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Abstract. Traditional 2D animation is labor-intensive, often requiring
animators to manually draw twelve illustrations per second of movement.
While automatic frame interpolation may ease this burden, 2D anima-
tion poses additional difficulties compared to photorealistic video. In this
work, we address challenges unexplored in previous animation interpo-
lation systems, with a focus on improving perceptual quality. Firstly, we
propose SoftsplatLite (SSL), a forward-warping interpolation architec-
ture with fewer trainable parameters and better perceptual performance.
Secondly, we design a Distance Transform Module (DTM) that lever-
ages line proximity cues to correct aberrations in difficult solid-color re-
gions. Thirdly, we define a Restricted Relative Linear Discrepancy metric
(RRLD) to automate the previously manual training data collection pro-
cess. Lastly, we explore evaluation of 2D animation generation through a
user study, and establish that the LPIPS perceptual metric and chamfer
line distance (CD) are more appropriate measures of quality than PSNR
and SSIM used in prior art.
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1 Introduction

Traditional 2D animators typically draw each frame manually; this process is
incredibly labor-intensive, requiring large production teams with expert train-
ing to sketch and color the tens of thousands of illustrations required for an
animated series. With the growing global popularity of the traditional style, stu-
dios are hard-pressed to deliver high volumes of quality content. We ask whether
recent advancements in computer vision and graphics may reduce the burden on
animators. Specifically, we study video frame interpolation, a method of au-
tomatically generating intermediate frames in a video sequence. In the typical
problem formulation, a system is expected to produce a halfway image naturally
interpolating two given consecutive video frames. In the context of animation, an
animator could potentially achieve the same framerate for a sequence (or “cut”)
by manually drawing only a fraction of the frames, and use an interpolator to
generate the rest.

Though there is abundant work on video interpolation, 2D animation poses
additional difficulties compared to photorealistic video. Given the high manual
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cost per frame, animators tend to draw at reduced framerates (e.g. “on the twos”
or at 12 frames/second), increasing the pixel displacements between consecutive
frames and exaggerating movement non-linearity. Unlike in natural videos with
motion blur, the majority of animated frames can be viewed as stand-alone cel
illustrations with crisp lines, distinct solid-color regions, and minute details. For
this non-photorealistic domain with such different image and video features, even
our understanding of how to evaluate generation quality is limited.

Previous animation-specific interpolation by Li et. al. (AnimeInterp [37])
approached some of these challenges by improving the optical flow estimation
component of a deep video interpolation system by Niklaus et. al. (Softsplat
[24]); in this paper, we build upon AnimeInterp by addressing some remaining
challenges. Firstly, though AnimeInterp improved optical flow, it trained with
an L1 objective and did not modify the Softsplat feature extraction, warping, or
synthesis components; this results in blurred lines/details and ghosting artifacts
in supposedly solid-color regions. We alleviate these issues with architectural
improvements in our proposed SoftsplatLite (SSL) model, as well as with an
additional Distance Transform Module (DTM) that refines outputs using do-
main knowledge about line drawings. Secondly, though AnimeInterp provided
a small ATD12k dataset of animation frame triplets, the construction of this
dataset required intense manual filtering of evenly-spaced triplets with linear
movement. We instead automate linear triplet collection from raw animation
by introducing Restricted Relative Linear Discrepancy (RRLD), enabling large-
scale dataset construction. Lastly, AnimeInterp only focused on PSNR/SSIM
evaluation, which we show (through an exploratory user study) are less indica-
tive of percieved quality than LPIPS [45] and chamfer line distance (CD). We
summarize the contributions of this paper:

1. SoftsplatLite (SSL): a forward-warping interpolation architecture with
fewer trainable parameters and better perceptual performance. We tailor
the feature extraction and synthesis networks to reduce overfitting, propose
a simple infilling method to remove ghosting artifacts, and optimize LPIPS
loss to preserve lines and details.

2. Distance Transform Module (DTM): a refinement module with an aux-
iliary domain-specific loss that leverages line proximity cues to correct aber-
rations in difficult solid-color regions.

3. Restricted Relative Linear Discrepancy (RRLD): a metric to quantify
movement non-linearity from raw animation; this automates the previously
manual training data collection process, allowing more scalable training.

