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Abstract. Novel view synthesis has recently been revolutionized by
learning neural radiance fields directly from sparse observations. How-
ever, rendering images with this new paradigm is slow due to the fact
that an accurate quadrature of the volume rendering equation requires a
large number of samples for each ray. Previous work has mainly focused
on speeding up the network evaluations that are associated with each
sample point, e.g., via caching of radiance values into explicit spatial
data structures, but this comes at the expense of model compactness.
In this paper, we propose a novel dual-network architecture that takes
an orthogonal direction by learning how to best reduce the number of
required sample points. To this end, we split our network into a sampling
and shading network that are jointly trained. Our training scheme em-
ploys fixed sample positions along each ray, and incrementally introduces
sparsity throughout training to achieve high quality even at low sample
counts. After fine-tuning with the target number of samples, the resulting
compact neural representation can be rendered in real-time. Our experi-
ments demonstrate that our approach outperforms concurrent compact
neural representations in terms of quality and frame rate and performs on
par with highly efficient hybrid representations. Code and supplementary
material is available at https://thomasneff.github.io/adanerf.
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1 Introduction

The introduction of neural radiance fields [20] pushed the boundaries of modern
computer graphics and vision by improving the state of the art of applications
such as 3D reconstruction [35], rendering [44, 45, 21, 22], animation [24, 29] and
scene relighting [18]. Furthermore, since the introduction of neural radiance
fields, a significant amount of research focused on improving the resulting image
quality [2], training speed [14, 21], and inference performance [22,21,27,9, 32,
10,45]. Thus, real-time rendering of photorealistic neural radiance fields is now
possible on standard consumer GPUs.

* Authors contributed equally to this work.
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Fig.1: AdaNeRF employs a single-evaluation sampling network and a multi-
evaluation shading network to significantly reduce the number of required network
evaluations per view ray. For each ray, the sampling network predicts a vector of
estimated sample densities § that correspond to exactly one sample location each.
We threshold the predicted d to cull away samples that are expected to have only
minor contribution and only proceed to evaluate the shading network for this
small subset of samples along the ray. Finally, when accumulating the outputs
of the shading network along the ray, we additionally multiply the density o
predicted by the shading network with the density & predicted by the sampling
network. This enables gradients of the RGB output loss to flow back to the
sampling network, enabling end-to-end training of the full pipeline.

However, current real-time renderable neural radiance fields either require
large amounts of memory, a restricted training data distribution or bounded
training data, and it is unclear how to find an efficient compromise between those
limitations. Explicit data structures have difficulties accounting for unbounded
scenes, and storing large amounts of neural radiance fields (NeRFs) in sparse
grids [10,9], trees [45] or hash tables [21] consumes prohibitive amounts of
memory if multiple neural radiance fields need to be accessed in quick succession,
such as in a streaming scenario. At a compact memory footprint, previous work
relied on reducing the number of samples per view ray via dedicated sampling
networks that estimate suitable sample locations along each view ray to improve
rendering speed [27,22,14]. These sampling networks are commonly trained
via supervision from depth [22] or the predicted density of a neural radiance
field [27], thus requiring additional time-consuming preprocessing or pretraining
steps. Alternatively, sampling networks can also be used to learn segments along
each ray using an integral network [14]. Although this improves efficiency at a
slight loss in quality, constructing these integral networks drastically increases
the complexity and duration of training. Finally, light field networks [33] only
evaluate a single sample per ray by parameterizing the input ray using Pliicker
coordinates, but learning such a light field typically requires meta-learning to
achieve sufficient quality even on small toy-datasets.
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In this paper, we introduce AdaNeRF, a compact dual-network neural repre-
sentation that is optimized end-to-end, and fine-tuned to the desired performance
for real-time rendering. The first sampling network predicts suitable sample
locations using a single evaluation per view ray, while the second shading net-
work adaptively shades only the most significant samples per ray. In contrast to
previous methods based on sampling networks, AdaNeRF does not require any
preprocessing, pretraining or special input parametrizations, lowering the overall
complexity. We use fixed, discrete sample locations along each ray to set up a
soft student-teacher regularization scheme by multiplying the predicted density
of our sampling network with the output density of the shading network. Thus,
both networks can modify the final RGB output and gradients flow throughout
the whole pipeline. We ensure sparsity within our sampling network via a 4-phase
training scheme, after which we fine-tune our shading network to the desired
sample counts for real-time rendering. We adaptively sample our shading network
for each individual ray—we only evaluate the shading network for the most
important samples, as predicted by the sampling network. The resulting sparse,
dual-network pipeline can be rendered in real-time on consumer GPUs using our
custom real-time renderer based on CUDA and TensorRT.

