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Abstract. Lookup table (LUT) has shown its efficacy in low-level vi-
sion tasks due to the valuable characteristics of low computational cost
and hardware independence. However, recent attempts to address the
problem of single image super-resolution (SISR) with lookup tables are
highly constrained by the small receptive field size. Besides, their frame-
works of single-layer lookup tables limit the extension and generalization
capacities of the model. In this paper, we propose a framework of series-
parallel lookup tables (SPLUT) to alleviate the above issues and achieve
efficient image super-resolution. On the one hand, we cascade multiple
lookup tables to enlarge the receptive field of each extracted feature vec-
tor. On the other hand, we propose a parallel network which includes
two branches of cascaded lookup tables which process different compo-
nents of the input low-resolution images. By doing so, the two branches
collaborate with each other and compensate for the precision loss of
discretizing input pixels when establishing lookup tables. Compared to
previous lookup table-based methods, our framework has stronger repre-
sentation abilities with more flexible architectures. Furthermore, we no
longer need interpolation methods which introduce redundant computa-
tions so that our method can achieve faster inference speed. Extensive
experimental results on five popular benchmark datasets show that our
method obtains superior SISR performance in a more efficient way. The
code is available at https://github.com/zhjy2016/SPLUT.

Keywords: Image super-resolution, look-up table, series-parallel net-
work.

1 Introduction

As a fundamental task of computer vision, single image super-resolution (SISR)
has attracted lots of research interests and plays an important role in wide ap-
plications, such as video surveillance, satellite imaging and high-definition tele-
visions. SISR targets at recovering low-resolution (LR) images to high-resolution
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Fig. 1. Comparison of SR-LUT and our SPLUT method. The former utilizes rotational
ensemble to enlarge receptive fields from 2 × 2 to 3 × 3 and implement interpolation
methods (IM) to improve recovery accuracy. The dashed line means weight sharing.
For the sake of simplicity, we omit the rotations of 90◦ and 270◦. In contrast, we stack
multiple LUTs to significantly improve the receptive field size and design a new parallel
architecture to compensate for the precision loss of discretizing input pixels.

(HR) ones by inferring high-frequency details. Along with the rapid development
of deep learning techniques, various elaborately designed frameworks [18,19,43]
based on convolutional neural networks (CNNs) have achieved encouraging
progress in SISR. Most of these frameworks contain a large number of pa-
rameters and are time-consuming during testing. While several methods [17,21]
have been proposed to reduce computation costs, they still rely on specific high-
performance computing units, for example, GPUs and CPUs. Developing prac-
tical and real-time algorithms have been a growing trend in the SISR field.

Approaches [40,33,35,11] based on lookup tables (LUTs) have emerged in
low-level vision tasks, including image enhancement and image super-resolution.
These methods employ LUTs to establish the mapping relation between input
pixels and the desired output pixels. In the testing phase, only a small number
of parameters need storing and the inference processes are liberated from heavy
computational burdens by replacing time-consuming calculations with fast mem-
ory accesses. As a result, the practicality of this kind of algorithm is significantly
improved on mobile devices.

However, most existing LUT-based approaches only have a single layer of
LUTs, which brings some major constraints. If n-dimensional LUTs (nD LUTs)
are utilized and the n input entities for query all have v possible values, then the
LUT scale is of vn, where v and n are the two pivotal factors. While increasing
the value of v and n may improve the restoration accuracy, a moderate improve-
ment may lead to a rapid increase of the LUT scale. Thus, v and n are usually
set to small values to avoid unbearably large LUTs, which severely limits the
further enhancement of recovery abilities. In fact, receptive field (RF) size is a
vital factor for deep learning and super-resolution. SISR is a well-known ill-posed
problem since the same LR input may correspond to various high-resolution out-
puts with subtle differences. When we infer the missing details, a large context
area on the input image should be considered to accurately capture the seman-
tics and structures. In this way, we can effectively reduce the ambiguity of the
estimated results. Therefore, how to enlarge receptive fields without exponen-
tially increasing the storage and computation costs of LUTs is still an open issue.
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Besides, due to the design of single-layer LUTs and the limited LUT scale, the
extensibility and recovery capacity of existing LUT-based methods are highly
constrained. Thus, a more powerful and flexible scheme is desired in order to
further improve the inference ability of LUT-based methods.

