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Fig. 1: Examples of visual creative sketches generated using the proposed DoodleFormer. Here,
we show creative sketches generated based on (a) the random input strokes, (b) text inputs and (c)
incomplete sketch images provided by the user. In all three scenarios, the generated sketches are
well aligned with the user provided inputs (e.g., the creative sketches generated for the text inputs
“walking forward” and “fly up high” in (b)). Similarly, the diversity in terms of appearance, pos-
ture and part size can be observed within the generated creative bird sketches in (a). Furthermore,
DoodleFormer accurately completes the missing bird wings, legs and beak in the bottom right
example in (c). Additional examples are available in Fig. 2, Fig. 4, Fig. 6 and the supplementary.

Abstract. Creative sketching or doodling is an expressive activity, where imagi-
native and previously unseen depictions of everyday visual objects are drawn. Cre-
ative sketch image generation is a challenging vision problem, where the task is
to generate diverse, yet realistic creative sketches possessing the unseen com-
position of the visual-world objects. Here, we propose a novel coarse-to-fine
two-stage framework, DoodleFormer, that decomposes the creative sketch gen-
eration problem into the creation of coarse sketch composition followed by the
incorporation of fine-details in the sketch. We introduce graph-aware transformer
encoders that effectively capture global dynamic as well as local static struc-
tural relations among different body parts. To ensure diversity of the generated
creative sketches, we introduce a probabilistic coarse sketch decoder that explic-
itly models the variations of each sketch body part to be drawn. Experiments
are performed on two creative sketch datasets: Creative Birds and Creative Crea-
tures. Our qualitative, quantitative and human-based evaluations show that Doo-
dleFormer outperforms the state-of-the-art on both datasets, yielding realistic and
diverse creative sketches. On Creative Creatures, DoodleFormer achieves an ab-
solute gain of 25 in Frèchet inception distance (FID) over state-of-the-art. We also
demonstrate the effectiveness of DoodleFormer for related applications of text to
creative sketch generation, sketch completion and house layout generation. Code
is available at: https://github.com/ankanbhunia/doodleformer

https://github.com/ankanbhunia/doodleformer
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Fig. 2: A visual comparison of creative sketch images generated by DoodlerGAN [10] (top row)
and the proposed DoodleFormer (bottom row) for the same initial random input strokes. We show
examples from both Creative Birds (a) and Creative Creatures (b) datasets. DoodlerGAN suffers
from topological artefacts (e.g., more than one head like region in the third bird sketch from the
left), disconnected body parts (e.g., the fifth sketch from the left in creatures). Further, the Dood-
lerGAN generated creative sketches have lesser diversity in terms of size, appearance and posture.
The proposed DoodleFormer alleviates the issues of topological artefacts and disconnected body
parts, generating creative sketches that are more realistic and diverse.

1 Introduction

Humans have an outstanding ability to easily communicate and express abstract ideas
and emotions through sketch drawings. Generally, a sketch comprises several strokes,
where each stroke can be considered as a group of points. In automatic sketch image
generation, the objective is to generate recognizable sketches that are closely related to
the real-world visual concepts. Here, the focus is to learn more canonical and mundane
interpretations of everyday objects.

Different from the standard sketch generation problem discussed above, creative
sketch generation [10] involves drawing more imaginative and previously unseen depic-
tions of everyday visual concepts (see Fig. 1(a)). In this problem, creative sketches are
generated according to externally provided random input strokes. Example of creative
sketch generation includes doodling activity, where diverse, yet recognizable sketch im-
ages are generated through unseen composition of everyday visual concepts. Automatic
generation of creative sketches can largely assist human creative process e.g., inspiring
further ideas by providing a possible interpretation of initial sketches by the user. How-
ever, such a creative task is more challenging compared to mimicking real-world scenes
in to sketch images. This work investigates the problem of creative sketch generation.

Recently, Ge et al. [10] address the creative sketch image generation problem by
proposing a part-based Generative Adversarial Network called DoodlerGAN. It utilizes
a part-specific generator to produce each body part of the sketch. The generated body
parts are then sequentially integrated with the externally provided random input, for ob-
taining final sketch image. Although DoodlerGAN utilizes a part-specific generator for
creating each body part of the sketch, it does not comprise an explicit mechanism to en-
sure that each body part is placed appropriately with respect to the rest of the parts. This
leads to topological artifacts and connectivity issues (see Fig. 2). Further, DoodlerGAN
struggles to generate diverse sketch images, which is an especially desired property in
creative sketch generation.

