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Abstract. Editing hairstyle is unique and challenging due to the com-
plexity and delicacy of hairstyle. Although recent approaches signifi-
cantly improved the hair details, these models often produce undesirable
outputs when a pose of a source image is considerably different from
that of a target hair image, limiting their real-world applications. Hair-
FIT, a pose-invariant hairstyle transfer model, alleviates this limitation
yet still shows unsatisfactory quality in preserving delicate hair textures.
To solve these limitations, we propose a high-performing pose-invariant
hairstyle transfer model equipped with latent optimization and a newly
presented local-style-matching loss. In the StyleGAN2 latent space, we
first explore a pose-aligned latent code of a target hair with the detailed
textures preserved based on local style matching. Then, our model in-
paints the occlusions of the source considering the aligned target hair and
blends both images to produce a final output. The experimental results
demonstrate that our model has strengths in transferring a hairstyle un-
der larger pose differences and preserving local hairstyle textures. The
codes are available at https://github.com/Taeu/Style-Your-Hair.

Keywords: Hairstyle transfer; Latent optimization; Conditional image
generation.

1 Introduction

With the advance of conditional generative adversarial networks (GANs) [9,19,13],
editing facial attributes has drawn great attention and shows a promising result
on editing multiple attributes. Despite the success, modifying strongly correlated
facial attributes is still challenging, often beyond the capacity of existing editing
models. In this paper, we focus on hairstyle editing, which aims at transferring a
target hairstyle to a source image, proposing high-performance neural networks
to solve the problem. Hairstyle editing is similar to that of a facial attribute,
but it has unique, challenging aspects: (1) Due to the hairstyle’s complexity and
delicacy, preserving its strands given an arbitrary hairstyle is highly demanding.
(2) Transferred hairstyle requires to be exactly fitted to a given source image.

https://github.com/Taeu/Style-Your-Hair
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Fig. 1. Our model produces more realistic results compared to LOHO [21] and Bar-
bershop [33] even with a large pose difference between a source and a target hair.

These challenges make the previous approaches for editing the specified facial
attributes less suitable for this problem.

Recent solutions for hairstyle transfer address the problem with the power
of a pre-trained image generator. For example, LOHO [21] and Barbershop [33]
largely enhance the visual quality of the generated images via latent optimization
based on StyleGAN2 [15]. However, these approaches produce undesirable out-
puts (See Fig. 1) when handling a target and source image pair with a significant
pose difference.

To the best of our knowledge, HairFIT [6] is the only work to address the
pose difference issue between a source and target image. HairFIT presents a pose-
invariant hairstyle transfer model where a target hairstyle is aligned to a source
image pose using a flow-based warping module trained on multi-view datasets
such as VoxCeleb [18] and K-hairstyle dataset [16]. Although its attempt, Hair-
FIT requires a high-quality multi-view hairstyle dataset during training, and it
falls behind state-of-the-art models [21,33] in light of hair preserving capacity.

In response to these limitations, we present a framework that performs a
high-quality pose-invariant hairstyle transfer based on latent optimization with-
out multi-view dataset. Specifically, given a source and a target hair image, our
model generates a hair-transferred output through embedding, hair pose align-
ment, inpainting, and blending step. We first take advantage of GAN-inversion
algorithms [1,3,34], feeding a source and a target hair image, for the purpose of
obtaining latent codes residing in the StyleGAN2 space [15], respectively. Next,
we navigate the StyleGAN2 space to optimize the latent code of the target hair
image to follow a source image pose. During the pose alignment, we utilize a
newly-presented local-style-matching loss to penalize visually degraded hair tex-
tures by locally comparing the original target hair with the aligned one. In the
inpainting, we first obtain a segmentation mask to guide the latent code of the
source to fill the occluded regions by its hair. We optimize the latent code of the
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source image to follow the obtained segmentation mask. Lastly, we blend the
aligned target hairstyle and the inpainted source image with a final optimiza-
tion step. In this manner, our model is able to transfer a target hairstyle to a
source image overcoming the difference in poses as well as successfully preserv-
ing the fine details of the target hair. Experiments demonstrate the superiority
of our model in a quantitative and qualitative manner. Our contributions are
summarized as follows:

– We propose a framework that achieves a high-quality pose-invariant hairstyle
transfer based on latent optimization without multi-view dataset.