4. Perceptual user study: we explore evaluation of 2D animation generation,
establishing the LPIPS perceptual metric and chamfer line distance (CD) as
more appropriate quality measures than PSNR/SSIM used in prior art.

2 Related Work

Much recent work has been published on photorealistic video interpolation.
Broadly, these works fall into phase-based [21, 22], kernel-based [26, 25], and
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Fig. 1. We improve the perceptual quality of 2D animation interpolation from previous
work. (a) Overlaid input images to interpolate; (b) AnimeInterp by Li et. al. [37]; (c)
Our proposed method; (d) Ground truth interpolation. Note the destruction of lines
in (b) compared to (c), and the patchy artifacts ghosted on the teapot in (b). Our user
study validates our focus on perceptual metrics and artifact removal.

flow-based methods [24, 16, 28, 43], with others using a mix of techniques [1, 2,
6]. The most recent state-of-the-art has seen more flow-based methods [24, 28],
following corresponding advancements in optical flow estimation [14, 39, 15, 40].
Flow-based methods can be further split by forward [24], or backward [28] warp-
ing. The prior art most directly related to ours is AnimeInterp, by Li et. al. [37].
While they laid the groundwork for the problem specific to the traditional 2D
animation domain, their system had many shortcomings that we overcome as
described in the introduction section.

Even though we focus on animations “post-production” (i.e. interpolating
complete full-color sequences), there is also a body of work on automating more
specific components of animation production itself. For example, sketch simpli-
fication [36, 35] is a popular topic with applications to speeding up animation
“tie-downs” and “cleanups”. There are systems for synthesizing “in-between”
line drawings from sketch keyframes in both raster [23, 44] and vector [42, 7]
form. While the flow-based in-betweening done by Narita et. al. [23] shares sim-
ilarity to our work (such as the use of chamfer distance and forward warping),
their system composed pretrained models without performing any form of train-
ing. Another related problem is sketch colorization, with application to both
single illustrations [31] and animations [30, 20, 5]. These works unsurprisingly
highlight the foundational role of lines and sketches in animation, and we con-
tinue the trend by introducing a Distance Transform Module to improve our
generation quality.

3 Methodology

3.1 SoftsplatLite

As with AnimeInterp [37], we base our model on the state-of-the-art Softsplat
[24] interpolation model, which uses bidirectional optical flow to differentiably
forward-splat input image features for synthesis. Whereas AnimeInterp only fo-
cused on improving optical flow estimation, we assume a fixed flow estimator
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Fig. 2. Schematic of our proposed system. SoftsplatLite (SSL, Sec. 3.1) passes a predic-
tion to the Distance Transform Module (DTM, Sec. 3.2) for refinement. SSL uses many
fewer trainable parameters than AnimeInterp [37] to reduce overfitting, and introduces
an infilling step to avoid ghosting artifacts. DTM leverages domain knowledge about
line drawings to achieve more uniform solid-color regions. Artists: hariken, k.k.1

(the same RAFT [40] network from AnimeInterp, which they dub “RFR”). We
instead look more closely at feature extraction, warping, and synthesis; our pro-
posed SoftsplatLite (named similarly to PWC-Lite [19]) aims to improve conver-
gence on LPIPS [45] while also being parameter- and training-efficient. Please
see Fig. 2a for an overview of SSL.

We first note that the feature extractors in AnimeInterp [37] and Softsplat
[24] are relatively shallow. The extractors must still be trained, and rely on back-
propagation through the forward splatting mechanism. In practice, we found that
replacing the extractor with the first four blocks of a frozen ImageNet-pretrained
ResNet-50 [12] performs better; additionally, freezing the extractor contributes
to reduced memory usage and compute during training, as no gradients must
be backpropagated through the warping operations. Note that we also tried un-
freezing the ResNet, but observed slight overfitting.

