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In the supplementary file, we first present the details of the experiments. Then
we provide additional experimental results to demonstrate the performance of
our framework.

1 Experiments Details

1.1 Training Details

During training, we use the Adam optimizer[3] with β1 = 0.9 and β2 = 0.999.
64 × 64 patches are randomly cropped from the compressed REDS [5] training
set, and the video length is set to 7. We enlarge the dataset with a ratio of 100
for saving time when restarting the data loader after each epoch[10]. And we
totally train 60 epochs. The learning rate of VSR models is set to 2× 10−4; for
SpyNet[6], the learning rate is set to 5× 10−5. We use “MultiStepLR” to adjust
the learning rates, decaying the learning rates by gamma 0.1 once the number
of epoch reaches 40 and 50.

1.2 Encoding and Decoding

In experiments, we encode the Gaussian-downsampled LR raw videos with FFm-
peg under the popular video compression standard H.264[7]. The structure of
the encoded group of pictures (GOP) is set to “IPP...P” by turning off bidirec-
tional predictive mode(−bf 0 (FFmpeg)). Because every video of REDS[5] has
100 frames, the minimum distance between I-frames is set to
100 (−keyint min 100 (FFmpeg)). The number of reference frames for the re-
current frame is set to 1 (−refs 1 (FFmpeg)) so that the reference frame of the
current frame is the previous encoded frame. When decoding, we modified the
JM Reference Software to output Motion Vectors and Residuals while decoding
video frames.
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1.3 Implement Details

For FRVSR[8], because the spatial sizes of the motion field and the previous
HR prediction are different, we first use the space-to-depth operator to reshape
HR estimation to LR spatial size and then warp it according to MVs or optical
flow. To improve training speed and stability, we add the network’s output to the
upsampled LR input to obtain the HR output. In every iteration of RLSP[1], the
information of the past frame includes the latent features and the HR prediction.
For HR prediction, we use the same processing in FRVSR. The RLSP also takes
the next LR frame as an input for the current HR iteration. In experiments,
we don’t align the next frame. For RSDN[2], the past frame’s latent features,
structure, and detail information are all aligned with MVs or optical flow in
experiments.

For sparse processing, we multiply the results of vanilla convolutions with pre-
dicted spatial masks during training. When testing, we first select the features
that need to process according to the indices generated from the Residual-based
spatial mask, then matrix multiplication is executed to produce the output fea-
tures according to the selected features with size L×N and convolutional weights
with size C × L. N is the number of selected features, L = C ×Kh ×Kw is the
size of a selected pixel’s feature, C is the number of channels, Kh and Kw are
the height and width of the convolutional kernel.

Table 1: The quantitative comparison (PSNR/ SSIM/ LPIPS) on
Vid4[4]. PSNR is calculated on Y-channel; SSIM and LPIPS are calculated on
RGB-channel. Red and blue colors indicate the best and the second-best perfor-
mance, respectively. 4× upsampling is performed following previous studies.

Model
CRF23 Compressed Results

calendar walk city foliage CRF18 CRF23 CRF28

FRVSR 20.91/0.5860/0.4490 26.27/0.7554/0.3047 25.17/0.5743/0.4747 23.43/0.5264/0.5304 24.74/0.6705/0.3767 23.95/0.6105/0.4397 22.84/0.5357/0.5257

FRVSR+MV 20.99/0.5979/0.4434 26.56/0.7634/0.2935 25.32/0.5879/0.4576 23.56/0.5365/0.5363 24.91/0.6817/0.3753 24.11/0.6214/0.4327 22.94/0.5431/0.5184

FRVSR+Flow 21.06/0.5991/0.4471 26.53/0.7634/0.2926 25.45/0.5955/0.4433 23.53/0.5387/0.5273 24.98/0.6859/0.3691 24.14/0.6242/0.4276 22.93/0.5436/0.5126

RLSP 20.75/0.5751/0.4524 26.21/0.7525/0.3093 25.08/0.5710/0.4685 23.44/0.5240/0.5408 24.57/0.6583/0.3849 23.87/0.6056/0.4427 22.84/0.5361/0.5232

RLSP+MV 21.12/0.6113/0.4203 26.68/0.7656/0.2780 25.58/0.6053/0.4334 23.64/0.5456/0.5255 25.15/0.6948/0.3548 24.26/0.6319/0.4143 23.02/0.5504/0.5002

RLSP+Flow 21.25/0.6154/0.4166 26.71/0.7677/0.2846 25.56/0.6058/0.4264 23.71/0.5515/0.5108 25.25/0.7008/0.3486 24.31/0.6351/0.4096 23.02/0.5511/0.4955

RSDN 21.00/0.5944/0.4231 26.32/0.7624/0.2891 25.12/0.5801/0.4443 23.51/0.5315/0.5327 24.79/0.6727/0.3638 23.99/0.6171/0.4223 22.88/0.5443/0.5033

RSDN+MV 21.35/0.6265/0.3965 26.75/0.7742/0.2699 25.42/0.6087/0.4151 23.54/0.5440/0.5151 25.22/0.7028/0.3382 24.27/0.6383/0.3992 23.06/0.5574/0.4826

RSDN+Flow 21.58/0.6416/0.3843 26.77/0.7731/0.2720 25.74/0.6217/0.4032 23.68/0.5580/0.5017 25.48/0.7166/0.3283 24.44/0.6486/0.3903 23.09/0.5609/0.4777

2 Additional Experiment Results

2.1 Effect of our MV-based Alignment

In this section, we provide additional comparisons on REDS4[9] and Vid4[4]. Tab
1 is the quantitative comparison on Vid4. Models with our MV-based alignment
obviously outperform the models without alignment, even achieve comparable
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performance with optical flow-based models. Fig 1 and Fig 2 are the qualitative
results on the REDS4 and Vid4. Our MV-based alignment can significantly boost
the visual results.

2.2 Residual Informed Sparse Processing

In this section, we provide additional qualitative results of our Residual informed
sparse processing in Fig. 3. Models with our Residual informed sparse processing
achieve comparable even superior visual results over baseline.

Fig. 1: Visual results on Vid4[4]
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Fig. 2: Visual results on REDS4[9]
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Bicubic Baseline Baseline+MV MV+Res GT

Fig. 3: Visual results of the Residual informed sparse processing on REDS4[9]
and Vid4[4]
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