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Abstract. The primary issue in high dynamic range (HDR) imaging
is the removal of ghost artifacts afforded when merging multi-exposure
low dynamic range images. In the weakly misaligned region, ghost arti-
facts can be suppressed using convolutional neural network (CNN)-based
methods. However, in highly misaligned regions, it is necessary to extract
features from the global region because the necessary information does
not exist in the local region. Therefore, the CNN-based methods spe-
cialized for local features extraction cannot obtain satisfactory results.
To address this issue, we propose a transformer-based selective HDR im-
age reconstruction network that uses a ghost region mask. The proposed
method separates a given image into ghost and non-ghost regions, and
then, selectively applies either the CNN or the transformer. The proposed
selective transformer module divides an entire image into several regions
to effectively extract the features of each region for HDR image recon-
struction, thereby extracting the whole information required for HDR
reconstruction in the ghost regions from the entire image. Extensive ex-
periments conducted on several benchmark datasets demonstrate the su-
periority of the proposed method over existing state-of-the-art methods
in terms of the mitigation of ghost artifacts.

1 Introduction

Typical digital cameras can only capture luminance within a limited dynamic
range due to sensor limitations. Therefore, low dynamic range (LDR) images
with 8-bit depth obtained by these cameras have significant underexposed and
overexposed regions, thereby yielding large data loss compared to the real scene.
A lot of studies have been conducted to recover lost data from LDR images and
to generate 10-bit or 12-bit high dynamic range (HDR) images that can provide
a wide illuminance range. Multi-exposure image fusion is the most common HDR
reconstruction method; LDR images with different exposure values are obtained
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Fig. 1. (a) Overview of the proposed selective transformer module, and (b) sample
images generated by the proposed and the state-of-the-art methods in Tursun et al’s
[34] dataset. The proposed selective transformer module separates the ghost regions
from the non-ghost regions, and selectively uses one of the CNN and the transformer.

by cameras with a limited dynamic range and merged into an HDR image after
alignment of the LDR images [4, 11, 12, 29, 40].

However, in most cases, the aligned LDR images are difficult to obtain in the
acquisition process of several LDR images with different exposure values due to
the motion of a camera or an object. If an HDR image is obtained using these
unaligned LDR images, ghost and blur artifacts occur in the HDR image [13, 25,
22, 31, 1, 19]. To solve this problem, optical-flow methods [7, 10] or patch-based
methods [30] have been presented.

Although these methods can resolve some scenarios with large motions, ghost
artifacts still exist. Recently, many deep neural network (DNN)-based methods
have been proposed for reconstructing HDR images [37, 39, 8, 9, 21]. Typically,
DNN-based methods utilize convolution neural networks (CNNs) to extract spa-
tial features. These methods have higher performance than existing methods.
However, these CNN-based methods are difficult to explicitly remove ghost arti-
facts due to the limitation of CNN specialized for local feature extraction from
unaligned LDR images, and hence, it is difficult to consider global information
required for HDR reconstruction from an entire region. As shown in Fig. 1 (a),
the red box regions of the reference image and the non-reference image are in
the same location, but contain different information. The rail is visible in the
reference image, but it is occluded by the train in the non-reference image. That
is, it is impossible to extract rail information from the non-reference image due
to the movement of the object. Therefore, in Fig. 1 (b), Kalantari et al.’s [18],
Wu et al.’s [37], and Yan et al.’s [38] yielded final images with ghost artifacts in
the motion region.

To solve this limitation of CNN, the use of transformer structure in various
tasks of computer vision has been studied [43, 3]. In the transformer structure
[35], images are split into patches, and the attention weights between all patches
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are extracted. Therefore, it is possible to extract features of patches that are far
from the reference patch, allowing global information to be taken into account.
However, as confirmed by the vision transformer [6], when the amount of data
is limited, the performance improvement cannot be expected due to lack of
inductive bias compared to CNN. Furthermore, in the non-ghost region, for
aligned LDR images, the transformer structure is relatively inefficient because
the local region has important information, so we need to focus more on that
region.