Next, we observe that forward splatting results in large empty occluded re-
gions. If left unhandled during LPIPS training, these gaps often cause undesir-
able ghosting artifacts (see AnimeInterp [37] output in Fig. 3b). Additionally,
subtle gradients at the edge of moving objects in the optical flow field may result

1 hariken: https://danbooru.donmai.us/posts/5378938
k.k.: https://danbooru.donmai.us/posts/789765
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Fig. 3. SSL vs. AnimeInterp ft. [37]. Trained on the same ATD data [37] and LPIPS
loss [45], AnimeInterp encounters many “ghosting” artifacts, which we resolve in SSL
by proposing an inpainting technique.

in a spread of dots after forward warping; these later manifest as blurry patches
in AnimeInterp predictions (see Fig. 1b). To remove these artifacts, we propose
a simple infilling technique to generate a better warped feature stack F prior to
synthesis (“occlusion-mask infilling” in Fig. 2a):

F =
1

2
(M0→tW0→t(f(I0)) + (1−M0→t)W1→t(f(I1)))

+
1

2
(M1→tW1→t(f(I1)) + (1−M1→t)W0→t(f(I0))) (1)

Z1→0 = −0.1× ||LAB(I1)−W
′

0→1(LAB(I0))|| (2)

where Wa→b denotes forward warping from timestep a to timestep b, W
′
denotes

backwarping, M denotes the opened occlusion mask of the warp, I represents
either input image, and f represents the feature extractor. In other words, oc-
cluded features are directly infilled with warped features from the other source
image. The computation of mask M involves warping an image of ones, followed
by a morphological image opening with kernel k = 5 to remove dotted artifacts;
note that though opening is non-differentiable, no gradients are needed with re-
spect to the flow field as our flow estimator is fixed. Unlike AnimeInterp [37], we
do not use average forward splatting, and instead use the more accurate softmax
weighting scheme with negative L2 LAB color consistency as our Z-metric (sim-
ilar as in Softsplat [24]). While it is not guaranteed that this infilling method
will eliminate all holes (it is still possible for both warps to have shared occluded
regions), we find that in practice the majority of image areas are covered.

Lastly, for the synthesis stage, we opt for a much more lightweight U-Net
[33] instead of the GridNet [10] used in the original Softsplat [24]. We may
afford this thrifty replacement by carefully placing a direct residual path from
an initial warped guess to the final output. This follows the observation that
directly applying our previously-described infilling method to the input RGB
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Fig. 4. Effect of DTM. DTM effectively leverages line proximity cues (distance trans-
form) to refine SSL outputs. DTM not only removes minor aberrations from solid-color
regions (bottom), but also corrects entire enclosures if needed (top).

images produces a strong initial guess for the output; this is achieved by replacing
feature extractor f in Eq. 1 with the identity function. Instead of requiring a
large synthesizer to reconcile two sets of warped images and features into a single
final image, we employ a small network to simply refine a single good guess.
Under this architecture, the additional GridNet parameters become redundant,
and even contribute to overfitting.

Note that while SoftsplatLite and Softsplat have comparable parameter counts
at inference (6.92M and 6.21M respectively), the frozen feature extractor and
smaller synthesizer significantly reduces the number of trainable parameters
compared to the original (1.28M and 2.01M respectively). We later demonstrate
through ablations (Tab. 2) that lighter training and artifact reduction allow SSL
to score better on perceptual metrics like LPIPS and chamfer distance.

3.2 Distance Transform Module

As seen in Fig. 4b, SoftsplatLite may struggle to choose colors for certain re-
gions, or have trouble with large areas of flat color. These difficulties may be
partly attributed to the natural texture bias of convolutional models [11]; the
big monotonous regions of traditional cel animation would expectedly require
convolutions with larger perceptual fields to extract meaningful features. Instead
of building much deeper or wider models, we take advantage of line information
inherently present in 2D animation; hypothetically, providing line proximity in-
formation to convolutions may act as a form of “stand-in” texture that helps
the processing of cel-colored image data.