Our experimental results demonstrate the benefits of AdaNeRF compared
to prior arts on a variety of datasets, including large, unbounded scenes. First,
the adaptive sampling in AdaNeRF significantly increases the sampling efficiency
of raymarching-based neural representations. Second, AdaNeRF outperforms
previous sampling network based approaches in both rendering speed and quality
with the same compact memory footprint. Finally, we qualitatively show that
multiple AdaNeRFs can scale to complex scenes of arbitrary size.

In summary, we make the following contributions:

— A novel dual-network architecture to jointly learn sampling and shading
networks for compact real-time neural radiance fields, outperforming existing
sampling-network based approaches.

— An additional adjustable adaptive sampling scheme to only shade the most sig-
nificant samples per ray, further improving quality and efficiency at identical
average sample counts.

— A real-time rendering implementation that relies on dynamic, sparse sampling
of our compact dual-network representation, targeting a sweet spot in the
trade-off between performance, quality, and memory.

2 Related Work

Since the introduction of NeRF [20], coordinate-based neural radiance fields have
improved the state-of-the-art across many domains, including dynamic scene
modeling [8,6,24,37,13,40, 28,25, 11], animatable avatars and scenes [17,26, 5,
16, 42], relightable objects [34, 4], and object reconstruction [23,41,39,43]. The
quality of object captures can be improved by incorporating different scales into
the encoding, reducing aliasing and sampling artifacts when novel views are
generated [2]. While this is mostly restricted to single-object captures, recent
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research has also investigated the reconstruction from unconstrained images [18]
and large, unbounded scenes [46, 3]. However, most advances of neural radiance
fields focus on improving the output quality, with many of these advancements
being infeasible to compute in real-time on consumer GPUs.

Our work is closely related to the advancement of neural radiance fields towards
real-time rendering performance, which can be categorized into three domains: (1)
Decomposed neural radiance fields. (2) Baking, caching or precomputing weights
into an explicit spatial data structure, and (3) improving the sampling efficiency
and reducing the total number of samples that are computed per frame.

Decomposed neural radiance fields. By splitting a single MLP into many separate
MLPs [32, 31, 7, 30], subdivided scene grids [15] or primitives [17], both the quality
and efficiency of rendering can be increased. Such a composition of scenes can
represent scenes at city-scale [38,36]. Although these representations are useful
to render single objects [32] or human avatars [17] in real-time, a real-time,
scene-level representation has yet to be demonstrated.

Baking radiance fields. The radiance field can be stored inside a 3D grid [9], inside
a sparse voxel octree [45, 15] that does not even require any neural networks [44],
or inside a sparse grid [10]. These methods run in real-time at a significantly
increased memory footprint, which can be prohibitively expensive for scenarios
such as streaming, where real-time swapping of neural radiance fields is desired.
The concurrently introduced Instant-NGP [21] combines a hierarchical spatial
hash table encoding with small MLPs to learn and render a scene representation
in real-time. However, it is still unclear how it performs in demanding real-time
scenarios and how to optimally tune its hash table size to still be as compact as
fully neural representations.