This paper proposes a novel approach that can selectively consider regions
where it is effective to apply a transformer using a ghost region mask as a
guide. As shown in Fig. 1 (a), unlike the existing methods that utilize the same
network structure for all regions, the proposed network adaptively applies the
transformer and CNN structures by separating the ghost and non-ghost regions.
The proposed ghost region mask-guided transformer module uses the transformer
structure to extract important features for the ghost region from the global
regions of the non-reference images. Fig. 1 (a) visualizes the attention map of
the proposed selective transformer module. The proposed attention map focuses
on the visible rail away from the red box where the rail is obscured by the train.
The proposed method can extract meaningful information from global regions of
the non-reference image, excluding unnecessary information from local regions.
Therefore, as shown in Fig. 1 (b), the proposed method affords significantly
better reconstruction in terms of the color and details of the ghost regions. The
main contributions of this paper can be summarized as follows:

– We propose a novel contents-aware ghost region detector to effectively con-
sider both global and local features focused by the proposed model. This
detector distinguishes between ghost and non-ghost regions, and the net-
works, suitable for each region, are selectively applied.

– We propose a transformer-based selective HDR image reconstruction net-
work to extract the necessary features to restore the ghost region. Our
method does not simply apply the transformer, but uses it for the global
information analysis and selection that the transformer can be effectively
used. Therefore, the proposed selective transformer module can extract im-
portant global features from the entire region of each non-reference image
for HDR reconstruction of ghost regions.

– Experiments on various datasets validate the superiority of the proposed
method compared to existing methods. We also demonstrate that using a
transformer adaptively rather than using a single model significantly im-
proves performance by reflecting the characteristics of images with various
exposure values.

2 Related Work

2.1 Motion Detection-based HDR Reconstruction

Motion detection-based methods are based on the assumption that the LDR
images with different exposures can be globally registered in the HDR coordinate.
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These methods can detect moving pixels in the images which are rejected for final
weighted HDR fusion [20, 17, 14]. Heo et al. [15] detected motion regions with
joint probability densities. Yan et al. [41] used a sparse representation to detect
the object motion. However, since these methods ignore unaligned pixels and not
all input regions are available, these methods heavily depend on effectiveness of
motion detection and cannot expect high performance when the large motion
appears.

2.2 Alignment-based HDR Reconstruction

Alignment-based methods focused on aligning LDR images to a reference image,
and then, merged them to reconstruct the HDR image [5, 24]. For the align-
ment, optical flow or patch matching methods are generally used. Bogoni [2]
used optical flow to estimate motion vectors. Sen et al. [30] used a patch-based
energy minimization method. Hu et al. [16] aligned the images using brightness
and gradient consistency in the transformed domain. However, alignment-based
methods are sensitive to complex backgrounds and large motions. These methods
also requires significantly high execution time.

2.3 CNNs-based HDR Reconstruction

Kalantari et al. [18] introduced neural networks into the alignment-before-merging
pipeline for the HDR image generation. Wu et al. [37] proposed an autoencoder
that can learn to convert multiple LDR images into a ghost-free HDR image. In
[42], multiple LDR images were reconstructed into HDR images using a non-local
network [36]. These CNN-based HDR reconstruction methods extract features
of unaligned image regions, causing geometric or color distortion. In addition,
they are difficult to reconstruct regions with large motions due to the CNN spe-
cialized in the local feature extraction. Yan et al. [38] used a spatial attention
mechanism to generate ghost-free HDR images. Although the attention map of
the spatial attention mechanism deletes unnecessary information, it is difficult to
extract features for HDR reconstruction in the global region because it still uses
a CNN-based model. Prabhakar et al. [27] proposed an HDR imaging method
using bilateral guided upsampler and motion compensation. This method can
compensate for ghost regions in LDR images.