– We present local-style-matching loss to maintain the fine details of a hairstyle
during pose optimization.

– Our model achieves state-of-the-art performance in quantitative and quali-
tative evaluations with various datasets.

2 Related Work

2.1 Latent space manipulation

With the understanding of the latent space in GANs, recent approaches based on
latent space manipulation [10,22,25] have shown promising results in image edit-
ing. For example, GANSpace [10] and InterfaceGAN [22] modify facial attributes
via manipulation in the latent space of StyleGAN [14]. While the former takes
advantage of principal component analysis, the latter utilizes semantic scores
to identify disentangled directions related to the target attributes. In a simi-
lar manner, Viazovetskyi et al. [25] and Zhuang et al. [35] attempt to edit the
images by shifting latent vectors to semantically meaningful directions in the
latent space of StyleGAN2 [15], which can easily be obtained by a pre-trained
face classifier or learned transformations.

Recent hairstyle transfer approaches also actively utilize latent space manip-
ulation to synthesize high-quality images. LOHO [21] and Barbershop [33] edit
hairstyles by manipulating the extended StyleGAN2 latent space [34] via latent
optimization. These methods not only significantly enhance the visual quality
of the generated images but also preserve the semantic details of the target
images. In particular, Barbershop introduces FS space with a larger capacity
than the original StyleGAN2 latent space, where the original hair structure is
well-preserved. In this work, we leverage latent optimization to reach the photo-
realistic image quality. Our model mainly focuses on the pose alignment of a
target hairstyle to a source image without losing its detailed hair texture based
on local-style-matching loss to achieve a pose-invariant hairstyle transfer.

2.2 Hairstyle Transfer

GAN-based facial image editing [12,13,17,20,27,28] successfully modifies the tar-
get facial attributes such as a facial expression or makeup style while maintaining
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other features. Common approaches for facial image editing are to utilize hand-
drawn sketches [13,20,27,28] or user-edited semantic masks[17] as the conditions
to precisely guide the manipulated appearance.

In spite of the remarkable progress in facial image editing, hairstyle transfer
is still tricky, considering the diversity and intricacy of hairstyles. In practice,
a hairstyle transfer is required to convey a wide range of target hairstyles to
a given source image while preserving their subtle hair strands and color. As
a prior work, MichiGAN [24] presents a hairstyle transfer framework aiming
to preserve the detailed textures of a target hairstyle. Specifically, MichiGAN
leverages different conditional generators responsible for decomposed hairstyle
attributes (i.e., hair shape, and appearance). Moreover, LOHO [21] achieves vi-
sually pleasant image quality through latent optimization and hair-related losses
for reflecting a target hairstyle features. Barbershop [33] also proposes a latent
optimization approach and further improves the visual quality of the outputs
based on the newly presented FS space. Barbershop utilizes F tensor in FS
space to enhance the capability of preserving the overall structure of a target
image, including delicate hair structure.

However, since the existing approaches have been developed to handle the im-
ages, where the head poses of a source and a target are aligned, they show limited
generalization capacity for dealing with the inputs having a large pose difference.
To tackle this problem, HairFIT [6] introduces a pose-invariant hairstyle trans-
fer with flow-based target hair warping and semantic-region-aware inpainting.
HairFIT leverages an optical flow estimation network and a multi-view hairstyle
dataset [16] to align the target hair to the source face. Despite the aid of the
high-quality multi-view dataset, the model fails to preserve the detailed features
of hairstyles comprehensively. In this paper, we propose a novel latent optimiza-
tion framework for pose-invariant hairstyle transfer to synthesize high-quality
images regardless of the pose differences.