To mitigate the above issues, we propose to learn series-parallel lookup tables
(SPLUT) for SISR, as shown in Fig. 1. We cascade multiple lookup tables so
that the query of latter LUTs are based on the outputs of former LUTs. In
this way, the receptive field of each feature vector is gradually increased and
the final SR results can be determined by larger local patches with more clear
context information. For establishing LUTs, existing methods usually discretize
the input values for reducing v and apply interpolation algorithms to improve the
inference accuracy. However, such operations can only be implemented for small
receptive fields. In our framework with large receptive fields, interpolations are
inapplicable due to the exponentially increasing computational costs. In order to
compensate for the precision loss of the discretized input pixel values, we propose
a new parallel network which contains two branches. The first one processes the
4 most significant bits (MSBs) of the original 8-bit pixel values while the second
one processes the 4 least significant bits (LSBs). The two branches of cascaded
LUTs form the framework of series-parallel lookup tables.

In each branch, we introduce three kinds of 4D LUTs whose input values
for the query are from different dimensions. We further propose horizontal and
vertical aggregation modules to enlarge the RF size of different dimensions. In
the training procedure, we build a mapping module for each LUT and quantize
the intermediate activation so that the mapping relationships of the inputs and
outputs can be transferred to the corresponding LUTs. Different from previous
methods [11], the whole inference procedure of our method only contains retrieval
and addition operations without complex multiplications. Experimental results
on benchmark datasets show that SPLUT can achieve better SR performance
on the smartphone platform, which demonstrates the effectiveness and efficiency
of our proposed method.

In summary, the contributions of this work are threefold:
1. To the best of our knowledge, we are the first to present cascaded LUTs for

enlarging receptive fields in the SISR field.
2. We propose a new parallel network to compensate for the precision loss

caused by the discretization when establishing LUTs with large RF sizes.
3. Quantitative and qualitative results show that our method can recover the

missing details more precisely and efficiently. The comparison of different
SPLUT models verifies the superior extensibility of our proposed method.

2 Related Work

Single Image Super-Resolution. Non-deep learning methods [6,41,30,31] and
deep learning methods [43,2,25,18] have significantly promoted the development
of SISR. While recent deep learning methods perform more encouragingly than
non-deep learning methods, many of them have a deep neural architecture with
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redundant parameters, which brings heavy computing costs and makes the train-
ing and inference rely on special computing devices. Therefore, efficient super-
resolution has been a prevalent research interest of the community. In this field,
methods based on various techniques have been proposed to improve the effi-
ciency of SR algorithms. Lee et al. [17] and Zhang et al. [42] take advantage of
the idea of knowledge distillation to compress the original deep teacher models
to small student models with strong representation abilities. Wang et al. [34] ex-
plore the sparsity in image super-resolution by learning sparse masks to identify
important regions and unimportant regions in images. Mei et al. [24] propose
a non-local sparse attention module to achieve efficient and robust long-range
modeling. Xin et al. [38] develop a binary neural network for SR by proposing
a bit-accumulation mechanism to improve the precision of the quantized model.
Some other methods [21,29,20] accomplish efficient SR inference by designing
compact neural architectures. Lee et al. [16] search for appropriate architectures
for both the generator and the discriminator by a neural architecture search ap-
proach. However, most of these methods are still based on convolutional layers
and thus lack practicability on mobile devices.

Lookup Table. Lookup tables (LUTs) replace complex computations by
simple and fast retrieval operations so that the efficiency of algorithms can be
significantly improved. LUTs are widely used in a number of applications, such
as numerical computation [5,27], video coding [15,32], pedestrian detection [4],
RGB-to-RGBW conversion [14], etc. Besides, LUT is a classic and prevalent
pixel adjustment tool in camera imaging pipeline [40] and photo editing soft-
ware since it can easily manipulate the appearance of an image, such as color,
exposure, saturation, etc. Recently deep learning methods based on LUTs have
also emerged in low-level vision tasks [40,33,35,11]. In the image enhancement
field, Zeng et al. [40] first propose image-adaptive 3D lookup tables and achieve
high-performance photo enhancement. On this basis, Wang et al. [35] consider
spatial information and further propose learnable spatial-aware 3D lookup ta-
bles. Wang et al. [33] model local context cues and propose pixel-adaptive lookup
table weights for portrait photo retouching. As for the super-resolution field, Jo et
al. [11] has developed SR-LUT by establishing the correspondence of LR input
patterns and HR output patterns. However, as mentioned above, the RF size
and the extensibility of LUT-based methods are still limited.