Improving the sampling efficiency of neural radiance fields. Recent work drasti-
cally improved the sampling efficiency of NeRF while keeping the same compact
memory footprint. DONeRF [22] proposed a reduction in overall sample count by
swapping the coarse network of the original NeRF with a depth oracle network,
which can provide suitable sample locations for the second shading network, thus
reducing the number of samples per ray by up to 128x. However, it cannot be
trained end-to-end, and struggles without reliable depth information. Similarly
to DONeRF, TermiNeRF [27] uses a sampling network that is conditioned on
the density of a pre-trained NeRF. TermiNeRF uses the whole range of samples
without the need for a depth map, which can improve quality in geometrically am-
biguous scenarios. Although it can technically be trained end-to-end, TermiNeRF
requires a suitable pretrained NeRF for initialization of its color network to
achieve the best results. AutoInt [14] approaches sampling networks differently
by predicting the lengths of segments along each ray. By predicting ray segments
instead of samples, subsequent integral networks can efficiently predict the den-
sity and color of each ray segment, reducing the number of network evaluations.
However, the training procedure is significantly longer and more complex. Light
field networks [33, 1] reduce the number of network evaluations to a single sample
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per ray by directly mapping a view ray to the observed color. Although such an
approach is advantageous in terms of memory footprint and rendering efficiency,
without a meta-learned multi-view consistency prior, it fails to synthesize novel
views in real-world scenes, and is thus not suitable for real-time novel view
synthesis tasks for real world captures.

With AdaNeRF, we follow up on DONeRF [22], TermiNeRF [27], and Autolnt
[14], and demonstrate that our approach is end-to-end trainable and more robust
across a variety of training setups. Our approach achieves higher quality with
faster real-time rendering performance by drastically reducing the amount of
required samples, while at the same time keeping the representation compact.

3 Method

AdaNeRF consists of a fully end-to-end trainable pipeline that can be rendered
in real-time. We replace the coarse network of the original NeRF by a sampling
network S that is only evaluated once per ray, minimizing the number of network
evaluations to generate the final image. The sampling network takes the ray
origin p and the ray direction d as input. The output of the sampling network is
a vector of predictions §, corresponding to the predicted importance of samples
along each ray. The shading network T takes the prediction of the sampling
network, positionally encodes the samples with the largest contribution and
outputs their density o and color c. By evaluating the sampling network once, a
majority of samples with low contributions can be culled, increasing the overall
efficiency of the pipeline. Figure 1 shows an overview of our dual-network setup.

3.1 End-to-end Trainable Sampling Network

We propose to multiply the predicted per-sample density §; of the sampling
network with the predicted per-sample density o; of the shading network. This
formulation allows backpropagation to reach the sampling network. This is
possible by using fixed sample locations along each ray, and placing exactly one
sample in the center of each cell when discretizing the space along each ray. In
contrast to previous work based on sampling networks, we do not require ground
truth depth [22], and we avoid distinctly separated training steps [22,27].

We modify the standard ray accumulation function [20] to include an addi-
tional multiplication by the outputs d; of the sampling network

N i—1
Cr) = ZTZ(l — exp(—d;04t;))c;, where T; =exp | — Z doit; |, (1)
j=1

i=1

where C is the estimated, accumulated color, IV is the number of samples
along the ray, 7; is the accumulated transmittance along the ray, t; is the
distance between adjacent samples and o; is the output density of the shading
network for sample i. The introduction of the multiplication by ¢; enables the
sampling network to directly increase or decrease the importance of samples via
its prediction, and to receive gradients from the MSE color reconstruction loss.
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Fig.2: The 4-phase training scheme of AdaNeRF. First, dense training forces
the sampling network predictions close to § = 1, enabling the shading network
to densely sample the underlying scene. The sparsification phase then forces a
majority of the sampling network predictions towards d = 0, leaving only the
most significant samples. The sparse training phase then adjusts the shading
network to the newly sparsified sampling network. Finally, in the finetuning
phase, we adaptively place samples for all sampling network predictions & > 7
up to a desired maximum number to further optimize for real-time rendering.

3.2 Sparse Adaptive Sampling Network Distillation

The modification of the ray accumulation alone does not ensure that the sampling
network outputs sparse predictions—it might just as well always output the 1
vector, leading the shading network to place one sample in each cell, effectively
ignoring the sampling network prediction. We disentangle § from the shading
network density by introducing sparsity into the sampling network, which forces
the network to select only the most important density values.