In this work, we argue that the aforementioned problems of topological artefacts,
connectivity and diversity issues can be alleviated by imitating the natural coarse-to-fine
creative sketch drawing process, where the artist first draws the holistic coarse structure
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of the sketch and then fills the fine-details to generate the final sketch. By first drawing
the holistic coarse structure of the sketch aids to appropriately decide the location and
the size of each sketch body part to be drawn. To imitate such a coarse-to-fine creative
sketch generation process, we look into a two-stage framework where the global as
well as local structural relations among different body parts can be first captured at a
coarse-level followed by obtaining the fine-level sketch. The coarse-to-fine framework
is expected to further improve the diversity of the creative sketch images by explicitly
modeling the variations in the location and size of each sketch body part to be drawn.

1.1 Contributions

We propose a novel two-stage encoder-decoder framework, DoodleFormer, for creative
sketch generation. DoodleFormer decomposes the creative sketch generation problem
into the construction of holistic coarse sketch composition followed by injecting fine-
details to generate final sketch image. To generate realistic sketch images, we introduce
graph-aware transformer (GAT) encoders that effectively encode the local structural
relations between different sketch body parts by integrating a static adjacency-based
graph into the dynamic self-attention block. We further introduce a probabilistic coarse
sketch decoder that utilizes Gaussian mixture models (GMMs) to obtain diverse loca-
tions of each body part, thereby improving the diversity of output sketches (see Fig. 2).

We evaluate the proposed DoodleFormer by conducting extensive qualitative, quan-
titative and human-based evaluations on the recently introduced Creative Birds and Cre-
ative Creatures datasets. Our DoodleFormer performs favorably against DoodlerGAN
on all three evaluations. For instance, DoodleFormer sketches were interpreted to be
drawn by a human 86%, having better strokes integration 85% and being more creative
82%, over DoodlerGAN in terms of human-based evaluation. Further, DoodleFormer
outperforms DoodlerGAN with absolute gains of 25 and 23 in terms of Frèchet incep-
tion distance (FID) on Creative Creatures and Creative Birds, respectively. In addition to
sketch generation based on externally provided random initial strokes, we validate the
effectiveness of DoodleFormer to generate creative sketches based on text inputs, in-
complete sketch images provided by user as well as generating complete house layouts
given coarse-level bubble diagrams. DoodleFormer achieves impressive performance
for text to sketch generation, sketch completion (see Fig. 1 (b) and (c)) as well as house
layout generation (see Fig. 8).

2 Related Work

The problem of sketch generation [12,16,20,5,37,7] has been studied extensively in lit-
erature. These methods generally aim to mimic the visual world by capturing its impor-
tant aspects in the generated sketches. SketchRNN [12], utilizes sequence-to-sequence
Variational Autoencoder (VAE) for conditional and unconditional generation of vector
sketches. Cao et al. [5] propose a generative model that generates multi-class sketches.
Moreover, alternative strategies such as differentiable rendering [37], attention-based
architectures [27] and reinforcement learning [3,38,9] have been investigated for sketch
generation. The work of [7] incorporates a convolutional encoder to capture the spatial
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layout of sketches, whereas [23,29,25] aim at completing the missing parts of sketches.
The work of [21] targets recovering the masked parts of points in sketches. A few works
[27,21] have also studied related tasks of sketch classification and retrieval.

Different from the aforementioned standard sketch generation task, creative sketch
generation has been recently explored [10]. This task focuses on drawing more imagi-
native and previously unseen depictions of common visual concepts rather than generat-
ing canonical and mundane interpretations of visual objects. To this end, DoodlerGAN
[10] introduces a part-based Generative Adversarial Network built on StyleGAN2 [17]
to sequentially produce each body part of the creative sketch image. Here, the part-
based GAN model needs to be trained separately for individual body parts (eye, head,
beak, etc.) using part annotations. However, such a separate model for each body part
results in a large computational overhead. During inference, these individual part-based
GAN models are sequentially used to generate their respective body parts within the
creative sketch. While generating recognizable creative sketches, DoodlerGANs strug-
gles with topological artifacts, connectivity and diversity issues. In this work, we set
out to overcome these issues to generate diverse, yet realistic creative sketches.

