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In supplementary material, we conduct additional experiments, including a
comparison to additional baselines, an ablation study, and analysis of individ-
ual modules. Also, we include implementation details and additional qualitative
results to help further understand of our framework.

1 Qualitative Comparison with Additional Baselines

Fig. 1. Qualitative comparison with HairFIT when a source and a target hair have
similar poses. Note that we blur the face of the images from the K-hairstyle dataset
due to the privacy issue.

As stated in our main paper, HairFIT [1] proposes a pose-invariant hairstyle
transfer model via flow-based hair warping and high-quality multi-view datasets.
Also, StyleFusion [3] is a recently-proposed generative model which is capable
of editing local features of an image (e.g., hairstyle in a facial image) by learn-
ing disentanglement of semantic regions in the StyleGAN [4] latent space. We
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Fig. 2. Qualitative comparison with HairFIT when a source and a target hair have
different poses. The last two columns present zoomed-in regions of interest, each cor-
responding area indicated in the third and fourth columns. (Best viewed in color.) The
second last column and the last column contain regions of hair texture and occluded
regions in the source, respectively. Note that we blur the face of the images from the
K-hairstyle dataset due to the privacy issue.

conducted additional qualitative evaluation to demonstrate our superiority over
HairFIT and StyleFusion.

First, we compare our model with HairFIT. We trained HairFIT in the same
way described in the original paper and utilized the K-hairstyle dataset [6]. The
implementation codes and the dataset are provided by the authors of HairFIT.
K-hairstyle [6] includes 500,000 high-resolution multi-view hairstyle images with
more than 6,400 identities. Following HairFIT, we filtered the images to remove
the ones whose hairstyle is significantly occluded, or whose face is extremely
rotated. The training set consists of 37,602 images with 4,291 identities, and the
test set contains 4,309 images with 498 identities. We cropped each image based
on its hair and face segmentation mask and resized the images into 256 × 256
for a fair comparison. For the embedding step of our framework, we trained
StyleGAN2 [5] with the same dataset before the inference.

Fig. 1 and Fig. 2 present the results with similar poses and with large pose
differences, respectively. Fig. 1 illustrates that HairFIT achieves comparable per-
formance to ours when a target hair is well aligned with a source image. However,
according to Fig. 2, HairFIT produces unrealistic outputs where a source and a
target hair have different poses. To be specific, HairFIT could not preserve the
texture of straight strands of the target hairstyles, as shown in the fifth column
of Fig. 2. Moreover, HairFIT inpaints occluded regions, such as cheeks next to
hair, neck, and shoulders, of a source image with undesirable blurry artifacts, as
in the last column of Fig. 2.
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Fig. 3. Qualitative comparison with StyleFusion.

Ablated
Version

Target Hair
Alignment

Semantic Label of

Occlusion in Sobj
src

winpaint
src

Optimization
FID↓

(a) ✗ ✗ in Blending 43.37
(b) ✓ ✗ in Blending 39.68
(c) ✓ ✓ in Blending 32.69
Ours ✓ ✓ in Source Inpainting 18.02

Table 1. Quantitative comparison with the ablated versions of our framework. (a),
(b), and (c) indicate each ablated version, respectively.

Additionally, we conduct a qualitative comparison with StyleFusion. We im-
plemented the model with the official codes and utilized FFHQ dataset [4] for
the comparison. Following the approach proposed in StyleFusion, we edit the
‘hair’ attribute in the StyleGAN2 latent space to perform hairstyle transfer. As
in Fig. 3, StyleFusion is not shown to properly preserve the detailed textures as
well as shapes of the target hairstyle. We speculate that the entangled attributes
in the latent space (i.e., hair and inner face) prevent the model from producing
fine details of the hair.

2 Additional Ablation Study

To present the advantage of each step in our framework, we conduct addi-
tional quantitative and qualitative ablation studies using the FFHQ dataset.
For the quantitative evaluation, we measure the fréchet inception distance (FID)
score [2].

Starting from the embedding and blending step only, we gradually add each
step to compare the corresponding results. In Table 1 and Fig. 4, we perform
only the embedding and blending step in (a), append the target hair alignment
step in (b), and add a semantic label of occluded regions to Sobj

src as a guide for the
source inpainting in (c). Lastly, in the last row, we include the source inpainting
step, an independent optimization step for inpainting, which indicates our full
framework. Note that the source inpainting of (a), (b), and (c) is performed in
the blending step, not in the independent source inpainting step.
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Fig. 4. Qualitative comparison with the ablated versions of our framework using the
FFHQ dataset. (a), (b), and (c) indicate each ablated version, respectively.