We thus propose a Distance Transform Module (DTM) to refine the SSL
outputs by leveraging a normalized version of the Euclidean distance transform
(NEDT). At a high level (see Fig. 2b), DTM first attempts to predict the ground
truth NEDT of the output (middle) frame, and then uses this prediction to refine
the SSL output through a residual block. To train the prediction of NEDT, we
introduce an auxiliary Ldt in addition to the Llpips on the final prediction, and
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Fig. 5. RRLD filtering. RRLD quantifies whether a triplet is evenly-spaced. We show
several overlaid triplets from our additional dataset ranked by RRLD; higher RRLD
(bottom) indicates deviation from the halfway assumption. As RRLD is fully auto-
matic, appropriate training data can be filtered from raw video at scale.

optimize a weighted sum of both losses end-to-end. The rest of this section
provides specifics on the implementation.

The first step is to extract lines from the input images; for this, we use the
simple but effective difference of gaussians (DoG) edge detector,

DoG(I) =
1

2
+ t(Gkσ(I)−Gσ(I))− ϵ, (3)

where Gσ are Gaussian blurs after greyscale conversion, k = 1.6 is a factor
greater than one, and t = 2 with ϵ = 0.01 are hyperparameters. Please see Fig.
6 for examples of DoG extraction. Next, we apply the distance transform. To
bound the range of values, we normalize EDT values to unit range similar to
Narita et. al. [23],

NEDT (I) = 1− exp{−EDT (DoG(I) > 0.5)

τd
}, (4)

where τ = 15/540 is a steepness hyperparameter, and d is the image height in
pixels. Note that we thresholded DoG at 0.5 to get a binarized sketch.

This normalized EDT is extracted from both input images, and warped
through the same inpainting procedure as Eq. 1; more precisely, f is replaced
by NEDT . DTM then uses this, as well as the extracted NEDT of SSL’s out-
put, to estimate the NEDT of the ground truth output frame. This prediction
occurs through a small convolutional network (first yellow box in Fig. 2b), and
is trained to minimize an auxiliary Ldt, the L1 Laplacian pyramid loss between
predicted and ground truth NEDTs. A final convolutional network (second yel-
low box in Fig. 2b) then incorporates the predicted NEDT to residually refine
the SSL output.
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Note that we detach the predicted NEDT image from the final RGB image
prediction gradients (“SG” for “stop-gradient” in Fig. 2b), in order to reduce
potentially competing signals from Ldt and the final image loss. It is also im-
portant to mention that since both DoG sketch extraction and EDT are non-
differentiable operations, the extraction of NEDT from the Softsplat output
cannot be backpropagated. However, we found that we could still reasonably
perform end-to-end training despite the required stop-gradient in this step.

Through this process, our DTM is able to predict the distance transform of
the output, and utilize it in the final interpolation. Experiments show that this
relatively cheap additional network is effective at improving perceptual perfor-
mance (Tab. 2).

3.3 Restricted Relative Linear Discrepancy

Unlike in the natural video domain, where almost any three consecutive frames
from a cut may be used as a training triplet, data collection for 2D animation is
much more ambiguous. Animators often draw at variable framerates with expres-
sive arc-like movements; when coupled with high pixel displacements, this results
in a significant amount of triplets with non-linear motion or uneven spacing.
However under the problem formulation, all middle frames of training triplets
are assumed to be “halfway” between the inputs. While forward warping pro-
vides a way to control the interpolated t ∈ [0, 1] at which generation occurs, it
is ambiguous to label such ground truth for training. Li et. al. in AnimeInterp
[37] manually filter through more than 130,000 triplets to arrive at their ATD
dataset with 12,000 samples, a costly manual effort with less than 10% yield.

In order to automate the training data collection process from raw anima-
tion data, we quantify the deviance of a triplet from the halfway assumption
with a novel Restricted Relative Linear Discrepancy (RRLD) metric, and filter
samples based on a simple threshold. In our experiments (Tab. 2), we demon-
strate that selecting additional training data with RRLD improves generalization
error, whereas training on naively-collected triplets damages performance. We
additionally show that RRLD largely agrees with ATD, and that RRLD is ro-
bust to choice of flow estimator (Sec. 4.1). Please see Fig. 5 for example triplets
accepted or rejected by RRLD. The rest of this section provides specifics of the
filtering method. We define RRLD as follows,

RRLD(ω0→t, ω1→t) =
1

|Ω|
∑

(i,j)∈Ω

||ω0→t[i, j] + ω1→t[i, j]||/2
||ω0→t[i, j]− ω1→t[i, j]||

, (5)

where ω are forward flow fields extracted from consecutive frames I0 and It and
I1, and Ω denotes the set of (i, j) pixel coordinates where both flows have norms
greater than threshold 2.0 and point to pixels within the image.

