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A Details of Mapping Modules

In the training phase, we replace the LUTs with mapping modules, which are
comprised of a convolutional layer with a kernel size of kh×kw, activation layers
of GELU [1] and 1 × 1 convolutional layers. The architecture is displayed in
Fig. 1. All convolutional layers output feature maps with 64 channels except the
last one. The output channel number Cout of the last convolutional layer is set
to Cout = Cf for the mapping modules that extract intermediate features and
Cout = CSR = s2 for the mapping modules that produce the final SR results. s is
the upscaling factor. The consecutive 1×1 convolutions followed by GELU layers
strengthen the nonlinearity and representative ability of the mapping modules.
In the last query block of each parallel branch, the mapping module contains an
additional pixel-shuffle layer [3]. It maps the outputs vectors with s2 channels to
s× s output patches to get the final SR images. In the inference phase, we only
care about the inputs and outputs of these mapping modules. Therefore, the
detailed architecture of the mapping modules does NOT affect the computation
complexity of LUTs.

B Details of SPLUT-S and SPLUT-L

We design three SPLUT models with different model sizes, namely SPLUT-S,
SPLUT-M, and SPLUT-L. The three models have similar architectures. The
difference between the three models lies in the channel number of intermediate
features Cf and the details of query blocks. We have introduced the details of
SPLUT-M in Section 3 of our main paper. SPLUT-S and SPLUT-L have the
same overall framework as SPLUT-M but have different query blocks. Note that
the three models have the same receptive field size. Here we describe the details
of their query blocks, which are shown in Fig. 3.
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Fig. 1. Detailed architecture of the mapping module. Only
the last mapping module of each branch contains the pixel
shuffle layer.

Fig. 2. The receptive
field of r = 4 for the pixel
colored in blue.

SPLUT-S is a small model with Cf = 4. In the query block of SPLUT-S, we
split 4 intermediate feature maps into 2 groups, each adjacent two in one group.
Following SPLUT-M, there is a horizontal aggregation module and a vertical
aggregation module in each query block. The two modules both take the above
two groups of features as inputs. The obtained features, MH and MW , are used
for the following LUT retrievals. We get the output of the query block by adding
the LUT results.

As for SPLUT-L with Cf = 16, there are four aggregation modules and four
LUTs per query block to increase the capacity of the model. The inputs to the
aggregation modules include 8 groups of intermediate features. The first four
groups are fed into two vertical aggregation modules and the other four groups
are fed into two horizontal modules. The outputs are MH1, MH2, MW1, MW2,
respectively. We then feed MH1 and MH2 into two LUTHC and feed MW1 and
MW2 into two LUTWC for further processing.

C Details of Two Interpolation Methods

Here we describe more implementation details of the ablation studies on the
parallel network vs. interpolation methods. We first introduce the interpolation
methods in SRLUT [2] and then provide the details of the two designed interpo-
lation methods. SR approximates the output of an input pattern by interpolating
the 4D LUT outputs of the nearest sampled points to the input pattern. For a
position of (x, y) shown in Fig. 2, the input pixels of (x, y), (x+ 1, y), (x, y + 1)
and (x + 1, y + 1) form an input pattern. SR-LUT implements 4-simplex inter-

polation for the 4D LUT by exploring the relation of I
(x,y)
LSB , I

(x+1,y)
LSB , I

(x,y+1)
LSB

and I
(x+1,y+1)
LSB . A weighted sum of the retrieval results for the 16 bounding ver-

tices is computed as the final output since SR-LUT has only one layer of LUT.
Specifically, the nearest sampled points Pijkl[x][y] at the position of (x, y) are
calculated as follows:

Pijkl[x][y] = ((I
(x,y)
MSB + i), (I

(x+1,y)
MSB + j), (I

(x,y+1)
MSB + k), (I

(x+1,y+1)
MSB + l)) (1)
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Fig. 3. Details of the proposed query block for (a) SPLUT-S and (b) SPLUT-L. The
two models have the same receptive field size.

where i, j, k, l are 0 or 1. We can compute the indices for LUT retrieval by these
points. SR-LUT selects the contributing bounding vertices by their distances to
the input pattern and then use 4-simplex interpolation to compute a weighted

sum of their retrieval results according to I
(x,y)
LSB , I

(x+1,y)
LSB , I

(x,y+1)
LSB and I

(x+1,y+1)
LSB .