According to Table 1, the FID score gradually decreases as we add each step
of our framework. Since (a) does not have the target hair alignment step and a
proper guide for the source inpainting, the corresponding outputs show dissatis-
fying quality. The third column of Fig. 4 illustrates the results with misaligned
hair and unrealistic occlusion inpainting. Although (b) achieves the improved
FID score with the aid of the target hair alignment step, source occlusions of the
outputs are filled with unnatural textures, as presented in the fourth column of
Fig. 4. Since a lack of semantic label of occluded regions in Sobj

src cannot provide
a proper guide for the source inpainting, (b) allows the occluded regions to be
inpainted with random undesirable textures. On the other hand, (c) produces
the results with advanced quality, especially in the regions of source occlusion,
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Fig. 5. (a) Visual comparison with InterFaceGAN on the alignment module and (b)
qualitative comparison with baselines equipped with our alignment module.

with an appropriate assist of Sobj
src. However, the fifth column of Fig. 4 indicates

that the final outputs include regions inpainted with undesirable colors or tex-
tures. This is because the source inpainting, i.e., the optimization of winpaint

src , is
conducted simultaneously with the optimization of a blending weight wweight in
blending step.

To address this issue, we added an independent winpaint
src optimization step

only for source inpainting in our final framework, which achieves superior perfor-
mance both quantitatively and qualitatively. The last column of Fig. 4 presents
the results of our full framework with a superior quality of target hair alignment
and occlusion inpainting compared to other configurations.

3 Analysis of Individual Modules

In this section, we further analyze each module of our framework. First, we con-
duct an additional evaluation on the target hair alignment module (HA). As a
baseline, we adopt InterFaceGAN [7] which has the capability of aligning the
target pose similar to a source via latent vector interpolation. Fig. 5(a) demon-
strates the qualitative result on alignment, where the target hair is manipulated
to show the same objective pose. The objective pose is selected by randomly
interpolating the target hair along the pose boundary of InterFaceGAN. Inter-
FaceGAN shows high performance on pose alignment but inappropriately alters
the target hairstyle. In contrast, our model properly produces a pose-aligned
image while maintaining the target hair details.

Next, we evaluate the rest of our modules except for HA, by combining HA
with the baselines: LOHO and Barbershop. To this end, we perform a user study
with 20 graduate students, to compare 20 images generated by three different
configurations: HA + LOHO, HA + Barbershop, and ours. For each pair, a
participant is asked to select a top-1 sample with two criterion: (1) preservation
of delicate features of a target hair and (2) inpainting quality against source
occlusion. The study results show that 71% and 63% of our method results
were selected as the top-1 sample for each criteria, respectively. Fig. 5(b) shows
qualitative examples appeared in the user study. As can be seen, our model
visually outperforms the baselines by successfully preserving the texture and
shape of a target hair.
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Fig. 6. Visualization of results from each step in our framework.

4 Implementation Details

The optimization step size of embedding W+, embedding FS, target hair align-
ment, source inpainting, and blending are 1,100, 250, 100, 140, and 400, respec-
tively. In the target hair alignment and blending step, we set all lambdas of the
losses as 1.

The optimization is conducted on a single GeForce RTX 3090 GPU and it
requires 10GB GPU memory. For the inference time, the embedding step takes
less than 2 minutes per image, and all the other steps take 78 seconds on average
in total.

5 Additional Qualitative Results

First, to further understand our framework, we visualize an example qualitative
result with its intermediate outputs from each step in Fig. 6. To be specific,
given the source image Isrc and the target hair image Itrg, Iwtrg

, Iwsrc
, and

IFSsrc are the images reconstructed from the embedded latent codes wtrg, wsrc,
and FSsrc obtained in the embedding step. Also, Iwalign

trg
is the aligned target hair

image generated from walign
trg obtained in the target hair alignment step. Then,

in the source inpainting step, we first create an objective label Sobj
src for source

inpainting based on Skeep
src from Isrc and Salign

trghair
from Iwalign

trg
. By optimizing

wsrc to follow Sobj
src , we obtain inpainted source latent code winpaint

src , which is
visualized in Iwinpaint

src
. Finally, the final output Î is generated via the blending

step, where we blend walign
trg and other features in wsrc and winpaint

src .
Additionally, Fig. 7 presents additional qualitative results with FFHQ dataset.

We transfer various target hairstyles on the first row of Fig. 7 to each of the source
images in the first column of Fig. 7.
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Fig. 7. Additional qualitative results of our framework with the FFHQ dataset.
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