RRLD takes as input flow fields from the middle frame It to the end frames,
and assumes they are correct. The numerator of Eq. 5 represents the distance
from pixel (i, j) to the midpoint between destination pixels, while the denom-
inator describes the total distance between destination pixels. In other words,
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Fig. 6. Line and detail preservation. (a) AnimeInterp prediction; (b) our full model
(SSL+DTM); (c) ground truth; (middle) extracted DoG lines; (bottom) normalized
Euclidean distance transform. AnimeInterp blurs lines and details that are critical to
animation; by focusing on perceptual metrics like LPIPS and chamfer distance (CD),
we improve the generation quality.

the interior of the summand is half the ratio between the diameters of a parallel-
ogram formed by two flow vectors; this measures the relative distance from the
actual to the ideal halfway point. As the estimated flows are noisy, we average
over a restricted set of pixels Ω. We first remove pixels with displacement close
to zero, where a low denominator results in unrepresentatively high discrepancy
measurement. Then, we also filter out pixels with flows pointing outside the im-
age, which are often poor estimates. The final RRLD gives a rough measure of
deviance from the halfway-frame assumption, for which we may define a cutoff
(0.3 in this work).

One caveat to this method is that pans must be discarded. In some cases,
a non-linear animation may be composited onto a panning background; RRLD
would then include the linearly-moving background in Ω, lowering the overall
measurement despite having a nonlinear region of interest. We simply remove
triplets with large Ω, high average flow magnitude, and low flow variance. It
is possible to reintroduce panning effects through data augmentation if needed,
though we did not for our training.

Another important point is that even though animators may draw at fram-
erates like 12 or 8, the final raw input videos are still at 24fps. Thus, many
consecutive triplets in actuality contain two duplicates, which leads to RRLD
values around 0.5; had the duplicate been removed, an adjacent frame outside
the triplet may have had a qualifying RRLD. In order to maximize the data yield,
we also train a simple duplicate frame detector, using linear regression over the
mean and maximum L2 LAB color difference between consecutive frames.

3.4 User Study & Quality Metrics

We perform a user study in order to evaluate our system and explore the rela-
tionship between metrics and perceived quality. To get a representative subset
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of the ATD test set, on which we perform all evaluations, we select 323 ran-
dom samples in accordance with Fischer’s sample size formula (with population
2000, margin of error 5%, and confidence level 95%). For each sample triplet,
users were given a pair of animations playing back and forth at 2fps, cropped
to the region-of-interest annotation provided by ATD. The middle frame of each
animation was a result generated either by our best model (on LPIPS), or by
the pretrained AnimeInterp [37]. Participants were asked to pick which anima-
tion had: clearer/sharper lines, more consistent shapes/colors, and better overall
quality. Complete survey results, including several random animation pairs com-
pared, are available in the supplementary.

Our main metric of interest is LPIPS [45], a general measure of perceived
image quality based on deep image classification features. We are interested in
understanding its applicability to non-photorealistic domains like ours, especially
in comparison with PSNR/SSIM used in prior work [37].

We additionally consider the chamfer distance (CD) between lines extracted
from the ground truth vs. the prediction. The chamfer metric is typically used in
3D work, where the distance between two point clouds is calculated by averaging
the shortest distances from each point of one cloud to a point on the other. In
the context of binary line drawings extracted from our data using DoG (Eq. 3),
the 3D points are replaced by all 2D pixels that lie on lines. As chamfer distance
would intuitively measure how far lines are from each other in different images,
we explore the importance of this metric for our domain with images based on
line drawings. Please see Fig. 6 for examples of CD evaluation. In this work, we
define chamfer distance as:

CD(X0, X1) =
1

2HWD

∑
X0DT (X1) +X1DT (X0) (6)

where X are binary sketches with 1 on lines and 0 elsewhere, DT denotes the
Euclidean distance transform, the summation is pixel-wise, and HWD is the
product of height, width, and diameter. We normalize by both area and diameter
to enforce invariance to image scale. Note that our definition is symmetric with
respect to prediction and ground truth, zero if and only if they are equal, and
strictly non-negative. Also observe that as neither DoG binarization nor DT is
differentiable, CD cannot be optimized directly by gradient descent training;
thus it is used for evaluation only.