3 Method

3.1 Network Architecture

Given an input LR image ILR, our goal is to recover the missing details and
yield the SR image ISR which is as similar as possible to the HR image IHR.
As shown in Fig. 2 (a), we design a series-parallel lookup table (SPLUT) net-
work which contains two parallel branches processing different components of
ILR. We treat the RGB channels equally and separate the original input pixels
with 8-bit values into two maps, IMSB with 4 most significant bits (MSBs) and
ILSB with 4 least significant bits (LSBs). The two parallel branches take IMSB
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Fig. 2. Details of the proposed SPLUT method. (a) The overall framework of our
method. The input LR images are split into IMSB and ILSB , which are fed into two
parallel branches, respectively. Each branch includes cascaded LUTs to extend receptive
fields. (b) We take SPLUT-M with Cf = 8 as the example and display the details of the
proposed query block, which further enlarge the RF size by aggregation modules and
different kinds of LUTs. LUTWC and LUTHC can also model the correlations between
different channels. (c) Illustration of different LUTs: LUTHW, LUTWC and LUTHC.
Their input values for the query are in different dimensions.

and ILSB as inputs, respectively. Then we merge the outputs of the two parallel
branches to compensate for the loss of quantization when establishing LUTs. In
this way, the super-resolution capacities can be significantly enhanced. In each
branch, there is a spatial lookup block, query blocks and skip connections. The
spatial lookup block and the query blocks increase the RF size of extracted fea-
tures gradually. The query blocks include horizontal and vertical aggregation
modules which enlarge the RF size by the width and height dimensions, respec-
tively. During training, we replace each LUT with a mapping block which is
built on convolutional layers. Then we establish LUTs according to the mapping
relations of the inputs and outputs of these mapping blocks. During inference,
we retrieve the outputs of each LUT according to the indices computed by the
input patterns, which are defined as the combinations of the n input entities for
the query.

The LUT scale is mainly influenced by three factors, the number of pixels
for retrieval n, the number of possible pixel values v, and the length of output
vectors c. Then the LUT size can be computed by vn · c. In previous work, n is
usually not more than 4 to keep a small LUT scale. The original pixels with 256
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Fig. 3. Illustration of the proposed horizontal aggregation module. The underlined
numbers in dark squares represent the results of the reflection padding operations.
After adding the two padded feature maps together, the receptive field of the obtained
features is enlarged on the width dimension.

different values are also discretized to obtain v = 16 or v = 32 bins for retrieval.
The choice of c is determined by the practical tasks. For generating the output of
×4 super-resolution, c is set to 16. The increase of n and v results in a significant
increase in LUT scales while c only brings a linear growth of LUT scales. In our
framework, we set n = 4 and v = 16 for all the LUTs so that vn = 65536 is a
relatively small constant. Different from previous methods which only contain a
single layer of LUTs with a small RF size and lack the model extensibility, we
cascade multiple LUTs to improve the RF size and flexibly control the trade-off
between efficiency and accuracy by changing the network depth and the channel
number of intermediate features Cf . In practice, we design three models, SPLUT-
S, SPLUT-M and SPLUT-L with Cf = 4, Cf = 8 and Cf = 16, respectively.

Since n is set to 4, the indices for retrieving LUTs are computed by 4 adja-
cent entities. We design 3 kinds of LUTs whose input patterns are of different
dimensions. For an intermediate feature, there are mainly three dimensions, W,
H, and C, representing width, height, and channel, respectively. The 3 kinds
of designed LUTs are LUTWH, LUTHC and LUTWC, as depicted in Fig. 2 (c).
The input pattern of LUTWH is a 2 × 2 area in the spatial dimensions. The
2× 2 input pattern of LUTHC is along the height and channel dimensions while
that of LUTWC is along the width and channel dimensions. These LUTs can
capture local dependency and enlarge receptive fields of different dimensions.
In our framework, they are placed in different modules for specific functions.
Next, we take the model SPLUT-M as an example to describe the details of
each component of our framework.