3 Our Approach

Motivation: To motivate our framework, we first distinguish two desirable properties
to be considered when designing an approach for creative sketch generation.
Holistic Sketch Part Composition: As discussed earlier, DoodlerGAN employs a part-
specific generator to produce each body part of the sketch. However, it does not utilize
any explicit mechanism to ensure that the generated part is placed in an appropriate lo-
cation relative to other parts, thereby suffering from topological artifacts and connectiv-
ity issues (see Fig. 2). Here, we argue that explicitly capturing the holistic arrangement
of the sketch parts is desired to generate realistic sketch images that avoid topological
artifacts and connectivity issues.
Fine-level Diverse Sketch Generation: Creative sketches exhibit a large diversity in ap-
pearance, posing a major challenge when generating diverse, yet realistic fine-detailed
sketch images. Existing work of DoodlerGAN struggles to generate diverse sketch im-
ages since it typically ignores the noise input in the sketch generation process [26]. Al-
though DoodlerGAN attempts to partially address this issue by introducing heuristics
in the form of randomly translating the input partial sketch, the diversity of generated
sketch images is still far from satisfactory (see Fig. 2). Instead, we argue that having an
explicit probabilistic modeling within the framework is expected to further improve the
diversity of the generated sketch images.
Overall Framework: The proposed two-stage DoodleFormer framework combines the
two aforementioned desired properties by decomposing the creative sketch generation
problem to first capture the holistic coarse sketch composition and then injecting fine-
details to generate the final sketch. The overall architecture of the proposed two-stage
DoodleFormer is shown in Fig. 3. DoodleFormer comprises two stages: Part Locator
(PL-Net) and Part Sketcher (PS-Net). The first stage, Part Locator (PL-Net), learns to
explicitly capture the holistic arrangement of the sketch parts conditioned on the ex-
ternally provided random initial stroke points C represented in a vector form. PL-Net
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Fig. 3: The proposed DoodleFormer comprises two stages: Part Locator (PL-Net) and Part
Sketcher (PS-Net). (a) The first stage, PL-Net, takes the initial stroke points C as the conditional
input and learns to return the bounding boxes corresponding to each body part (coarse structure
of the sketch) to be drawn. PL-Net contains two graph-aware transformer (GAT) encoders (Eb,
Ec) and a probablistic coarse sketch decoder utilizing GMM modelling for the coarse box pre-
diction. Within the decoder, the bounding box parameters are predicted by the location-predictor
(Hxy) and size-predictor (Hwh) modules. (b) The second stage, PS-Net, then takes the predicted
box locations along with C as inputs and generates the final sketch image Īim. Following the de-
sign of Eb and Ec, PS-Net also comprises GAT block-based encoders (Ēb, Ēc). Further, PS-Net
contains a convolutional encoder-decoder network (RE , RD) and a mask regressor to generate
rasterized high quality sketch image Īim.

comprises graph-aware transformer (GAT) block-based encoders to capture structural
relationship between different regions within a sketch. To the best of our knowledge,
we are the first to introduce a GAT block-based transformer encoder for the problem
of creative sketch image generation. Instead of directly predicting the box parameters
as deterministic points from the transformer decoder, we further introduce probabilistic
coarse sketch decoders that utilize GMM modelling for box prediction. This enables
our DoodleFormer to achieve diverse, yet plausible coarse structure (bounding boxes)
for sketch generation. The second stage, Part Sketcher (PS-Net), creates the final sketch
image with appropriate line segments based on the coarse structure obtained from PL-
Net. PS-Net also comprises GAT block-based encoders, as in PL-Net, along with a
convolutional encoder-decoder network to generate the final rasterized sketch image.

Our carefully designed two-stage DoodleFormer architecture possesses both desired
properties (holistic sketch part composition as well as fine-level diverse sketch gener-
ation) and creates diverse, yet realistic sketch images in a coarse-to-fine manner (see
Fig. 4). Next, we describe in detail PL-Net (Sec. 3.1) and PS-Net (Sec. 3.2).