4 Experiments & Discussion

We implement our system in PyTorch [29] wrapped in Lightning [8], with Kornia
[32]. Our model uses the same RFR/RAFT with SGM flows as AnimeInterp for
fairer comparison [37, 40], and forward splatting is done with the official Softsplat
[24] module. We train with the Adam [17] optimizer at learning rate α = 0.001
for 50 epochs, and accumulate gradients for an effective batch size of 32. Our code
uses the official LPIPS [45] package, with the AlexNet [18] backbone. All training
minimizes the total loss L = λlpipsLlpips + λdtLdt, where λlpips = 30; depending
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Table 1. Comparison with baselines. Our full proposed method achieves the best
perceptual performance, followed by AnimeInterp [37]. We show in our user study (Sec.
4.4) that LPIPS/CD are better indicators of quality than the PSNR/SSIM focused on
in previous work; we list them here for completeness. Models from prior work are fine-
tuned on LPIPS for fairer comparison. Best values are underlined, runner-ups italicized;
LPIPS is scaled by 1e2, CD by 1e5.

All Eastern Western
Model LPIPS CD PSNR SSIM LPIPS CD LPIPS CD

DAIN [1] 4.695 5.288 28.840 95.28 5.499 6.537 4.204 4.524
DAIN ft. [1] 4.137 4.851 29.040 95.27 4.734 5.888 3.771 4.217
RIFE [13] 4.451 5.488 28.515 95.14 4.933 6.618 4.156 4.796
RIFE ft. [13] 4.233 5.411 27.977 93.70 4.788 6.643 3.894 4.658
ABME [28] 5.731 7.244 29.177 95.54 7.000 10.010 4.955 5.552
ABME ft. [28] 4.208 4.981 29.060 95.19 4.987 6.092 3.732 4.302
AnimeInterp [37] 5.059 5.564 29.675 95.84 5.824 7.017 4.590 4.674
AnimeInterp ft. [37] 3.757 4.513 28.962 95.02 4.113 5.286 3.540 4.039

Ours 3.494 4.350 29.293 95.15 3.826 4.979 3.291 3.966

on whether DTM is trained, λdt is either 0 or 5. Evaluations are run over the
2000-sample test set from AnimeInterp’s ATD12k dataset; however we only train
on a random 9k of the remaining 10k in ATD, so that we can designate 1k for
validation. Similar to Li et. al. [37], we randomly perform horizontal flips and
frame order reversal augmentations during training. We use single-node training
with at most 4x GTX1080Ti at a time, with mixed precision where possible. All
models are trained and tested at 540x960 resolution.

We wrote a custom CUDA implementation for the distance transform and
chamfer distance using CuPy [27] that achieves upwards of 3000x speedup from
the SciPy CPU implementation [41]; the algorithm is a simpler version of Felzen-
szwalb et. al. [9], where we calculate the minimum of the lower envelope through
brute iteration. While more efficient GPU algorithms are known [4], we found
our implementation sufficient.

4.1 RRLD Data Collection

As RRLD was designed to replicate the manual selection of training data, we
applied RRLD to AnimeInterp’s ATD dataset [37] and achieved 95.3% recall
(i.e. RRLD only rejected less than 5% of human-collected data); as the negative
samples from the ATD collection process are not available, it is not possible to
calculate RRLD’s precision on ATD. Additionally we study the effect of flow
estimation on RRLD, finding that filtering with FlowNet2 [14] and RFR flows
[37] returns very similar results (0.877 Cohen’s kappa tested over 34,128 triplets).