3 Method

3.1 Overview

Our framework consists of several optimization steps described in Fig. 2. We
first find latent codes w ∈ R18×512 of a source image Isrc ∈ RC×H×W and
a target hairstyle image Itrg in W+ space using the existing GAN-inversion
algorithms [33,34]. Then, we optimize the target hair latent codes to have the
pose aligned to Isrc. While aligning the pose, we mainly focus on preserving fine
details of the target hair with a newly-presented local-style-matching loss. Local-
style-matching loss allows preserving each local texture in the aligned target hair
by matching the corresponding region of a similar style from the original target
hair. For the next step, we inpaint the source regions occluded by its original
hair by optimizing the source latent codes. Lastly, we blend the aligned target
hairstyle and the inpainted source image for the final output.
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Fig. 2. An overview of our framework. First, we obtain wsrc, wtrg, and Fsrc by embed-
ding a source and a target hair image into W+ and FS space. Then, we optimize wtrg

to follow the source pose, resulting in walign
trg . With the segmentation mask of aligned

target hair, we find winpaint
src , where the source occlusions are inpainted. Finally, we

blend Fsrc, w
inpaint
src , and walign

trg to generate the final output.

3.2 Embedding

First of all, we obtain the latent codes of each reference image (i.e., source and
target images) before pose alignment and blending. Given a source image Isrc
and a target hair image Itrg, we find the source latent codes wsrc and the target
latent codes wtrg in an extended latent space of StyleGAN2 denoted as W+
space [2]. We employ an improved embedding algorithm [34] to enhance the
reconstruction and editing quality. Moreover, we embed Isrc to FS space fol-
lowing Barbershop [33] to gain Fsrc ∈ R32×32×512, which preserves the detailed
structure of the source image by encoding the spatial information.

3.3 Target Hair Alignment

To transfer the hairstyle regardless of the pose differences, we align the target
hairstyle to the source face via the latent optimization, as presented in Fig. 3.
Starting from wtrg, we aim to find walign

trg , where the head pose and face shape
are aligned to Isrc, while other features, especially the hairstyle, correspond to
Itrg. We optimize the first m style vectors among 18 style vectors of wtrg to
optimize coarse style vectors rather than fine style vectors [14]. We set m as 6
in our experiments.

Pose Align Loss. To modify wtrg to have a source pose, we propose a novel
pose align loss Lpose based on 3D facial keypoints. Since the hairstyle signifi-
cantly depends on other facial features (e.g., face shape and location of eyes),
the head pose alone is insufficient to fully guide the target hair alignment. Thus,
we leverage 3D facial keypoints, which effectively represent the overall facial
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Fig. 3. Target hair alignment. We obtain the aligned target hair latent codes walign
trg by

optimizing the first m vectors of wtrg to have a source pose with its hairstyle preserved.

features as well as the head pose. With the source 3D facial keypoints, we can
provide detailed supervision of which shape and pose wtrg should pursue.

Lpose computes the L2 distance between the 3D keypoint heatmaps of Isrc
and the aligned target hair image as:

Lpose =
1

NH
∥Hsrc − E(G( ˆwtrg))∥22. (1)

NH indicates the number of elements in a 3D keypoint heatmap H ∈ R68×H×W

and Hsrc = E(Isrc), where E is a pre-trained keypoint extractor [5]. G is a pre-
trained StyleGAN2 generator and ˆwtrg indicates the optimized wtrg in progress.
Local-Style-Matching Loss. To preserve locally distinct hairstyles, we newly
present a local-style-matching loss, which matches similar local styles between
the target hair and the aligned target hair. Basically, we utilize a style loss based
on the Gram matrix [8], which captures the repeated patterns (i.e., texture) of
given features. A style loss Lstyle measures the L2 distance between the Gram
matrix of feature maps extracted by a VGG network [23], formulated as:

Lstyle(·, ·) =
1

V

V∑
i=1

1

NGi

∥Gi(VGGi(·))− Gi(VGGi(·))∥22, (2)

where V indicates the number of VGG layers we use, which are relu1 2, relu2 2,
relu3 3, and relu4 3 layer of VGG [6,21,33]. Also, NGi represents the number
of elements in Gi. Here, Gi and VGGi indicate the i-th Gram matrix and i-th
layer of VGG, respectively. Gi is calculated as vi

⊺
vi, where vi ∈ RHiW i×NCi

corresponds to the activation of VGGi.
In local-style-matching loss LLSM

style , we first identify style regions each of which
includes locally different style and apply Lstyle to each style region, respectively.
To identify the style regions, we leverage a simple linear iterative clustering
(SLIC) [4]. The SLIC is an algorithm that conducts a K-means clustering based
on the similarity of color and spatial distance between pixels. Since the SLIC con-
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Fig. 4. Local-style-matching loss. During target hair alignment, a local-style-matching
loss is applied to style regions in the target hair and those in the aligned target hair.
The white boundary regions are segmented style regions, and the red boundary regions
describe an example of a consistently tracked style region.

siders both the appearance and location of neighboring pixels, it can successfully
segment the target hair into proper style regions.

As presented in the first column of Fig. 4, we first find the style regions
in the hair of Itrg. Then, during the latent optimization, we detect the style
regions of G( ˆwtrg) and match each region to the most similar style region of
Itrg, as shown in the rest columns of Fig. 4. In each step, we track the regions
of similar style by setting the same label to the region of the closest centroid
compared to the previous step. Fig. 4 shows that an example style region marked
with a red boundary is successfully tracked based on the proposed algorithm.
SLIChair(I) ∈ {0, 1}Nstyle×H×W indicates style region masks extracted from a
hair region of I using the SLIC algorithm. Here, Nstyle indicates the number
style regions. We set Nstyle as 5 in our experiments. LLSM

style is formulated as:

LLSM
style =

Nstyle∑
i=1

Lstyle(SLIC
i
hair(Itrg)⊙Itrg, SLIC

i
hair(G( ˆwtrg))⊙G( ˆwtrg)). (3)

SLICi
hair(·) is the i-th channel of SLIChair(·) and ⊙ indicates element-wise

product. Note that a valid region of each channel, where the style region mask
corresponds to 1, is cropped before calculating the style loss.
Regularization Loss.We add a step-wise regularization loss to keep the overall
features of ˆwtrg, especially hairstyle, similar to the previous step. The regular-
ization loss Lreg encourages a stable optimization via a gradual modification
without a noticeable loss of the original hairstyle features. Lreg is formulated as:

Lreg =
1

Nw
∥∆ ˆwtrg∥22, (4)

where Nw indicates the number of elements in w. ∆ ˆwtrg at step t is obtained by
ˆwtrg

t − ˆwtrg
t−1, where t ranges from 2 to the total number of steps.

Formally, the total objective function in the target hair alignment step is
Lpose+λLSM

style LLSM
style +λregLreg, where λ

LSM
style and λreg denote the hyper-parameters

to control relative importance between different losses.
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Fig. 5. Generation of an objective label. For source inpainting, we create an objective
label Sobj

src to guide the occluded regions to be inpainted with proper semantics.

3.4 Source Inpainting

Source inpainting step aims to inpaint the regions occluded by the original source
hair. As shown in Fig. 2, if we remove the source hair region from the source
image, the occluded region should be filled with the proper semantics (e.g.,
forehead, face, neck, clothes, and background) to fit the aligned target hair.