AdaNeRF trains the sampling network and the shading network end-to-end
and progressively reduces the required samples per view ray. The shading network
is trained via a standard MSE loss on the accumulated RGB color. The sampling
network loss is composed of a sparsity loss which includes an ¢;-loss that matches
the output density of the shading network and an additional density multiplication
term derived from the MSE loss of the shading network:

lsampling((sy g, C) = >\O : lmse(57 o, C) + )\1 : lsparsity(éa O') (2)

AdaNeRF uses a soft student-teacher regularization training scheme with 4 phases.
We illustrate the training scheme in Fig. 2 and describe each phase in detail:

Dense Training. The initial dense training phase establishes the teacher, by
encouraging the sampling network to output dense predictions via an ¢;-loss of all
its outputs towards 1. In practice, this phase could be replaced by initializing the
network weights to output 1 directly to increase training speed at a potential loss
of propagated information to the sampling network. In either way, the shading
network samples the full input space to provide an initial estimate of the scene,
which prevents both networks from collapsing in the later stages.
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Sparsification. The second phase introduces an additional ¢;-loss to the sampling
network that forces the majority of predictions towards 0. We linearly blend
between forcing the sampling network outputs towards 1 and 0 over the course of
this phase, and additionally blend in a soft student-teacher regularization loss via
an {1-term that encourages the sampling network outputs § to follow a similar
distribution as o. From iteration to over the duration of t4 iterations (and the
current iteration given as t.), we define the sparsification loss as

N N
1 1
Lsparsity(8,0) = A+ (Z 16, — 0] + |0y — 6¢|> (=N Z 6, — 1],
=1 =1 (3)
where \ = te — to.
tq

The ¢1-term |o; —0;| ensures that the sampling network does not collapse to a single
constant 0 or 1 vector, forcing the sampling network to follow the established
scene representation of the shading network. The sparsification phase gradually
increases the sparsity of the sampling network resulting in fewer significant
outputs (which subsequently have zero contribution during ray accumulation).

Sparse Training. To allow the shading network to take advantage of the sparsifi-
cation of the sampling network, we lock the sampling network’s weights during
sparse training. Although the shading network is still queried for all samples
along each ray (as in the dense training phase) it is now free to alter the output
for samples that are already dampened by the sampling network (due to the
density multiplication). This enables the network to focus its capacity on those
samples that actually contribute to the output.

Fine-tuning. We fine-tune the shading network for a desired maximum number
of samples per ray; typically 2, 4, 8 or 16. This phase is fast, as the number
of samples per ray is small. Fine-tuning can increase quality as it completely
removes samples that hardly contribute to the final output and allows the shading
network to focus on the contributing samples only. Note that this phase results
in separate shading networks for each maximum sample count, while all rely on
the same sampling network.

Real-time Rendering with Adaptive Sampling. We can further improve perfor-
mance by enabling variable sample counts per ray. This adaptive sampling scheme
exploits the fact that AdaNeRF uses fixed sample locations along the ray that
can at most contain exactly one sample. First, we add an adaptive sampling
threshold 7 that defines the cutoff point for the sampling network’s predictions 8.
This enables us to save shading network evaluations in regions that do not require
more than a few samples (such as a uniformly colored sky or simple geometric
objects), which in turn increases the overall efficiency of our pipeline. Then, we
limit the maximum number of allowed samples to N4z, and distinguish between
the following cases, depending on the number of sampling network predictions
N, that exceed the threshold 7:
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1. Ns =0 : If no sampling network predictions §; exceed 7, we place one sample
at the center of the ray segment corresponding to the sampling network’s
largest prediction.

2. Ng < Npae @ If the number of sampling network predictions §; that exceed 7
is at most Ny,q., We place samples at the center of all of their segments.

3. Ng > Npaz ¢ If the number of sampling network predictions §; that exceed
is more than our maximum number of allowed samples N,,q., we place one
sample each at the center of the N,,., largest predictions.

This adaptive sampling scheme can be efficiently implemented on GPUs using
warp communication primitives, enabling further efficiency gains compared to
typical importance sampling setups that first need to generate a cumulative
distribution function from a probability density function. Note that our approach
is the first neural representation that relies on volume integration and (1) can go
down to a single sample per ray and (2) supports variable sample counts per ray
without the need for a spatial data structure.