Spatial LUT Block. The two branches of IMSB and ILSB have similar
architectures. In the beginning, spatial correlations are more important than
channel correlations. Hence, we use a spatial LUT block to exploit the spatial
dependency of neighboring pixels in the input images. In this block, we employ
reflection padding to keep the spatial dimensions unchanged after retrievals.

Query Blocks. Following the spatial LUT block, there are two query blocks.
The details of the query block are shown in Fig. 2 (b). For the model of SPLUT-
M, Cf is set to 8 and thus we have 8 intermediate feature maps, namedM1, ...,M8.
We split them into 4 groups, each adjacent two in one group. The first two groups
are fed into the horizontal aggregation module while the last two are fed into the
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vertical aggregation module. The two modules enlarge the RF size by the width
dimension and the height dimension, respectively. MW and MH are obtained by
the two modules and they both have 2 channels. Since only exploring spatial
information severely affects the representation ability of the network, we use
LUTWC and LUTHC to model the correlations between different channels. We
retrieve the output of a width-channel LUTWC by computing the query indices
according to the input patterns on MW . Similarly, we retrieve LUTHC according
to MH . Finally, the outputs of two kinds of LUTs are added to get the output
of the query block.

Aggregation Modules. Here we describe the details of the horizontal and
vertical aggregation modules. As shown in Fig. 3, we take the horizontal ag-
gregation module as an example. The two input feature maps both have two
channels and have the same receptive fields. First, we pad one feature map on
the left by reflection padding and pad the other one on the right. Then we ob-
tain two feature maps whose receptive fields have a shift of one pixel along the
width dimension. After merging the two feature maps by addition, the obtained
feature map has a larger spatial receptive field. In order to transfer the real-value
responses to the query indices for the following LUTs, we need to quantize the
real values to form v = 16 discrete values. Specifically, we set the quantization
interval to 1 so that the quantization can be achieved by a simple rounding oper-
ation. By doing this, we avoid complex multiplication computations and improve
the efficiency of the proposed module. The operations are similar for the vertical
aggregation module. Differently, vertical aggregation enlarges the receptive field
along the height dimension.

Parallel Branches. In prior arts [40,11,35,33], pixel values are quantized for
reducing the possible values and decreasing LUT scales. However, the original
continuously changing pixels become discrete, which may cause blocking effects
in the SR results. Therefore, interpolation algorithms [12] are usually applied
to smooth the output textures. However, they introduce additional multiplica-
tions and comparison operations. Moreover, these algorithms are only available
for LUTs with a small RF size. If we use r to represent the RF size of a fea-
ture, then 2r nearest bounding vertices need considering for interpolating the
retrieval results. In our framework with a large RF size, such a computation
complexity is unacceptable. We propose a new parallel framework to alleviate
this issue. The framework includes two branches with the same architecture of
cascaded LUTs. One branch processes IMSB and mainly focuses on capturing
context semantic information. The other branch processes ILSB and provides
high-frequency details. By Merging the outputs of the two branches, we are able
to compensate for the loss of quantization when establishing LUTs and hence
boost SR performance.

Skip Connections. In order to improve the representation abilities of the
network, we store low-precision real numbers in LUTs. Since the above men-
tioned operations of quantization and index computation sacrifice the precision
of intermediate features, we introduce skip connections to fuse the real-value
inputs and the retrieval outputs to improve the precision. Besides, identity map-



8 C. Ma*, J.Zhang*, et al.

Spatial LUT

Vertical

Aggregation

Horizontal

Aggregation

LUTHC

LUTWC

Addition

Vertical

Aggregation

Horizontal

Aggregation

LUTHC

LUTWC

Addition

Fig. 4. The visualization of receptive fields with respect to the feature marked in red
after each module or operation. Horizontal aggregation modules and LUTWC increase
the RF size by the width dimension while vertical aggregation modules and LUTHC

increase the RF size by the height dimension. The addition operations further enlarge
receptive fields by fusing the two different areas of receptive fields.

ping [8] is a pivotal component of SR networks. Thus we adopt a skip connection
between the input image and the output of the last query block to simplify op-
timization and enhance recovery accuracy.