We use our automatic pipeline to collect additional training triplets. We
source data from 14 franchises in the eastern “anime” style, with premiere dates
ranging from 1989-2020, totalling 239 episodes (roughly 95hrs, 8.24M frames at
24fps); please refer to our supplementary materials for the full list of sources.
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Table 2. Ablations of proposed methods. Firstly, each component of SSL contributes
to performance (especially infilling). Secondly, new data filtered naively hurts per-
formance, while new RRLD-filtered data helps. Lastly, DTM improvement is due to
auxiliary supervision, not just increased parameter count. AnimeInterp ft. is copied
from Tab. 1 for comparison; the last row here and in Tab. 1 are equivalent. Best values
are underlined, runner-ups italicized; LPIPS is scaled by 1e2, CD by 1e5.

All Eastern Western
Model Data LPIPS CD LPIPS CD LPIPS CD

AnimeInterp ft. [37] ATD 3.757 4.513 4.113 5.286 3.540 4.039

SSL (no flow infill) ATD 3.648 4.496 4.026 5.160 3.416 4.089
SSL (no U-net synth.) ATD 3.614 4.579 3.982 5.288 3.389 4.146
SSL (no ResNet extr.) ATD 3.605 4.739 3.957 5.429 3.391 4.317
SSL ATD 3.586 4.572 3.940 5.248 3.369 4.158

SSL ATD+naive 3.702 4.811 3.997 5.033 3.521 4.675
SSL ATD+RRLD 3.535 4.431 3.873 5.089 3.329 4.028

SSL+DTM (no Ldt) ATD+RRLD 3.531 4.430 3.865 4.995 3.327 4.085
SSL+DTM ATD+RRLD 3.494 4.350 3.826 4.979 3.291 3.966

Table 3. User study results. For each of the visual criteria we asked the users to judge
(rows), we list the percentage of instances where users preferred the animation with a
better metric score (columns). Values above 50% indicate agreement between queried
criteria and metric score difference, and values under 50% indicate contradiction. “Pref.
Ours” means percent of users preferring our output to AnimeInterp [37] for that criteria.

Prefer Lower Lower Higher Higher
Criteria Ours LPIPS CD PSNR SSIM

cleaner/sharper lines 86.01% 86.56% 78.20% 18.95% 15.48%
more consistent shape/color 78.82% 79.26% 73.99% 25.02% 22.66%
better overall quality 81.11% 81.55% 75.67% 22.97% 19.88%

Here, RRLD was calculated using FlowNet2 [14] as inference was faster than
RFR [37]. While RRLD filtering presents us with 543.6k viable triplets, we only
select one random triplet per cut to promote diversity; the cut detection was
performed with a pretrained TransNet v2 [38]. This cuts down eligible samples
to 49.7k. For the demonstrative purposes of this paper, we do not train on the
full new dataset, and instead limit ourselves to doubling the ATD training set
by randomly selecting 9k qualifying triplets. Please see Fig. 5 for examples of
accepted and rejected triplets from franchises set aside for validation.

While we cannot release the new data collected in this work, our specific
sources are listed in the supplementary and our RRLD data collection pipeline
will be made public; this allows followup work to either recreate our dataset or
assemble their own datasets directly from source animations.
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4.2 Comparison with Baselines

The main focus of our work is to improve perceptual quality, namely LPIPS
and chamfer distance (as validated later by our user study results). We gather
four existing frame interpolation systems (ABME [28], RIFE [13], DAIN [1],
and AnimeInterp [37]) for comparison to our full model incorporating all our
proposed methods. For a fairer comparison, as other models may not have been
trained on the same LPIPS objective or on animation data, we fine-tune their
given pre-trained models with LPIPS on the ATD training set. As we can see
from Tab. 1, our full proposed method achieves the best perceptual performance,
followed by AnimeInterp. To provide more complete information on trainable
parameters, our model has 1.28M (million) compared to: AnimeInterp 2.01M,
RIFE 13.0M, ABME 17.5M, DAIN 24.0M. Breaking down further, our model
consists of 1.266M for SSL and 0.011M for DTM.

4.3 Ablation Studies

We perform several ablations in Tab. 2. In the first group, each of the modifica-
tions to Softsplat [24] (frozen ResNet [12] feature extractor, infilling, U-net [33]
replacing GridNet [10]) contributes to SSL outperforming AnimeInterp [37]. The
infilling technique improves performance the most.