4 Evaluation

Implementation Details. We follow the network architecture of DONeRF [22],
using MLPs consisting of 8 layers with 256 units for both the sampling and
shading networks. For the DONeRF dataset, we logarithmically space samples
along each ray and unify rays [22]. For the LLFF dataset, we sample in normalized
device coordinates [20]. We use Adam [12] with a learning rate of 5e~* in training.
We configure our 4-phase training scheme (Section 3.2) in the following order:
25k iterations of dense training, 50k iterations sparsification, 225k iterations
sparse training, and 300k iterations fine-tuning. We vary the adaptive sampling
threshold 7 in comparison to other baselines at similar average sample counts.
As a starting point, for the MSE loss of the sampling network (Equ. 1, Equ. 2)
we use A\g = 0.001, and for the sparsity loss of the sampling network (Equ. 3,
Equ. 2) we use A; = 1.0. Please refer to the supplementary material for per-scene
loss weights that were found by grid search and used in our evaluation. Finally,
for the real-time performance comparison, we implemented a custom real-time
renderer using CUDA and TensorRT to take advantage of our adaptive sampling
strategy. All results were evaluated on a single Nvidia RTX 3090.

4.1 Ablation Studies

We provide an ablation study to validate the design of our 4-phase training
scheme (Section 3.2) and our adaptive sampling strategy (Section 3.2), averaged
across the Pavillon scene of DONeRF dataset. The number of iterations for each
phase was determined in small-scale experiments and could be further optimized
for training speed or image quality.
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Table 1: Ablation of the 4-phase training scheme of AdaNeRF, using two maximum
sample counts of Ny, = [2,4] on the Pavillon scene of the DONeRF dataset.

Nma:c =2 Nmaz =4
Method N / Ray PSNR 1|N / Ray PSNR 1
1) AdaNeRF | 2.00 28.25| 399 29.33
2) No dense training 1.99 27.69 3.54 29.23
3) No sparsification blending 1.66 27.33 2.75 28.44
4) No weight multiplication 1.00 24.75 1.00 24.73
5) Only shading density supervision| 1.00 24.72 1.00 24.73
6) No shading density supervision 2.00 27.82 4.00 28.86
7) No sparse training 2.00 21.38 4.00 28.39

Training Scheme Tab. 1 shows the ablation of our training scheme. Without (2)
dense training or (3) sparsification, we observe a minor degradation in quality. If
dense training is skipped, the shading network provides less accurate information
to the sampling network; if sparsification is skipped, the sampling network is
abruptly forced to be sparse by switching from “fully dense” to “fully sparse’
training immediately instead of blending between them, losing potentially im-
portant samples in the process. Removing the (4) density multiplication in the
ray accumulation function (Equ. 1) results in the sampling network collapsing
to a constant output—the ¢;-loss as the only supervision signal is insufficient
to stabilize the sampling network. Similarly, using (5) ¢1-loss supervision from
the shading network as the sole optimization criterion (Equ. 3) leads to the
sampling network collapsing towards the mean density of all rays. Removing
(6) the shading density supervision ¢;-term from Equ. 3 still produces reason-
able sampling networks, at a quality degradation due to the lack of additional
supervision. Finally, removing (7) the sparse training directly fine-tunes after
sparsification. The resulting shading networks are not adapted to the sparsified
sampling networks, significantly reducing quality.

Y

Adaptive Sampling We sweep the threshold 7 between [0.05,0.40] and compare
the resulting quality against fixed sample counts of N = [8,16], see Tab. 2.
Compared to the fixed sample count of N = 8, the adaptive variant reaches
similar quality between 5.07 and 6.16 samples per pixel, showing the increased
efficiency even at lower sample counts. As average sample counts increase, the
sampling network has much more freedom in placing the samples, and thus can
outperform the quality of N = 16 fixed samples at just 7.76 samples.