2.4 Transformer

Transformers have been actively studied in many tasks of computer vision. Car-
ion et al. [3] used the transformer and CNN structures simultaneously for object
detection. Vision transformer demonstrated that the model using a pure trans-
former achieved the best performance [6]. Zheng et al. [43] proposed an encoder
with a transformer structure to solve the problem of the reduced sparse resolu-
tion. In a recent study related to our method, Yan et al. [42] used a non-local
network to perform the HDR reconstruction. However, this method may still
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Fig. 2. The proposed method architecture. It consists of a feature extraction network
and a fusion network. The selective transformer module selectively applies the trans-
former and the CNN structures to the ghost and non-ghost regions, respectively, using
a proposed ghost region mask. The fusion network is constructed based on a series of
dilated residual dense blocks (DRDBs) and multi-scale CNNs. The final HDR result is
generated by combining the reference image with the final stage of the fusion network.

extract unnecessary features because the CNN structure is used in the ghost
region. The proposed method selectively applies the transformer structure only
to the ghost region, which is the region that requires global feature extraction.
Therefore, the model can appropriately extract the necessary information for
ghost and non-ghost regions.

3 Proposed Method

This paper proposes the novel transformer-based HDR image reconstruction
and ghost mask generation to extract ghost regions in multi-exposure images.
In the proposed method, the LDR image is divided into ghost and non-ghost
regions, and features corresponding to these regions are extracted. Our goal is to
reconstruct a ghosting-free HDR image using the given LDR images (L1, L2, L3).
We also use a middle exposure image (L2) as a reference image. As used in several
researches [18, 42, 37, 28], we convert the LDR images to corresponding HDR
representations through gamma correction. As confirmed in [18], LDR images
are effective in detecting noise or saturated regions, and HDR images are used
to measure content deviations from the reference image. We use LDR images
and mapped HDR images together as inputs and pixel values are all normalized
to [0, 1].

As shown in Fig. 2, the entire network comprises of a feature extraction net-
work, which extracts the necessary features and a fusion network, which com-
bines the extracted features to construct an HDR image. The feature extraction
network consists of a ghost mask generation, which detects ghost regions to
generate ghost region masks, and ghost region mask-guided transformer mod-
ules, which extract features from ghost and non-ghost regions. First, the feature
extraction network extracts the feature from every LDR image through con-
volution layers. The extracted features are used as inputs for the ghost region
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mask-guided transformer module. In addition, the proposed method generates a
mask that separates the regions by comparing the reference and non-reference
images. In the fusion network, similar to the structure used in AHDR [38], the
dilated residual dense block (DRDB) is applied and configured. In the following
sub-sections, we describe the ghost region mask generation and the ghost region
mask-guided transformer.

3.1 Feature Extraction Network

Proposed Ghost Region Mask Generation This module generates ghost
and non-ghost region masks in both underexposed and overexposed images. Un-
like the non-ghost region, the same location of the two images has different
information in the ghost region. Therefore, the information required for the
ghost region in the reference image must be determined from the other regions
of the non-reference image. Fig. 3 shows the ghost region mask generation pro-
cess between the low-exposure image (Inon) and reference images (Iref ). In the
first step, the average filtering is used to blur three multi-exposure images. In
the weak ghost region, the features required for HDR image reconstruction can
be sufficiently extracted using the CNN structure. Therefore, the average fil-
ter is applied to select only the large motion region. The pixel value difference
between blurred images decreases in the weakly misaligned regions. In the sec-
ond step, the reference image is transformed into the same luminance space as
the non-reference image through histogram matching. Through this process, the
luminance of the reference and non-reference images becomes similar, thereby
decreasing the pixel value difference for all regions other than the ghost regions.
The ghost mask is determined by applying a pre-determined threshold to the
pixel difference value (The experiments for changing this threshold are added in
the supplemental material.). However, when histogram matching is performed,
the saturation region may be falsely detected as the ghost region due to the
luminance difference between the reference and non-reference images in the sat-
uration region. Therefore, we add a process of removing the saturation region
of the non-reference image from the ghost mask. Even if the saturation region
includes the ghost region, the process of removing the saturation region is not
a problem to extract the ghost region features because there is no information
for HDR imaging in the saturation region of the non-reference image. Finally,
the opening operation is performed to remove a noise region caused by weakly
misaligned region. Therefore, the small noise region of the ghost mask is removed
and only the strong misaligned region remains. The proposed ghost region mask
(Gi) can be calculated by

Gi = |Li −K(Li, L2)|, if i = 1, 3, (1)

where K is the operation for histogram matching. Finally, to compensate for the
undetected ghost regions and train for various ghost masks, the kernel size of the
erosion is set to 11 and the kernel size of the dilation is set to a value between 11
and 17 in the opening operation by our experiments. The kernel size of dilation is
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Fig. 3. The proposed ghost region mask generation method. First, image blurring is
performed on the reference image and non-reference images to exclude weak ghost
regions. After that, the luminance of the non-reference image is converted to the same
as the reference image through histogram matching. The ghost mask is generated using
the difference between the two images. Finally, opening operation and saturation region
removal are performed to remove noise from the generated ghost mask.

fixed to 15 during the inference process. The non-ghost region mask is generated
by inverting the ghost region mask (The experiments of several kernel sizes are
added in the supplemental material.).