3.2 Training Strategy

For training the network, we replace the LUTs by mapping modules, which are
comprised of a convolutional layer with a kernel size of kh×kw, GELU [9] layers,
and 1× 1 convolutional layers. All mapping modules output feature maps with
Cf channels except the last one. The last mapping module outputs Csr = s2

channels where s is the upscaling factor. A pixel-shuffle layer [28] maps the
outputs with 16 channels to the final results for ×4 SR. In mapping modules of
different LUTs, kh and kw are different. For the spatial LUT block, the input
channel number is 1 and kh = kw = 2. For LUTHC and LUTWC, the input
channel number is 2. kh = 2 and kw = 1 for LUTHC while kh = 1 and kw = 2 for
LUTWC. The consecutive 1×1 convolutions followed by GELU layers strengthen
the nonlinearity and representative abilities of the mapping modules. We jointly
train the MSB and LSB branches by imposing Mean Squared Error (MSE)
loss on the final SR outputs. For the quantized activations, we use the identity
straight-through estimator (STE) [39] to achieve end-to-end back-propagation.

3.3 Analysis of SPLUT

Receptive Field Size. We visualize the changes of RF sizes through the whole
framework in Fig. 4. After the first spatial LUT block, each feature has an RF
size of 2×2. Then in the first query block, the horizontal aggregation module and
LUTWC enlarge the RF size along the width dimension. The vertical aggregation
module and LUTHC enlarge the RF size along the height dimension. After fusing
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the two outputs by addition, we get an RF size of 12. In the second query block,
we implement similar operations and further increase the RF size. Finally, we
get an RF size of 24, which is much bigger than the RF size of 3 × 3 = 9 in
SR-LUT [11] by rotational ensemble trick.

Computational Cost. In SR-LUT [11], rotational ensemble is proposed
to extend the RF size of 2 × 2 to 3 × 3. The computational burdens of SR-
LUT mainly include image rotation, retrieval of 4 input images with different
orientations, and interpolation methods which contain heavy multiplication and
comparison operations. While our SPLUT model has more LUTs, we do not need
the rotation and interpolation operations. Therefore, our method can achieve a
faster inference speed than SR-LUT.

4 Experiments

4.1 Implementation Details

Datasets and Metrics. We train the proposed serial-parallel lookup table
(SPLUT) model on the DIV2K dataset [1] and evaluate the effectiveness of
our method on 5 widely used benchmarks: Set5 [3], Set14 [41],BSD100 [22],
Urban100 [10] and Manga109 [23]. We focus on the upscaling factor of ×4 in
our experiments. We use Peak Signal-to-Noise Ratio (PSNR) and structural
similarity index (SSIM) [37] as the evaluation metrics for prediction accuracy.
To compare the computation efficiency, we measure and report the runtime of
super-resolving 320× 180 LR images on mobile phones.

Training Setting. We design three SPLUT models with different model
sizes, namely SPLUT-S, SPLUT-M, and SPLUT-L. The three models have the
same architecture depicted in Fig. 2 (a). The difference between the three mod-
els lies in the value of Cf , the number of lookup tables per query block and
the grouping strategy of input feature maps. We have introduced the details
of SPLUT-M. The details of the other two models are described in the supple-
mentary material. We train SPLUT models with PyTorch [26] on Nvidia 2080Ti
GPUs. We use Adam Optimizer [13] with β1 = 0.9, β2 = 0.999 and ϵ = 1× 10−8

to jointly train the MSB and LSB branches. The learning rate is set to 10−3.
We randomly crop LR images into 48× 48 patches with a mini-batch size of 32.
We enhance the dataset by randomly rotating and flipping.

4.2 Results and Analyses

Quantitative Comparison. We compare our method with SR methods based
on sparse coding which include NE+LLE [6], Zeyde et al. [41], ANR [30] and
A+ [31], SR methods based on deep learning including CARN-M [2], FMEN [7]
and RRDB [36], and SR method based on LUTs, SR-LUT [11]. Since the source
code of SR-LUT [11] is not released, we reproduce the SR-LUT algorithm and
compare our method with it under the same environment. Since the implemen-
tation of sparse coding based methods [6,41,30,31] rely on Matlab, we evaluate
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Table 1. Quantitative comparisons of different SR methods on 5 benchmark datasets.
The best results among LUT-based methods are highlighted. Running time is mea-
sured by super-resolving 320 × 180 LR images on the mobile phone. * represents the
running time is measured on computer CPUs. Size denotes the storage space or the
parameter number of each model.