4.2 Results

We show a quantitative and qualitative evaluation of AdaNeRF on a variety
of datasets against several baseline methods. We measure the quality of the
rendered images in PSNR, and report the number of parameters required to store
each method (using uncompressed 32-bit floating point) to evaluate compactness.
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Table 2: On the Pavillon scene of the DONeRF dataset, our adaptive sampling
scheme manages to achieve higher quality at average sample counts of 6.16 and
7.76, compared to fixed sample counts of N = [8, 16].

‘ Fixed ‘ Adaptive

0.05 0.1 015 0.2 025 03 035 04
12.10 11.89 11.63 11.03 9.73 7.76 6.16 5.07
31.66 31.66 31.68 31.66 31.62 31.07 30.64 30.24

Threshold 7
Samples per Ray
PSNR?t

16.00 8.00
30.89 30.40

We further present real-time rendering timings measured via TensorRT and
CUDA. Please refer to the supplementary material for more visual comparisons,
a discussion on training speed and a discussion on how to interleave multiple
AdaNeRF for larger scenes.

Datasets. We evaluate our method using the following datasets.
— The DONeRF [22] dataset contains synthetic indoor and outdoor scenes

of small to very large scales that are path-traced using Blender at a resolution
of 800 x 800, with the cameras aimed at the forward hemisphere of their
bounding box.

— The LLFF [19] dataset contains forward-facing real-world scenes captured

using a handheld camera, which we scale to a resolution of 1008 x 756. We
follow the convention [19] of holding out every 8th image for testing.

Baselines. Besides comparing to NeRF [20], we compare AdaNeRF to related
work that focused on improving sampling efficiency and rendering performance:
— DONEeRF [22]: DONeRF uses a depth oracle network trained on depth

maps to improve sampling efficiency. For all experiments, we train the oracle
network using depth maps extracted from a pre-trained coarse NeRF.
TermiNeRF* [27]: TermiNeRF* learns a sampling network based on the
density of a pre-trained NeRF. We follow the input encoding of DONeRF,
and further use 128 fixed sample locations for the targets extracted from the
pre-trained coarse NeRF', avoiding resampling and filtering of the targets.
AutolInt [14]: AutoInt learns automatic integration via a sampling network.
We compare AdaNeRF to Autolnt on a lower resolution version of the LLFF
dataset, which was provided in the authors’ original paper.

Plenoxels [44]: Plenoxels uses a sparse grid with trilinear interpolation
to directly learn a scene representation via spherical harmonics, without
neural networks. For unbounded scenes, Plenoxels uses a multi-sphere-image
background model in combination with its sparse foreground grid model.
Instant-NGP [21]: Instant-NGP uses a hierarchical hash table to store most
of its representation, with only tiny MLPs used to trilinearly interpolate the
hash table entries along each ray. We show results for the default hash table

size of 219, as well as the authors’ suggested smaller and faster alternative of
214,
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For both DONeRF and TermiNeRF*, we first train a coarse-only NeRF at 128
samples per ray with 8 hidden layers with 256 units each. We compare AdaNeRF
to DONeRF and TermiNeRF* with fixed sample counts of N = [2,4, 8,16]. For
Plenoxels we use configurations provided by the authors: Plenozels uses a sparse
grid resolution of 2563. Plenoxels-MSI adds a background model with 64 layers.
Plenozels-Large uses the authors’ provided checkpoints for the LLFF dataset,
which are significantly more dense. For all baselines, we use the available open
source code, and the authors’ suggested settings unless otherwise specified.

Quality We present average output quality, memory footprint and render times
for the DONeRF and LLFF datasets in Table 3, and example outputs in Figure 3.
Additional examples, per-scene data, depth reconstructions and sample placement
visualizations can be found in the supplementary material.