Ghost Region Mask-Guided Selective Transformer When an object or a
camera moves, a reference image (a middle exposure image) and non-reference
image (high and low exposure images) have different pixel information in the
area where motion occurs. To address this problem, the proposed method em-
ploys a transformer-based module to extract important global information from
entire non-reference images. As shown as Fig. 4, the selective transformer mod-
ule consists of a transformer-based ghost path, which extracts the ghost region
features of the reference image, and a CNN-based non-ghost path, which extracts
the non-ghost region features of the reference image.

We construct the selective transformer module by applying 1 layer of cross
attention. The selective transformer module first uses a CNN layer to extract
the query (Q) from reference image features and key (K) and value (V) from
non-reference image features. The transformer structure in this module only
works on ghosted regions of the reference image. Therefore, as shown as Fig.
4, the reference image feature is multiplied by the ghost region mask to gen-
erate Q remaining only the ghost region features. In the following process, the
similarity between the ghost region in a reference image and an entire non-
reference image is calculated to select the best regional information. For this,
all image features are unfolded into p-sized patches. Therefore, Q and K can be



8 Jou Won Song et al.

Fig. 4. The proposed ghost region mask-guided transformer module. aij denotes the
attention map calculated from K and Q. Fg and Fn represent the ghost and non-ghost
region features, respectively. B and p represents batch and patch sizes, respectively,
and (H,W,D) is the size of the feature.

represented as (W/p×H/p) number of vectors with size (p×p×D), denoted as
qi(i ∈ [1, (W/p×H/p)] and kj(j ∈ [1, (W/p×H/p)], respectively. The weight aij
between these patches is calculated through the dot product of qi and kj . aij is
defined as follows:

aij = softmax(
qik

T
j√

p× p×D
). (2)

Also, features are extracted from the non-reference regions that are the most
relevant to the reference image patch in the ghost region generated using the
weight aij . The extracted features use two convolution layers to yield an output,
and the ghost region mask is multiplied to the output so that it does not affect
the other regions. The output of ghost region is as follows:

Fg = Conv(Relu(Conv(aijvi))) + aijvi, (3)

where Conv and vi denote a convolutional layer and image patches of V, respec-
tively, and Fg represent the ghost region features. Furthermore, in the non-ghost
path, features from the reference and non-reference images are concatenated for
feature extraction in the non-ghost region. Since non-ghost regions are aligned
or weakly misaligned, the features required for HDR reconstruction can be ex-
tracted even if a conventional CNN structure is used. We use the multi-scale
CNN [42, 32] to extract detailed local features. The multi-scale CNN concate-
nates outputs of each layer by configuring CNNs with different kernel sizes in
parallel. The concatenated output is transformed into same-sized features as the
input channel and added to the input features. Each convolution layer uses ker-
nel sizes of 1, 3, and 5 with the ReLU activation function. The proposed method
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employs a 3×3 convolution layer and three multi-scale convolution layers for the
non-ghost region feature extraction. The features extracted from two regions of
ghost and non-ghost are combined into one feature using the pixel-wise addition.
The properties of each region are preserved as no overlap exists between the re-
gions. As a result, the transformer module is selectively applied for the feature
extraction in the ghost and non-ghost regions.

The proposed method extracts two features of 64 channel from two non-
reference images using the above process. The final output is generated using a
concatenation of these features and the feature of the reference image.