To find the inpainted source latent code winpaint
src , we generate an objective

label Sobj
src ∈ ZH×W to guide the occluded regions to be filled with the appropriate

semantic regions. Sobj
src is generated by the following process, as also described

in Fig. 5. First, we compute a keep label Skeep
src , which indicates the regions

that need to be maintained in the source, by removing a source hair region
Ssrc hair from a source semantic label Ssrc. Here, Ssrc is estimated by a pre-
trained segmentation network [29]. Next, we calculate a label of regions to be
inpainted Sinpaint as described in Fig. 5. Finally, we obtain Sobj

src which indicates
the inpainting regions of the source image considering the aligned target hair.
Now, we optimize winpaint

src to follow the given Sobj
src. Here, as in the target hair

alignment step, we optimize the first m w vectors to newly generate coarse
features to fill the occlusions while preserving the fine details or the overall
appearance of the source. For optimizing winpaint

src , we use a pixel-wise cross-
entropy loss between the label of Sobj

src and a segmentation probability heatmap
of the generated image, which consists of 16 semantic region categories. The
heatmap is estimated by the pre-trained segmentation network.

3.5 Blending

The final optimization step aims to find a blending weight wweight that merges
the optimized latent codes from the previous steps to generate the final out-
put. First, as presented in Fig. 6(a), wblend is obtained by blending winpaint

src

and walign
trg with the blending weight wweight. wblend is formulated as winpaint

src +

wweight⊙walign
trg , where wweight implies how much of walign

trg needs to be reflected
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Fig. 6. Blending. (a) w vectors from the previous steps are blended with the optimized
blending weight wweight to obtain wblend. (b) Next, we combine Falign

trg , Fblend, and

Fsrc with the corresponding masks to obtain Ffinal. (c) Ffinal and wblend are fed to
the StyleGAN2 generator to synthesize the final output. (d) Blending loss consists of
Lkeep

percept, λ
hair
percept, and Lhair

percept.

to synthesize the final output. Then, we prepare F tensors by feeding the first m
w vectors to the pre-trained StyleGAN2 generator, as shown in Fig. 6(b). Here,
we leverage F tensors in FS space to effectively reconstruct the detailed spa-
tial information [33] in the further blending. We blend Falign

trg , Fblend, and Fsrc

to gain Ffinal which contains detailed spatial information of the final output.
Ffinal is calculated as follows:

Ffinal = Malign
trg hair ⊙ Falign

trg +Mblend ⊙ Fblend +Mkeep
src ⊙ Fsrc. (5)

Falign
trg and Fblend are extracted from walign

trg and wblend, respectively, and Fsrc is

from the embedding step.Malign
trg hair is a binary mask indicating the hair region in

the aligned target hair image. Mkeep
src is also a binary mask denoting the regions

which are neither the source hair nor the aligned target hair. Mkeep
src indicates

the area that needs to be preserved in the source image. Lastly, Mblend denotes
the remaining regions. The final output Î is generated from the pre-trained
StyleGAN2 generator given wblend and Ffinal as inputs. Here, vectors in wblend

except the first m vectors are fed to the generator.
Losses. In order to blend the previous optimized latent codes while preserving
their structure and styles, we utilize the following losses.

First, to maintain the source face, clothes, background, etc., we apply the
perceptual loss [30] on the valid regions in Skeep

src (i.e., the regions to be preserved
in the source image) as follows:

Lkeep
percept =

1

V

V∑
i=1

1

NVGGi

∥Mkeep
src ⊙ (VGGi(Isrc)−VGGi(̂I))∥1, (6)
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where VGGi denotes i-th layer of VGG16 network [23] and NVGGi is the number
of elements in the activation of VGGi.

Also, in order to preserve the aligned target hairstyle from the aligned target
latent code walign

trg , we use the hair perceptual loss formulated as follows:

Lhair
percept =

1

V

V∑
i=1

1

NVGGi

∥Malign
trg hair ⊙ (VGGi(Ialigntrg )−VGGi(̂I))∥1. (7)

Lastly, we maintain the texture of the original target hair by utilizing the
hairstyle loss Lhair

style, where the style loss Lstyle is applied on the hair regions of

the target hair image and the final output as Lstyle(Mtrg hair⊙Itrg,MÎ hair⊙ Î).