3.1 Part Locator Network (PL-Net)

As discussed above, PL-Net takes the initial stroke points C as the conditional input,
and learns to return a coarse structure capturing the holistic part composition of the
desired sketch. The encoders in PL-Net contain graph-aware transformer (GAT) blocks
to encode the structural relationship between different parts (holistic sketch part com-
position), leading to realistic sketch image generation. The decoder in PL-Net utilizes
GMM modeling for box prediction, enabling the generations of diverse sketch images.
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Fig. 4: A visual comparison in terms of progressively integrating one contribution at the time,
from top to bottom, for common initial strokes. Compared to the single-stage baseline (first row),
the two-stage framework (without the GAT block and probabilistic modeling in the decoder)
generates sketch in a coarse-to-fine manner. As a result, the two-stage framework (second row)
produces a more complete sketch where each body part is placed at an appropriate location rel-
ative to other parts. The introduction of GAT block (third row) in the encoders of the two-stage
framework improves the realism of the generated sketches by capturing the structural relation-
ship between different parts (e.g., the tenth image from the left, where there is a discontinuity
between the beak and the head of the bird). Further, the introduction of probabilistic modelling in
the decoder of the two-stage framework (last row), improves the diversity (e.g., appearance, size,
orientation and posture) of generated sketch images. Our final two-stage framework (last row)
produces realistic and diverse sketch images.

Graph-aware Transformer Block-based Encoder PL-Net consists of two graph-
aware transformer (GAT) block-based encoders Eb and Ec, which are used to obtain
contextualized representation of the coarse (holistic) structure B and the conditional
input C, respectively.
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Fig. 5: Our proposed graph-aware transformer
(GAT) block (c) replaces the standard self-
attention (b) in the conventional transformer en-
coder layer (a). Our GAT block injects the graph
structure into self-attention by learning to re-
weight the attention matrix based on the pair-
wise relations between the graph nodes. In this
way, the proposed GAT block combines the lo-
cal connectivity patterns from the learned adja-
cency graph with the dynamic attention from the
self-attention block.

To encode the identity t of each body
part present in a sketch, we define vt ∈
Rd as a learned part embedding. We con-
catenate vt with a feature representation
obtained from bt ∈ B (box location and
size information (xt, yt, wt, ht) of each
body part). This concatenated feature is
then used as an input to the encoder
Eb. The conditional input strokes C are
passed through a linear layer before be-
ing input to the encoder Ec. We add spe-
cial cls tokens [8] at the beginning of in-
put sequences to the encoders (Eb and
Ec). The output of this token is consid-
ered as the contextualized representation
of the whole sequence. Further, we use
fixed positional encodings to the input of
each attention layer to retain information
regarding the sequence order. Next, we
introduce our GAT block used in both en-
coders (Eb, Ec) to encode the holistic structural composition of (sketch) body parts.
Graph-aware Transformer (GAT) Block: The structure of our GAT block is shown
in Fig. 5(c). Each GAT block consists of a graph-aware multi-headed self-attention
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(MHSA) module followed by a feed-forward network [18]. Given the queries Q, keys
K, and values V the standard self-attention module [32] computes the attention ac-
cording to the following equation (also shown in Fig. 5(b)),

α = softmax
(
QKT

√
d

)
. (1)

While the standard self-attention module is effective towards learning highly con-
textualized feature representation, it does not explicitly emphasize on the local struc-
tural relation. However, creative sketches are structured inputs with definite connec-
tivity patterns between sketch parts. To model this structure, we propose to encode an
adjacency based graph implemented with spectral graph convolution [19]. Our pro-
posed GAT block combines the definite connectivity patterns from the learned adja-
cency graph with the dynamic attention from self-attention block. Let us consider a
graph where each node i is associated with a structure-aware representation ni and cor-
responding neighbour set Nr(i). To represent the neighbor set Nr(i) for each node i,
we define an adjacency matrix A where each entry represents whether two nodes i and
j are adjacent. The edge weight eij between two adjacent nodes i and j is given by,

eij = W T
b ReLU (Wa [ni,nj ]) ∀j ∈ Nr(i), (2)

where Wa and Wb are learned parameters and [·, ·] is a concatenation operator. We set
eij = 0 ∀j /∈ Nr(i). For each GAT block l, the spectral graph convolution operation is,

n
(l+1)
i = ReLU

n
(l)
i +

∑
j∈Nr(i)

eijWcn
(l)
j

 , (3)

where Wc is a learned matrix. Our main intuition is that the adjacency matrix represent-
ing the neighbourhood graph structure is static which is computed over the connected
components in the graph and predetermined for each input, it is also symmetric and
generally sparse. In contrast, attention learned from the self-attention layer is dynamic,
can be dense and also non-symmetric. We propose to combine these two complemen-
tary representations through the following equation where we calculate the attention
weight αij for nodes j ∈ Nr(i) as follows,