For the DONeRF dataset, Instant-NGP-2' achieves the best quality, followed
by all NeRF-based approaches with similar quality. Considering run-time, AdaN-
eRF shows the best tradeoff, allowing to choose between very fast rendering (at
3.7 samples) and competitive quality or high-quality (at 7.0 samples) and 2x
speed improvement over DONeRF and TermiNeRF* at the same quality. AdaN-
eRF only falls behind DONeRF and TermiNeRF* in image quality at extremely
low sample counts while achieving greater speed improvement, suggesting that
AdaNeRF operates most variably at a slightly higher sample counts. Considering
memory foot footprint, AdaNeRF achieves equal or better quality than Plenoxels
at a 48 — 215x reduction in memory and similar run-time. Instant-NGP-29 is
similar to AdaNeRF considering all three tradeoffs: it achieves higher quality at
a higher memory and run-time cost, or similar quality with lower memory but
higher run-time. For the LLFF dataset, the highest quality is achieved by NeRF,
Plenoxels-Large, and AdaNeRF at 10.2 samples. Compared to other sampling-
network based approaches, AdaNeRF clearly outperforms the state-of-the-art,
achieving better quality than TermiNeRF* at less than half the sample count and
frame time. Again, considering memory footprint and performance, both NeRF
and Plenoxels show significant drawbacks compared to AdaNeRF: Plenoxels
requires 3.6 GB of memory for its representation and NeRF takes 2.8 seconds to
render a single frame. Interestingly, Instant-NGP (2! and 2'*) perform worse
than AdaNeRF for this data set. Compared to Autolnt, AdaNeRF achieves better
quality at much faster rendering speeds. In summary, our adaptive fully neural
representation shows state-of-the-art image quality at equal or better run-time
performance and memory footprint, without requiring explicit data structures.

Real-time Rendering Performance We evaluate the real-time rendering per-
formance of our AdaNeRF TensorRT and CUDA prototype against all baselines,
see Table 3 (Columns “Time”). For all baselines except for Plenoxels, we evaluate
their optimal rendering performance by computing the maximum throughput
of identical networks in TensorRT, conservatively ignoring any additional input
processing or differences in encoding. For Plenoxels, we evaluate the rendering
performance using the authors’ provided implementation.
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Flower T-Rex Pavillon Classroom

~ 11 samples Ground Truth

NeRF TermiNeRF* AdaNeRF
~ 200 MB 256 samples 16 samples

Plenoxels

Instant-NGP
Size 21°

Fig. 3: Details on four test scenes, showing that AdaNeRF is similar in quality
to the significantly slower NeRF and outperforms TermiNeRF* at lower sample
counts. While using 50x more memory, Plenoxels tends to blur or leave out
geometry due to lack of resolution in its grid. Instant-NGP achieves similar
quality to AdaNeRF, while being slightly slower and requiring 16 x more memory.
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Table 3: Image quality, render time and memory footprint comparison on the
DONeRF [22] and LLFF [19] datasets. Best results are displayed as ,

and per category.
DONeRF [22] Dataset LLFF [19] Dataset LLFF [19] Dataset
(800 x 800) (1008 x 756) (504 x 378)

Memory|Samples Time Quality|Samples Time Quality|Samples Time Quality
Method [MB] |per Ray [ms]) PSNR?|per Ray [ms]] PSNR?|per Ray [ms]] PSNR?}
AdaNeRF 1.9 FIE] 24.8 2.0 IO 22.0 20 FF] 218
AdaNeRF 3.7 % 27.5 3.9 EHXJ 24.0 3.9 23.3
AdaNeRF 7.0 789 295 6.9 927 25.2 (8244 25.1
AdaNeRF 12.6 130.6 10.2 129.6 10.6 36.1 Pl
DONeRF 2.0 51.3 27.9 2.0 61.1  20.9 - - -
DONeRF 4.0 86.3 288 4.0 102.7 21.6 - - -
DONeRF 8.0 156.3  29.8 8.0 186.1  22.3 - - -
DONeRF 16.0 296.2 16.0 352.7 229 - - -
TermiNeRF* 2.0 51.3  27.2 2.0 61.1 217 - - -
TermiNeRF* 4.0 86.3  28.2 4.0 102.7 223 - - -
TermiNeRF* 8.0 156.3  29.2 8.0 186.1  23.0 - - -
TermiNeRF* 16.0 296.2  29.8 16.0 352.7  23.6 - - -
NeRF 256.0 2360.7 256.0 2810.9  EIIH| - - -
Autolnt 4.5 - - - - - - 16.0 44.6  24.1
Autolnt 4.5 - - - - - - 32.0 83.5  24.9
Autolnt 4.5 - - - - - - 64.0 176.4
Plenoxels 198.7 - 27.1 - 24.3 - - -
Plenoxels-MSI 892.9 - 29.6 - - - - - -
Plenoxels-Large | 3629.8 - - - - 110.1 - - -
Instant-NGP-214 m - 102.1 29.4 - 100.7  24.8 - - -
Instant-NGP-2'°| 64.0 - 161.8 - 137.0  25.6 - - -