The total blending loss to optimize wweight is Lkeep
percept + λhair

perceptLhair
percept +

λhair
styleLhair

style, where λhair
percept and λhair

style are the hyper-parameters to balance the
relative importance between the losses.

4 Experiments

4.1 Experimental Setup

Dataset. We utilize Flickr-Faces-HQ (FFHQ) dataset [14] for hairstyle transfer
and K-hairstyle [16] and VoxCeleb2 [7] for reconstruction task. For hairstyle
transfer, we sample 6,000 pairs of two different identities (one for source and the
other for target hairstyle) from 70,000 1,024×1,024 images in FFHQ.

For the reconstruction, we create 500 test pairs by sampling the images from
the K-hairstyle dataset, which includes 500,000 high-resolution multi-view im-
ages with more than 6,400 identities. Following HairFIT [6], we filtered the
images to remove the ones whose hairstyle is significantly occluded, or whose
face is extremely rotated. Additionally, we sample 500 pairs of a source and a
target from more than 1 million videos in VoxCeleb2. In the reconstruction task,
two images in each pair have the same identity and different poses, and the
source image in each pair is considered the ground truth image for the model to
reconstruct. Each image is resized to 256×256 in the experiments.
Baseline Models. We conduct a quantitative and qualitative comparison be-
tween our model and the following baselines: LOHO [21], Barbershop [33], and
HairFIT [6]. Here, we follow the official implementation code of LOHO and Bar-
bershop. Since LOHO utilizes an external inpainting network, we use a state-of-
the-art inpainting network CoModGAN [32]. Also, we implement HairFIT with
the codes and guidelines provided by the authors of HairFIT.

4.2 Comparison to Baselines

Quantitative evaluations. First, we compare the fréchet inception distance
(FID) score [11] of LOHO, Barbershop, and our model on hairstyle transfer
task. The FID score measures how similar the distributions of the synthesized
images and the real images are, where the lower FID score indicates a higher
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Pose difference level Easy Medium Difficult Total

LOHO [21] 21.70 23.40 28.36 19.63
Barbershop [33] 20.75 21.45 26.30 18.07

Ours 20.79 20.56 22.72 17.06

Table 1. Quantitative comparison with baselines. We measure the FID scores with
three different levels of pose difference and with total pairs.

Dataset K-hairstyle VoxCeleb2

Metric SSIM↑ LPIPS↓ SSIM↑ LPIPS↓

HairFIT 0.7242 0.2054 0.7520 0.2033
Ours 0.7424 0.1786 0.7717 0.2078

Table 2. Quantitative comparisons with HairFIT using multi-view datasets.

similarity. We compare 6,000 pairs of real and fake images, where each image is
resized to 256×256 for the evaluation. As shown in the last column of Table 1,
we achieve the lowest FID score compared to the baselines.

For further analysis, we compare the FID scores on three different levels of
pose difference as conducted in the previous work [6,21]. We calculate the pose
difference, PD, following the protocol presented in HairFIT [6]. In particular, we
use 17 facial jaw keypoints extracted by the pre-trained 3D-keypoint extraction
model [5]. The pose difference is calculated as PD = 1

17

∑17
i=1∥ki

src − ki
trg∥1,

where ki
src ∈ R3 is a 3D coordinates of the i-th source keypoint and ki

trg ∈ R3

is a 3D coordinates of the i-th target keypoint. Then, we divide the 6,000 pairs
of a source and a target into three categories of 2,000 pairs: Easy, Medium, and
Difficult. As presented in Table 1, our model outperforms the other baselines
for Medium and Difficult. Moreover, the margin between the FID scores of our
model and other baselines increases as the pose difference increases from Easy
to Difficult.