Method Time Size
Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

NE+LLE 7016ms* 1.434MB 29.62 0.840 26.82 0.735 26.49 0.697 23.84 0.694 26.10 0.820

Zeyde et al. 8797ms* 1.434MB 26.69 0.843 26.90 0.735 26.53 0.697 23.90 0.696 26.24 0.824

ANR 1715ms* 1.434MB 29.70 0.842 26.86 0.737 26.52 0.699 23.89 0.696 26.18 0.821

A+ 1748ms* 15.17MB 30.27 0.860 27.30 0.750 26.73 0.709 24.33 0.719 26.91 0.848

CARN-M 4955ms 1.593MB 31.82 0.890 28.29 0.775 27.42 0.730 25.62 0.769 29.85 0.899

FMEN 3101ms 1.395MB 32.24 0.896 28.70 0.784 27.63 0.738 26.28 0.791 30.70 0.911

RRDB 31717ms 63.83MB 32.60 0.900 28.88 0.790 27.76 0.743 26.73 0.807 31.16 0.916

SR-LUT 279ms 1.274M 29.82 0.848 27.01 0.736 26.53 0.695 24.02 0.699 26.80 0.838

SPLUT-S 242ms 5.5M 30.01 0.852 27.20 0.743 26.68 0.702 24.13 0.706 27.00 0.843

SPLUT-M 265ms 7M 30.23 0.857 27.32 0.746 26.74 0.704 24.21 0.709 27.20 0.848

SPLUT-L 545ms 18M 30.52 0.863 27.54 0.752 26.87 0.709 24.46 0.719 27.70 0.858

these methods on the CPUs of computers which may be faster than mobile
phones. The quantitative comparisons are shown in Table 1. As observed, our
SPLUT models achieve much faster inference than both sparse coding based
methods and deep learning based methods. SPLUT-S, SPLUT-M and SPLUT-
L all obtain higher PSNR and SSIM than NE+LLE, Zeyde et al.and ANR. The
SPLUT-M is comparable to A+ and SPLUT-L is superior to A+ on all bench-
marks. While deep learning based methods have the best PSNR and SSIM per-
formance, their inference speed is much slower than our method. As a method
based on LUTs, SR-LUT is much faster than the other compared methods.
However, it is still slower than our SPLUT-S and SPLUT-M methods. Besides,
SPLUT models all outperform SR-LUT by a large margin on PSNR and SSIM
metrics. Our SPLUT-M model achieves a better trade-off between efficiency and
accuracy. Compared to SR-LUT, SPLUT-M improves PSNR by 0.4 dB on Set5
and Manga109 in a faster speed. By comparing model sizes, we see that our
SPLUT method only brings a linear increase in storage costs. We believe the
LUT size of our method is acceptable for current mobile phones. Therefore, we
regard the runtime as a more important factor for evaluating efficiency. Besides,
SPLUT-L presents more powerful SR abilities than SPLUT-S and SPLUT-M.
These comparisons verify that our SPLUT framework is more powerful and more
flexible than the previous framework of single-layer LUTs whose scale increases
exponentially with RF sizes.

Qualitative Comparison. Fig. 5 illustrates the qualitative comparisons
of Bicubic interpolation, A+, SR-LUT, our SPLUT models, and ground-truth
images. We can see SR-LUT fails to present natural details for sharp edges. In
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Bicubic A+ SRLUT SPLUT-S SPLUT-M HR

Fig. 5. Qualitative Comparisons of bicubic interpolation, A+ [31], SRLUT [11], our
SPLUT method and HR images. The results show our method can generate sharp
edges without severe artifacts.

some areas with continuously changing colors, there are often blocking artifacts.
In the third row, the SR results of SR-LUT have severe ringing artifacts near
edges. While A+ introduces fewer artifacts than SR-LUT, it may generate more
blurry edges, as shown in the second row. On the contrary, our SPLUT models
restore more natural textures. It can be seen that the expansion of the receptive
field in SPLUT helps the network grasp the texture and structure information
of context regions to achieve better reconstruction accuracy.