In our methods, we also utilize ILSB for interpolation but we cannot get the
final SR output by directly fusing the retrieval results of the first layer of spatial
LUT since we still have other following LUTs for retrieval. Since the cascaded
LUTs in our model bring a large RF size of r, it is intractable to consider all the
bounding vertices and simply implement interpolations like SR-LUT due to the
computational complexity of 2r. To improve the SR accuracy of this model, we
design two interpolation methods for the input images. In our first interpolation
method, we concatenate the 16 nearest sampled points Pijkl[x][y] of the input
patterns of all positions (x, y) to form 16 index maps P0000, P0001, ..., P1111. We
take P0000, P0001, ..., P1111 as the inputs to the cascaded LUTs, which reduce the
complexity of 2r to 24. We can get 16 SR results through the whole network.
We interpolate the 16 SR results by ILSB using the 4-simplex method and get
the final SR output. We call this method tail-layer interpolation. In our second
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Table 1. Ablation study for Skip Connections.

method SC1 SC2 SC3
Set5 Set14

PSNR SSIM PSNR SSIM

SPLUT w/o SC3 ✓ ✓ 29.95 0.8473 27.12 0.7366

SPLUT w/o SC2 ✓ ✓ 30.16 0.8549 27.29 0.7452

SPLUT w/o SC1 ✓ ✓ 30.18 0.8562 27.31 0.7458

SPLUT ✓ ✓ ✓ 30.23 0.8567 27.32 0.7460

method, we feed the 16 index maps to the spatial lookup blocks and get 16
intermediate feature maps. We fuse the 16 feature maps by ILSB and 4-simplex
method to get one feature map. By feeding the feature map to the following
layers, we get the final SR output. We call this method first-layer interpolation.

D Ablation Study for Skip Connections.

The overall framework of our method is shown in Fig. 2 (a) of the main paper.
The first and second skip connections are between the input and output of the
spatial LUT block and the first query block. We call the two skip connections
“SC1” and “SC2”, respectively. The third skip connection “SC3” is between the
input image and the output of the last query block. We perform ablation studies
to verify the effect of the skip connections. As shown in Table 1, it can be seen
that removing the third skip connection has the greatest impact on SR perfor-
mance (-0.28dB for Set5). The model with this identity mapping can make the
lookup tables pay more attention to the reconstruction of residual information
and reduce the difficulty of super-resolution. After removing “SC3”, the LUTs
have to store the information contained in LR inputs, which affects the SR ability
of SPLUT. The model of SPLUT w/o SC1 has a similar performance to SPLUT
w/o SC2. They both have a performance degradation compared to SPLUT. This
indicates that the skip connections can help maintain the feature precision and
improve inference accuracy. In practice, it is very efficient to implement skip
connections with simple addition operations.

E Ablation Study for Training Strategy

To analyze the effectiveness of the jointly training strategy and measure the func-
tion of each branch, we conduct experiments on multiple models with different
training strategies. We remove the MSB branch and train the LSB branch with
ILSB as inputs from the scratch to get the SPLUT-LSB model. In this model,
IMSB is upsampled by nearest-neighbor interpolation and is added to the net-
work output to form the SR results. We remove the LSB branch and train the
MSB branch with IMSB as inputs to get the SPLUT-MSB model. We show the
corresponding results in Table 2. In the table, “Interpolation” represents the re-
sults of implementing nearest-neighbor interpolation on IMSB . We see the results
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Table 2. Comparison of different training strategies. The results show that jointly
training the two parallel branches achieves the best SR performance.

Layer num
Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Interpolation 26.26 0.7380 24.75 0.6551 25.04 0.6299 22.17 0.6160 23.43 0.7415

SPLUT-LSB 26.26 0.7384 24.80 0.6568 25.04 0.6305 22.19 0.6175 23.49 0.7438

SPLUT-MSB 29.54 0.8356 26.85 0.7217 26.34 0.6793 23.90 0.6907 26.56 0.8316

SPLUT-ST 29.54 0.8379 26.92 0.7296 26.49 0.6912 23.92 0.6907 26.64 0.8288

SPLUT 30.23 0.8567 27.32 0.7460 26.74 0.7044 24.21 0.7094 27.20 0.8478

of SPLUT-LSB are very close to the nearest-neighbor interpolation. With only
ILSB and the interpolated IMSB , the network cannot obtain local semantic infor-
mation and can only generate some meaningless details. SPLUT-MSB performs
much better than SPLUT-LSB and nearest-neighbor interpolation. However, it
still has a significant accuracy degradation compared to the original SPLUT
model. The reason may be that the information from ILSB is lost and there are
fewer input patterns compared to the full-precision LR images, which aggravates
the one-to-many ill-posed nature of SR. Furthermore, we design a SPLUT-ST
model whose LSB branch and MSB branch are separately trained (ST). We
first train a model of SPLUT-MSB. Then we fix the parameters of the MSB
branch and train the LSB branch. The final results show that the performance
of SPLUT-ST is only slightly better than that of SPLUT-MSB, which is simi-
lar to the comparison between nearest-neighbor interpolation and SPLUT-LSB.
This indicates that the separate training of the LSB branch based on the in-
terpolated IMSB and the pre-trained model of SPLUT-MSB both fail to utilize
the information from ILSB . The comparisons demonstrate that only the jointly
training strategy can fully exploit the information of the two branches and boost
reconstruction accuracy.
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