In terms of real-time rendering performance vs. memory footprint, AdaNeRF
at a maximum sample count of 2 achieves the best trade-off, being able to
render scenes at an average frame rate of 26 frames per second at a resolution of
1008 x 756. The increased efficiency compared to DONeRF and TermiNeRF* (at
identical sample counts) comes from the optimized adaptive sampling kernels of
AdaNeRF, which can lead to a massive speedup. At equal rendering performance,
AdaNeRF achieves significantly better quality compared to previous sampling-
network based approaches, such as DONeRF, TermiNeRF* and Autolnt on
both the DONeRF and LLFF datasets. At equal or improved quality, AdaNeRF
outperforms DONeRF by up to 5x, TermiNeRF* by up to 6x and Autolnt by
up to 7x. Compared to the densely sampled NeRF, our largest AdaNeRF shows
a 20x increase in run-time, and the smallest AdaNeRF outperforms NeRF by up
to 74x. Compared to the highly optimized Instant-NGP, AdaNeRF achieves a
comparable trade-off between quality and run-time, achieving up to a 2x increase
in run-time at equal quality. The best trade-off between quality and run-time
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is reached by Plenoxels, which represent their scene within a large sparse grid,
with an additional optional multi-sphere image background model. Although this
enables real-time rendering for single scenes, the immense memory requirements
of up to multiple gigabytes prevent use-cases such as streaming or splitting
complex environments into multiple representations.

The breakdown of frame time for the individual stages of AdaNeRF at a
sample count of 2 is given as: 1.54 ms to generate the encoded inputs for the
sampling network, 10.86 ms to evaluate the sampling network, 1.02 ms to generate
the adaptively sampled inputs for the shading network, 18.16 ms to compute
the shading network inference, and 0.38 ms for the final ray accumulation. Thus,
our adaptive sampling kernels and overall pipeline exhibit only minor overheads
compared to the inference workload, which constitutes most of the frame time.
Furthermore, with higher average sample counts, the majority of additional
compute load is added to the inference stages, and does not increase the overhead
of input processing. Overall, AdaNeRF fills a gap in the performance-quality-
memory trifecta, being extremely fast at a compact memory footprint, at a low
cost in image quality for certain scenes.

5 Limitations and Future Work

Although AdaNeRF already achieves promising results on real-world data, our
evaluation does not optimize for camera parameters, and thus can suffer from input
data that is not perfectly consistent. Especially for very low sample counts (see
Tab. 3), getting precise surface information is crucial to achieve good quality, and
adding an additional optimization step for camera parameters and/or consistency
in lighting could further improve results. Second, the threshold for adaptive
sampling, as well as the weights of the main optimization function (maximizing
the sampling network’s sparsity while preventing a collapse) influences the sparsity
of AdaNeRF, affecting the overall quality and real-time performance. While these
parameters can be fairly robustly applied across different datasets, a grid search
is recommended for best performance. In the future, these parameters could be
learned from data to save the time for hyperparameter tuning.

6 Conclusion

We have introduced AdaNeRF, a compact real-time dual-network neural represen-
tation that can be trained fully end-to-end via a soft student-teacher optimization
scheme. It is the first of its kind to adaptively place a very low amount of samples
for each individual ray. We significantly outperform previous work that utilized
sampling networks for very low sample count neural representations. Due to
the compact nature of our neural representation, we additionally showed how
multiple models can be blended in overlapping regions, which opens the door for
real-time rendering of dynamically streamed neural representations of complex
environments. We believe that such a fully neural real-time representation can be
a useful alternative to approaches that require explicit spatial data structures.
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