Ablation: Parallel Network vs. Interpolation. We take SPLUT-M as
the baseline model and further investigate the effectiveness of our proposed par-
allel network by comparing it with interpolation algorithms. Specifically, we re-
main only one branch of the SPLUT model and use full-precision LR images as
inputs to train this model. In the inference phase, we follow SR-LUT [11] to ex-
tract IMSB for retrieval and store ILSB for interpolation. We call the one-branch
model without interpolation “OBM w/o interpolation”. Since the cascaded LUTs
in this model brings a large RF size of r, it is intractable to consider all bounding
vertices and simply implement interpolations due to the computational complex-
ity of 2r. To improve the SR accuracy of this model, we design two interpolation
methods for the input images. For a position of (x, y), SR-LUT implements 4-

simplex interpolation for 4D LUTs by exploring the relation of I
(x,y)
LSB , I

(x+1,y)
LSB ,

I
(x,y+1)
LSB and I

(x+1,y+1)
LSB . A weighted sum of the retrieval results for the 16 bound-
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Table 2. Comparison of parallel network and interpolation methods. The results show
OBM w/o interpolation and the models with interpolation methods cannot achieve
comparable performance to our SPLUT method.

method Size
Set5 Set14

PSNR SSIM PSNR SSIM

OBM w/o interpolation 3.5M 27.24 0.8217 25.30 0.7175

Tail-layer Interpolation 3.5M 27.24 0.8217 25.30 0.7175

First-layer Interpolation 3.5M 27.24 0.8218 25.30 0.7176

SPLUT 7M 30.23 0.8567 27.32 0.7460

Table 3. Comparison of SPLUT models with different quantization precision vf of
intermediate features. We choose vf = 16 as the optimal setting considering accuracy
and efficiency.

vf Size
Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

8 1.375M 29.95 0.849 27.13 0.738 26.63 0.698 24.05 0.702 26.83 0.839

12 2.898M 30.11 0.854 27.26 0.743 26.71 0.702 24.15 0.706 27.06 0.844

16 7M 30.23 0.857 27.32 0.746 26.74 0.704 24.21 0.709 27.20 0.848

20 15.648M 30.22 0.856 27.31 0.746 26.74 0.704 24.22 0.710 27.25 0.848

24 31.375M 30.25 0.858 27.34 0.747 26.75 0.705 24.24 0.711 27.24 0.849

ing vertices is computed as the final output since SR-LUT has only one layer of
LUT. In our methods, we also utilize ILSB for interpolation but we cannot get
the final SR output by directly fusing the retrieval results of the first layer of
spatial LUT since we still have other following LUTs for retrieval. Therefore, we
concatenate the 16 bounding vertices of all input pixels to form 16 index maps,
which reduce the complexity of 2r to 24. In our first interpolation method, we
take these 16 index maps as the inputs to the spatial lookup blocks and get
16 SR results through the whole network. We interpolate the 16 SR results by
ILSB using the 4-simplex method. We call this method tail-layer interpolation.
In our second method, we feed the 16 index maps to the spatial lookup blocks
and get 16 intermediate feature maps. We fuse the 16 feature maps by ILSB to
get one feature map. By feeding the feature map to the following layers, we can
get a final SR output. We call this method first-layer interpolation. More imple-
mentation details are described in the supplementary. The results are shown in
Table 2. Our SPLUT with the parallel network achieves an improvement of more
than 2.9 dB over the two interpolation methods and OBM w/o interpolation.
This proves that applying interpolation methods fails to compensate for the pre-
cision loss, which is caused by discretizing pixel values when establishing lookup
tables. In contrast, our parallel network is superior to interpolation algorithms
in compensating for the precision loss for large RF sizes. It can also be inferred
that our parallel network is inherently robust to different receptive fields.
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Table 4. Ablation study on LUT number. Extending the depth and width of the
SPLUT network both boost the SR performance, which demonstrates the effectiveness
and extensibility of the proposed method.