3.2 Fusion Network

The fusion network uses the features extracted from the feature extraction net-
work to reconstruct the HDR image. As shown in Fig. 2, concatenated three
features in the feature extraction network are combined into one feature through
a 1 × 1 convolution and three multi-scale CNNs, and then, they are downsam-
pled using maxpooling. Then, three DRDBs are used for the sufficient receptive
field. Since the DRDB consists of dilated convolutions, the information for HDR
reconstruction can be extracted using a large receptive field. Three multi-scale
CNNs and a transposed CNN are used to generate features of the same size as
the HDR image. Finally, as shown in Fig. 2, the HDR image is reconstructed
with three features concatenated by the skip connection and reference image
feature. The loss function used to reconstruct the HDR image are as follows:

L(H, Ĥ) =∥ T (H)− T (Ĥ) ∥2
+ ∥ M(T (H))− M(T (Ĥ)) ∥2, (4)

where H and Ĥ stands for the ground truth HDR image and the reconstructed
HDR image, respectively. M(·) stands for the operation to extract the edge map
computing the difference between adjacent pixels, and T (·) and ∥ · ∥2 denote the
tone mapping using the µ-law and l2 norm, respectively. Detailed information on
the training and network architectures is provided in the supplementary material.

4 Experiments

4.1 Datasets

We used the Kalantari et al.’s [18] dataset to validate the performance of our
method. It consists of 74 training and 15 test samples. Each sample includes three
unaligned images with different exposure biases of {−2, 0, +2} or { −3, 0, +3}.
For the training, we employed randomly cropped 256×256 sized patches from
the full images and applied random rotation and flip to diversify the training
samples. To verify the generalization ability of the proposed method, we also
used Tursun et al.’s [34] datasets used in several other papers [38, 28, 26]. Since
these datasets do not contain ground truths of HDR images, we only displayed
the tone-mapped HDR images of the proposed and conventional methods.
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Fig. 5. Comparison of qualitative results of the proposed method with the state-of-
the-art methods in (a), (b) the Kalantari et al.’s [20] dataset and (c) the Tursun et
al.’s [33] dataset

4.2 Evaluation metrics

The proposed method was evaluated based on five metrics. Since HDR images
may be displayed on LDR screens, the quality of the tone-mapped images needs
to be checked. Therefore, we measured peak signal-to-noise ratio (PSNR) and
structure similarity (SSIM) on the µ-law mapped images (PSNR-µ and SSIM-µ).
We also measured PSNR and SSIM on the linear domain (PSNR-L and SSIM-
L). Finally, we performed quantitative evaluations by calculating HDR-VDP-2
[23] designed to evaluate the HDR image quality.

4.3 Qualitative results

Using the Kalantari et al.’s dataset, we compared our proposed method with sev-
eral state-of-the-art methods. In Fig. 5, the first row displays the tone-mapped
HDR images. The second row displays the LDR images and the ground truth;
they are enlarged images of the red boxes in the images of the first row. As
shown in Fig. 5 (a), since the background region of the reference image (Refer)
is mostly saturated, features from the low-exposure image (Low) should be ex-
tracted. However, due to the large motion of objects in the non-reference images,
many details in the background are obscured, thereby making the extraction of
the necessary features difficult. Therefore, the method of Kalantari et al. [18]
could not completely exclude the region where the arm movement occurred in
the LDR image with low-exposure value. It was confirmed that the resulting im-
age reflected the pixel information of the corresponding region, resulting in ghost
artifacts. The methods of Wu et al. [37], AHDR [38], and HDRGAN [26] suc-
ceeded in removing the regions where the arm movements occurred using LDR
images with low-exposure values. However, weak ghost artifacts were observed
due to the CNN limitation focusing on extracting local information. In contrast,
our method used a transformer structure to extract features that are the most
relevant to the reference image patch from non-reference image regions without
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Fig. 6. Comparison of qualitative results of the proposed method with the state-of-
the-art methods in Kalantari et al.’s [18] dataset. (a) Non-reference image (low), (b)
reference image, and (c) attention region in the non-reference image. The bottom row
consists of images enlarged by the red box area in the image above, in order of the state-
of-the-art methods, proposed methods, and the ground truth. The red boxes shown in
(a) and (b) indicate the same area, but the red box in (a) differs from that in (b). When
these areas are merged, ghost artifacts appear. Using an attention map, (c) shows the
area of the red box in (b) that is deeply related to (a). The closer the color is to red,
the higher is the importance.

focusing on the local regions where motion exists. Therefore, the corresponding
ghost region is naturally reconstructed. As shown in Fig. 5 (b), the object is
highly saturated in the reference image. Existing methods failed to restore the
color information in some regions. However, since our proposed method sepa-
rately learns the ghost and non-ghost regions, it was optimized to extract the
features of non-ghost regions. Therefore, the local features requiring reconstruc-
tion were well extracted from the non-reference images, thereby affording high
saturation and color reconstruction performance in the corresponding regions.

