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Supplementary Material

A. Implementation Details

In this section, we describe the detailed architectures, hyper-parameters, and
objective functions of the try-on condition generator and the image generator.

Fig. 1: The detailed architecture of the try-on condition generator. (ResBlock
(n), Up/Down (f)) denotes a residual block where the scaling factor is f and
the output channel is n. Conv (m) denotes a convolutional layer where the output
channel is m.

Try-On Condition Generator. The try-on condition generator consists of two
encoders and four feature fusion blocks, and each encoder is composed of five
residual blocks. The features of the last residual blocks are concatenated and
passed to a 3×3 convolutional layer, which generates the first flow map of the
flow pathway. Also, the last feature of the segmentation encoder is used as the
input of the segmentation pathway (i.e., seg pathway) after passing through two
residual blocks. We employ two multi-scale discriminators for the conditional
adversarial loss. The visualization of the try-on condition generator architecture
is in Fig. 1.

During the training of our try-on condition generator, the model predicts
Îc, Ŝc, and Ŝ at 256×192 resolution. In the inference phase, before forwarding



2

our try-on image generator, the segmentation map and the appearance flow
obtained from the try-on condition generator are upscaled to 1024×768. We
down-sampled the inputs for the discriminator of our try-on condition generator
by a factor of 2 to increase the receptive field. In addition, we apply a dropout [6]
to the discriminator to stabilize the training. For hyper-parameters we used,
λCE , λV GG, and λTV are set to 10, 10, and 2, respectively. The batch sizes for
training our try-on condition generator and image generator are set to 8 and 4,
respectively. We train each module for 100,000 iterations. The learning rates of
the generator and the discriminator of the try-on condition generator are set to
0.0002.

Fig. 2: The detailed architecture of the try-on image generator. (ResBlock (n),
Up (f)) denotes a residual block, where the scaling factor is f , and the output
channel is n. Conv (m) denotes a convolutional layer where the output channel
is m.

Try-On Image Generator. We describe the detailed architecture of the try-
on image generator as shown in Fig. 2. The generator is composed of a series
of residual blocks with upsampling layers, and two multi-scale discriminators
are employed for the conditional adversarial loss. Spectral normalization [4] is
applied to all the convolutional layers.

To train the try-on image generator, we utilize the same losses used in
SPADE [5] and pix2pixHD [7]. Specifically, our full objective function consists
of the conditional adversarial loss, the perceptual loss, and the feature matching
loss. Formally, our objective function is as follows:

LTOIG = LTOIG
cGAN + λTOIG

V GG LTOIG
V GG + λTOIG

FM LTOIG
FM , (1)

where LTOIG
cGAN , LTOIG

V GG , and LTOIG
FM denote the conditional adversarial loss, the

perceptual loss, and the feature matching loss [7], respectively. We use λTOIG
V GG and

λTOIG
FM for hyper-parameters controlling relative importance between different
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Fig. 3: Qualitative comparison of the baselines (256×192)

losses. For LTOIG
GAN , we employ the Hinge loss [3]. λTOIG

V GG and λTOIG
FM are set

to 10. The learning rates of the generator and the discriminator of the try-on
image generator are set to 0.0001 and 0.0004, respectively. We adopt the Adam
optimizer with β1 = 0.5 and β2 = 0.999 for both modules.

B. Additional Experiments

Results on Different Resolutions. We provide the additional qualitative
results for comparison across different resolutions (Fig. 3, and Fig. 4).
Comparison with the Variant of VITON-HD. Previous studies [2,1] im-
prove the performance of the geometric deformation for the target clothes by
utilizing the appearance flow. However, simply increasing the degree of freedom
of the warping module cannot perfectly remove the artifacts caused by misalign-
ment and pixel-squeezing. To verify this, we further compare our method with
VITON-HD*, the VITON-HD variant of which the clothes warping module is
replaced by that of Clothflow [2]. Since Clothflow is superior to the warping
module of VITON-HD, VITON-HD* can reduce the misalignment region.

Despite the improvement of the warping module in VITON-HD, our model
consistently outperforms the VITON-HD* in all evaluation metrics, as seen in
Table 1. Also, 2nd column in Fig. 5 shows that VITON-HD* still suffers from the
artifacts due to the misalignment. Furthermore, increasing the degree of freedom
of the warping module exacerbates the pixel-squeezing artifact, indicating that
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Fig. 4: Qualitative comparison of the baselines (512×384)
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Fig. 5: Qualitative comparison with VITON-HD* (1024×768). VITON-HD* suf-
fers from the misalignment and the pixel-squeezing artifacts indicated by green
and red colored areas, respectively.

LPIPS↓ SSIM↑ FID↓ KID↓

VITON-HD* 0.070 0.875 11.55 0.2993
Ours 0.065 0.892 10.91 0.1794

Table 1: Quantitative comparison with VITON-HD* at the 1024×768 resolution.
We describe the KID as a value multiplied by 100.
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the use of appearance flow without proper occlusion handling can be harmful.
On the other hand, our model successfully solves both the misalignment and the
pixel-squeezing problems, as shown in 3rd column in Fig. 5.

Fig. 6: User study results.

Fig. 7: Effects of the multi-scale L1/VGG losses. 1st row: w/ multi-scale losses.
2nd row: w/o multi-scale losses.

User Study. We conduct a user study to further assess our model and other
baselines at the 1024×768 resolution. Given the 30 sets of a reference image
and a target garment image from the test set, the users are asked to choose an
image among the synthesized results of our model and baselines according to
the following questions: (1) Which image is the most photo-realistic? (2) Which
image preserves the details of the given clothing the most? In addition, a total
of 21 participants participate in the user study. Fig. 6 shows that our model
achieves the highest average selection rate for both questions, indicating that
our model synthesizes more perceptually convincing results and preserves the
detail of the clothing items better than other baselines.
Effectiveness of Multi-Scale L1/VGG Losses. During the training of the
try-on condition generator, LL1 and LV GG are directly applied to the inter-
mediate flow estimations. As shown in 2nd row of Fig. 7, the model without
the multi-scale losses has difficulty learning flow estimation in a coarse scale.
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Multi-scale losses enable the model to learn the meaningful intermediate flow
estimation, which is crucial for the coarse-to-fine generation of appearance flow.

Additional Results. We present additional qualitative results of our model.
Fig. 8 shows the combination of different clothes and different people, and Fig. 9-
11 shows the high-resolution synthesis results (i.e., 1024×768).

Fig. 8: Qualitative results of our model (1024×768).
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Fig. 9: Qualitative results of our model (1024×768). The reference image and the
target clothes (left), the synthesis image (right).
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Fig. 10: Qualitative results of our model (1024×768). The reference image and
the target clothes (left), the synthesis image (right).
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Fig. 11: Qualitative results of our model (1024×768). The reference image and
the target clothes (left), the synthesis image (right).
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