Layer num Size
Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SPLUT1−2 5M 29.77 0.846 27.04 0.737 26.56 0.696 23.95 0.697 26.68 0.836

SPLUT1−4 10M 30.01 0.852 27.21 0.742 26.66 0.700 24.12 0.705 27.05 0.844

SPLUT1−2−2 7M 30.23 0.857 27.32 0.746 26.74 0.704 24.21 0.709 27.20 0.848

SPLUT1−4−4 18M 30.52 0.863 27.54 0.752 26.87 0.709 24.46 0.719 27.70 0.858

Ablation: Quantization Precision. In SPLUT, we uniformly quantize the
real-value activations in the aggregation modules during training to control the
size of LUTs. Since we set n = 4 for all the LUTs, the prediction accuracy and
model scale are mainly determined by v. For the spatial lookup blocks, we fix
the sampling interval to 16. We change the precision of quantizing the real-value
intermediate features, vf , and investigate the influence of it. Table 3 presents the
performance of SPLUT-M with different vf . The results indicate that increasing
vf constantly improves the SR accuracy but the model size also increases. When
vf is less than 16, the accuracy improves rapidly. However, SPLUT only has a
minor improvement when vf is greater than 16. Hence we choose vf = 16 as the
appropriate value which presents appealing SR performance with a relatively
small model size. In practice, the quantization precision can be determined by
the application scenarios to achieve the flexible model design.

Ablation: LUT Number. We conduct ablation studies on the number
of LUTs in each parallel branch to further investigate the extensibility of our
SPLUT architecture. As shown in Table 4, we compare 4 models with different
model depths and widths. The model is named according to the number of LUTs
in each block. SPLUT1−2 represents there are two layers of LUTs. The first layer
is the spatial lookup block and the second layer is a query block which contains
one LUTWC and one LUTHC. For SPLUT1−4, the second layer contains two
different LUTWC and two different LUTHC. In this model, the channel number of
intermediate feature maps is nin = 16. SPLUT1−2−2 and SPLUT1−4−4 have the
similar architectures to SPLUT1−2 and SPLUT1−4 but have two query blocks in
each branch. SPLUT1−2−2 and SPLUT1−4−4 are actually the same as SPLUT-M
and SPLUT-L, respectively.

In Table 4, we observe a huge improvement when the network width in-
creases by comparing the first two rows and the last two rows. This indicates
that more LUTs per layer can extract more information by the limited number
of channels. In this way, the model can obtain a stronger representation ability
and better SR reconstruction performance. As the number of query blocks in-
creases, we see SPLUT1−2−2 achieves an improvement of 0.46 dB over SPLUT1−2

while SPLUT1−4−4 outperforms SPLUT1−4 by about 0.51 dB on the PSNR per-
formance of Set5. It is inferred that cascading multiple layers of LUTs is very
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Table 5. Effects of of horizontal and vertical aggregation modules. After removing the
aggregation modules, the RF size gets smaller and the restoration ability is degraded.

Set5 Set14 BSDS100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SPLUT w/o AM 29.64 0.839 26.95 0.724 26.08 0.676 23.50 0.677 25.72 0.812

SPLUT 30.23 0.857 27.32 0.746 26.74 0.704 24.21 0.709 27.20 0.848

effective in enlarging the receptive fields and boosting recovery abilities. Compar-
ing SPLUT1−2−2 and SPLUT1−4, both models have 5 lookup tables. However,
SPLUT1−2−2 gains a boost of about 0.22 dB. This indicates that the network
depth is more important than network width in SPLUT. Besides, the compar-
isons demonstrate the effectiveness of enlarging receptive fields.

Ablation: Aggregation Modules. Table 5 shows the performance com-
parison between the original SPLUT model and the SPLUT model without
aggregation modules, SPLUT w/o AM. From the table we see there is a gap
of 0.59 dB between the PSNR performance of SPLUT w/o AM and SPLUT on
Set5. The key insight is that we expand the receptive field of the intermediate
features by fusing the feature maps padded in opposite directions in the aggre-
gation modules. Thus the features become stronger for the subsequent lookup
processes. When aggregation modules are removed, the overall receptive field
of the final output is significantly reduced compared with that of the original
network, leading to performance degradation correspondingly. The experimen-
tal results demonstrate the effectiveness of the proposed horizontal and vertical
aggregation modules.

5 Conclusion

In this paper, we have proposed a series-parallel lookup table network to achieve
efficient image super-resolution. On the one hand, we cascade multiple LUTs to
enlarge the receptive field size progressively and enhance the representation ca-
pacity of the whole network. On the other hand, we design a parallel architecture
to fuse the information of MSB inputs and LSB inputs. By doing so, we compen-
sate for the precision loss caused by quantization when establishing LUTs and
improve the prediction accuracy. Comprehensive experiments have demonstrated
the effectiveness, efficiency, and flexibility of the proposed method.
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