Additionally, to verify the generalization ability of the proposed HDR imag-
ing method, we evaluated its performance on the Tursun et al’s dataset, wherein
no ground truth is provided. As shown in Fig. 5 (c), the methods of Kalantari
et al., Wu et al., AHDR, and HDRGAN could not completely exclude the mo-
tion region information from the non-reference image. Moreover, the saturated
regions were not well restored, resulting in a lot of ghost artifacts and poor color
restoration. In contrast, the proposed method excluded the interference of mo-
tion region information unrelated to HDR reconstruction in the non-reference
image. Therefore, our model generated a high-quality HDR image.

Analysis of Attention Maps Generated by the Proposed Network In
this section, we visualized the attention map of the typical motion case on the
Kalantari et al.’s [18] dataset to verify the effectiveness of the attention map
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Ghost regions Full image
Method PSNR-µ SSIM-µ PSNR-µ SSIM-µ PSNR-L SSIM-L HDR-VDP-2

Kalantari [20] 38.7431 0.9761 42.7423 0.9877 41.2158 0.9848 60.5088
Wu [37] 40.1244 0.9871 41.6377 0.9869 40.9082 0.9858 60.4955
AHDR [38] 40.9492 0.9883 43.6878 0.9902 41.1613 0.9857 62.0125
Non [42] - - 42.4143 0.9877 - - 61.2107
Robust [28] - - 43.8487 0.9906 41.6452 0.9870 62.5495
HDRGAN [26] 41.2814 0.9887 43.9220 0.9905 41.5720 0.9865 63.1245
Proposed 41.6714 0.9890 44.0981 0.9909 41.7021 0.9872 63.3721

Table 1. Performance comparison of the proposed and the state-of-the-art methods
using PSNR, SSIM, and HDR-VDP-2.

of the proposed transformer module. As shown in Fig. 6, the red box region
of the reference image (b) is saturated. Therefore, the information in the region
must be extracted from the non-reference image (a) with the low exposure value.
However, information cannot be extracted from non-reference images, such as
Fig. 6 (a), because the necessary information is deleted due to the movement of
the objects. Therefore, Kalantari et al.’s [18], Wu et al.’s [37], AHDR [38], and
HDRGAN [26] yielded final images with ghost artifacts in the motion region.

The proposed attention map of Fig. 6 (c) visualized the importance of the
pixel region to be referenced in Fig. 6 (a) to restore the red box region in Fig.
6 (b). The proposed attention map focused on the wall region far away from
the red box, which is the saturated wall background. Therefore, compared to
other state-of-the-art methods, the proposed method afforded significantly better
reconstruction in terms of the color and details of the ghost regions.

4.4 Quantitative results

We compared the performance of the proposed model with the state-of-the-art
models using the quantitative metrics. Furthermore, to evaluate the performance
of the proposed method in the ghost region, we performed evaluations on the
full image and ghost regions. The ghost regions are calculated from the pro-
posed ghost region mask. Table 1 denotes the performance on the full image;
our method outperformed other methods in terms of PSNR-µ, PSNR-L, SSIM-
µ, SSIM-L, and HDR-VDP-2 are 44.0981, 41.7021, 0.9909, 0.9872, and 63.3721,
respectively. (Models with performance in bold performed best.)