In the second group of Tab. 2, we ablate the addition of new data filtered by
RRLD (Sec. 4.1). Training with RRLD-filtered data improves generalization as
expected. To demonstrate the necessity of RRLD’s specific filtering strategy, we
train with an alternative dataset of equal size gathered from the same sources,
but using a “naive” filtering approach. For simplicity, we directly follow the
crude filter used in creating ATD [37]: no two frames of a triplet may contain
SSIM outside [0.75, 0.95]. We see this naively-collected data actively damages
model performance, validating the use of our proposed RRLD filter.

Splitting by eastern vs. western style, we clarify the distribution shift between
sub-domains. Note that our new data is all anime, whereas 62.05% of ATD test
set is in the western “Disney” style. From the LPIPS results, the eastern style is
more difficult; adding eastern-only RRLD data has unexpectedly less of an effect
on eastern testing than western. This may be because western productions tend
to prioritize fluid motion (smaller displacements) over complex character designs
(more details), contrary to the eastern style.

In the last group of Tab. 2, we train SoftsplatLite with DTM, but ablate the
effect of additionally optimizing for Ldt; this way, we may see whether auxiliary
supervision of NEDT improves performance under the same parameter count.
Note that the upper yellow convnet of Fig. 2b receives no gradients in the ab-
lation, effectively remaining at its random initialization. The results show that
the prediction of line proximity information indeed contributes to performance.

4.4 User Study Results

We summarize the user study results in Tab. 3, and provide the full breakdown
with sample animations in the supplementary. Our study had 5 participants,
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meaning each entry of Tab. 3 has support 1615 (323 compared pairs per partic-
ipant). We confirm the observations made by Niklaus et. al. and Blau et. al. [3],
that PSNR/SSIM and perceptual metrics may be at odds with one another. De-
spite lower PSNR/SSIM scores, users consistently preferred our outputs to those
of AnimeInterp. A possible explanation is that due to animations having larger
displacements, the middle ground truth frames may be quite displaced from the
ideal halfway interpolation. SSIM, as noted by previous work [45, 34], was not de-
signed to assess these geometric distortions. Color metrics like PSNR and L1 may
penalize heavily for this perceptually minor difference, encouraging the model to
reduce risk by blurring; this is consistent with behavior exhibited by the original
AnimeInterp trained on L1 (Fig. 6). LPIPS on the other hand has a larger per-
ceptive field due to convolutions, and may be more forgiving of these instances.
This study provides another example of the perception-distortion tradeoff [3],
and establishes its transferability to 2D animation.

The user study also shows an imperfect match between LPIPS and CD.
This mismatch is also reflected in Tables 1 and 2, where aggregate decreases in
LPIPS do not correspond to reduced CD. This maybe because CD reflects only
the line-structures of an image. However, Tab 3 shows LPIPS is unexpectedly
more predictive of line quality. A possible explanation is that CD is still more
sensitive to offsets than LPIPS; in fact, CD grows roughly proportionally to
displacement for line drawings. Thus, it may suffer the same problems as PSNR
but to a lesser extent, as PSNR would penalize across an entire displaced area
opposed to across a thin line.

5 Limitations & Conclusion

Our system still has several limitations. By design, our model can only interpo-
late linearly between two frames, while real animations have non-linear move-
ments that follow arcs across long sequences. In future work, we may incorporate
non-linearity from methods like QVI [43], or allow user input from an artist. Ad-
ditionally, we are limited to colored frames, which are typically unavailable until
the later stages of animation production; following related work [23], we can
expand our scope to work on line drawings directly.

To summarize, we identify and overcome shortcomings of previous work [37]
on 2D animation interpolation, and achieve state-of-the-art interpolation per-
ceptual quality. Our contributions include an effective SoftsplatLite architec-
ture modified to improve perceptual performance, a Distance Transform Module
leveraging domain knowledge of lines to perform refinement, and a Restricted
Relative Linear Discrepancy metric that allows automatic training data collec-
tion from raw animation. We validate our focus on perceptual quality through
a user study, hopefully inspiring future work to maintain this emphasis for the
traditional 2D animation domain.
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