters’ ab-
straction capabilities are achieved by adding convolutional post-processing. This
approach can generate results on-par with state-of-the-art CNN-based meth-
ods. For future research, learning the composition of filters as building blocks
of a generic algorithmic effect pipeline would allow for seamless integration of
user control and example-based stylization without the limitation to a specific
stylization technique.
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18 Lötzsch and Reimann et al.

49. Artsiom Sanakoyeu, Dmytro Kotovenko, Sabine Lang, and Björn Ommer. A Style-
Aware Content Loss for Real-time HD Style Transfer. In Proc. European Confer-
ence on Computer Vision (ECCV), 2018. 5
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