Then, we evaluated the performance results for the ghost regions. The pro-
posed method showed the best performance in all metrics among all methods
compared in the region where motion occurred. The CNN-based methods, kalan-
tari et al. [18], Wu et al. [37], and AHDR [38], were difficult to use global features.
Moreover, they extracted the local features for ghost regions from non-reference
images. In contrast, the proposed method generated a ghost region mask for the
region where the motion occurs and applied it to the transformer-based network,
so that it was possible to extract information from the relevant regions by search-
ing all regions of the non-referenced image. Therefore, the proposed method had
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Method PSNR-µ SSIM-µ PSNR-L SSIM-L HDR-
VDP-2

Base model (only transformer) 43.3244 0.9882 40.8823 0.9861 60.6124
Base model (only CNN) 43.7274 0.9901 41.2311 0.9866 62.7231
Base model (no mask) 43.8874 0.9903 41.3422 0.9868 62.9245
Base model 44.0981 0.9909 41.7021 0.9872 63.3721

Table 2. Performance comparison for variants of the proposed model using PSNR,
SSIM, and HDR-VDP-2.

excellent performance even with large motions. Our method effectively solved
the problem of ghost artifacts in HDR images.

5 Ablation Studies

Ablation study demonstrates the effectiveness of selective transformer module
and ghost region mask. We achieved the ablation study by comparing the per-
formance of the following variants of the proposed model, as shown in Table
2.

– Base model. All modules of the proposed model are used.
– Base model (only transformer). In the selective transformer module of

the base model, we replaced multi-scale CNNs of the non-ghost region path
with a transformer structure.

– Base model (only CNN). In the selective transformer module of the base
model, we replaced the transformer structure of the ghost region path with
the multi-scale CNN.

– Base model (no mask). Instead of using the proposed ghost region mask,
features are extracted in parallel using the transformer structure and the
CNN structure from the entire input image.

5.1 Effectiveness of Selective Transformer Module

To verify the effectiveness of selectively applying the transformer, we designed
two feature extraction networks composed of only CNNs or only transformers,
respectively, and compared the performance of these models. As shown in Table
2, the base model consisting of only transformers showed the lowest performance.
Due to the nature of the HDR reconstruction task, more important information
exists in the local region in the case of the non-ghost region, so the performance of
the base model consisting of only CNNs was higher than that of the transformer
structure. However, this model failed to reconstruct high-quality HDR images in
ghost regions with large motion. In contrast, the base model separated the ghost
and non-ghost regions, and selectively applied the CNN and the transformer
structures. Therefore, the proposed method could utilize the advantages of both
structures. As a result, the base model achieved higher performance than the
model using only CNN structure or only transformer structure.
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5.2 Effectiveness of Ghost Region Mask

To confirm the effectiveness of the proposed ghost region mask, we performed
an ablation experiment without using a ghost region mask on the base model.
Therefore, the base model (no mask) used the transformer and the CNN struc-
tures to extract features in parallel from the entire image, and fed the combined
two features to the fusion network. However, these features may contain informa-
tion that is not required for each region. This problem can cause ghost artifacts
or color distortion in the final HDR image. Therefore, as shown in Table 2, the
model without the ghost region mask showed lower performance than the base
model.

6 Limitation and Future Work

The proposed method significantly enhanced HDR images in strong ghost re-
gions compared to conventional methods. However, the heuristic module, ghost
mask generation, can falsely detect the ghost region if histogram matching is
incorrectly performed due to severe saturation regions or camera misalignment.
In this case, the proposed model will use the transformer structure in the non-
ghost region and may produce a low quality HDR image as confirmed in our
ablation study. We will consider these factors in our future work and design a
network that outputs refined masks using the generated ghost masks. Through
this future work, we will try to configure an end-to-end network including a
ghost mask generation module to detect more accurate ghost regions.

7 Conclusion

In this paper, we proposed to selectively apply a network suitable for each region
by dividing the image into ghost and non-ghost regions. In the ghost region with
large motion, the proposed selective transformer module reconstructed the region
well using the transformer structure. This is because the transformer can search
the entire region and extract features deeply related to patches of the reference
image from the global region of the non-reference image. In the non-ghost region
where the LDR images are aligned, the selective transformer module used the
CNN structure to effectively extract local features. In addition, through the
ablation study, we found that the proposed model outperforms the CNN-only
and transformer-only models. Finally, the proposed model provided ghost-free
high-quality HDR images with rich details and colors compared to the state-of-
the-art models.
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