Additionally, we conduct a comparison with HairFIT on the reconstruc-
tion task using K-hairstyle and VoxCeleb2. As in HairFIT, we measure the
structural similarity (SSIM) [26] and learned perceptual image patch similar-
ity (LPIPS) [31] between generated images and ground truth images. Table 2
presents that our model outperforms HairFIT (except for LPIPS of VoxCeleb2)
even without learning to reconstruct different views of a source image using a
multi-view dataset.
Qualitative evaluations. Fig. 7 and Fig. 8 demonstrate that our model suc-
cessfully transfers the target hairstyle into the source regardless of the pose
differences. Especially, as presented in Fig. 7, our model shows superiority over
other baselines on the Difficult level. Furthermore, although the FID score of our
model is slightly higher than Barbershop on Easy level, Fig. 8 present that the
quality of our model is better to reflect the target hairstyle than the baselines.
The results show that our model successfully aligns the target hair to the source
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Fig. 7. Qualitative comparison with the baselines on Difficult level of pose difference.

Fig. 8. Qualitative comparison on (a) Easy and (b) Medium level of pose difference.
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Fig. 9. Qualitative ablation study on the losses in target hair alignment step.

Configurations w/o (Lreg,LLSM
style ) w/o LLSM

style Ours

SSIM↑ 0.7667 0.7716 0.7717
LPIPS↓ 0.2125 0.2082 0.2078

Table 3. Quantitative ablation study on the losses in target hair alignment step.

image, producing high-quality images of hairstyle transfer. More results of the
qualitative comparison are presented in the supplementary materials.

4.3 Ablation Study

In the ablation study, we demonstrate the effectiveness of a local-style-matching
loss and regularization loss in our target hair alignment step. We conduct a qual-
itative evaluation on hairstyle transfer using the FFHQ dataset and quantitative
evaluation on the reconstruction task with VoxCeleb2. In Fig. 9 and Table 3,
w/o (Lreg,LLSM

style ) denotes our framework without Lreg and LLSM
style ). Also, w/o

LLSM
style indicates our framework without LLSM

style and Ours is our full framework.
The first row of Fig. 9 indicates that the generated target hair is longer than

the original target hair due to the absence of the Lreg. In the second row, the
direction of the front hair of the outputs without LLSM

hair are different from the
original target hairstyle. Moreover, in the third row, the “part” of the target hair
is better reflected in the output of ours. The results present that our proposed
losses effectively reflect the local style of the target hair while preserving its
overall style. Additionally, as seen in Table 3, our full model outperforms other
configurations with a gradual performance increase. Although the difference be-
tween Ours and w/o LLSM

style is marginal, the qualitative results presented above
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Fig. 10. Limitations of our proposed method.

clearly illustrate the high visual quality of our full model in terms of preserving
delicate hair features.

5 Discussions

Although our model achieves a state-of-the-art performance compared to the
baselines, several challenges still remain. First, since we transfer hairstyles via
online latent optimization, it takes a few minutes on average for each image pair.
Also, our framework cannot newly generate the occluded part of the target hair
due to the extremely turned head pose. For example, the first three columns of
Fig. 10 show that where the hair on the side is extremely occluded so that the
final output barely has side hair. Finally, the output might contain undesired
background when the hair segmentation mask is inaccurately predicted. The last
three columns of Fig. 10 present undesirable background leaking.

6 Conclusions

This paper proposes a latent optimization framework for high-quality pose-
invariant hairstyle transfer via local-style-aware hair alignment. By leveraging
latent optimization, we align the target hair without a multi-view dataset, while
maintaining fine details of the hairstyle. In addition, during the hair alignment,
our newly-presented local-style-matching loss encourages our model to preserve
the distinct structure and color of each local hair region in detail. Finally, we
perform occlusion inpainting and blending via latent optimization. In this way,
our model produces high-quality final output without noticeable artifacts.
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