αij =
eij exp(φij)∑

j∈Nr(i)
eij exp(φij)

, s.t. φij ∈
QKT

√
d

, (4)

where φij is an element of the standard attention matrix.
The special token (cls) output from Ec is then utilized as an input to a Prior-Net

for approximating the conditional prior latent distribution. Similarly, the cls token out-
puts of both Eb and Ec are provided as input to a Recog-Net for approximating the
variational latent distribution. Both the Prior-Net and the Recog-Net are parameterized
by multi-layer perceptrons (MLPs) to approximate prior and variational latent normal
distributions. During training, we sample the latent variable z from the variational dis-
tribution and provide it as input to the probabilistic coarse sketch decoder.
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Probabilistic Coarse Sketch Decoder The probabilistic coarse sketch decoder within
our PL-Net utilizes probabilistic modelling to generate diverse coarse structure. The
decoder comprises two modules: a location-predictor Hxy and a size-predictor Hwh.
Here, the location-predictor Hxy estimates the center coordinates (xt, yt) of bounding
boxes around body parts, while the size-predictor Hwh predicts their width and height
(wt, ht). Both these modules consist of multi-headed self- and encoder-decoder atten-
tion mechanisms [32]. The encoder-decoder attention obtains the key and value vectors
from the output of the encoder Ec. This allows every position in the decoder to attend
to all positions in the conditional input sequence. The part embedding vt from the en-
coder is used as a query positional encoding to each attention layer of the decoder. Over
multiple consecutive decoding layers, the decoder modules produce respective output
features fxy

t ∈ Rd and fwh
t ∈ Rd that lead to the distribution parameters of bounding

boxes being associated with each body part, representing the coarse structure of the
final sketch to be generated.

To enhance the diversity of generated sketch images, we model the box predic-
tions from each decoder module by Gaussian Mixture Models (GMMs) [4,11]. Differ-
ent from the conventional box prediction [6,39] that directly maps the decoder output
features as deterministic box parameters, our GMM-based box prediction is modeled
with M normal distributions N (·) where each distribution is parameterized by θk and
a mixture weight πk,

p(bt|C, z) =
M∑
k=1

πk,tN (bt; θk,t) , for
M∑
k=1

πk,t = 1. (5)

The GMM parameters can be obtained by minimizing the negative log-likehood for all
P body parts in a sketch,

Lb = − 1

P

P∑
t=1

log

(
M∑
k=1

πk,tN (bt; θk,t)

)
. (6)

Here, we simplify the quadvariate distribution of GMMs in Eq. 6 by decomposing it
into two bivariate distributions as p(bt|C, z) = p(xt, yt|C, z)p(wt, ht|xt, yt, C, z). The
parameters of these bivariate GMMs are obtained by employing linear layers and appro-
priate normalization on the outputs fxy

t , fwh
t of Hxy and Hwh, respectively. In addition

to GMM parameters, these linear layers also estimate the presence of a body part using
an indicator variable, which is trained with a binary cross entropy loss Lc.
PL-Net Loss function (LPL): The overall loss function LPL to train the PL-Net is the
weighted sum of the reconstruction loss Lrec, and the KL divergence loss LKL ,

LPL = Lrec + λKLLKL. (7)

Here, the reconstruction loss term is Lrec = Lb + Lc. The KL divergence loss term
LKL regularizes the variational distribution [28] from the Recog-Net to be closer to the
prior distribution from the conditional Prior-Net, whereas λKL is a scalar loss weight.

Our carefully designed PL-Net architecture, presented above, provides a coarse
structure of the sketch that is used to generate a diverse, yet realistic final sketch im-
age in the second stage (PS-Net) of the proposed two-stage DoodleFormer framework.
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Next, we present the PS-Net that takes the coarse structure of the sketch along with
initial partial sketch C as inputs and generates the final sketch image.

3.2 Part Sketcher Network (PS-Net)

Our PS-Net comprises two graph-aware transformer (GAT) block-based encoders Ēb

and Ēc, following the design of encoders Eb and Ec in the PL-Net. Here, the encoder
Ēb produces a contextualized feature representation of bounding box bt associated with
each body part. Similarly, the encoder Ēc outputs a contextualized feature representa-
tion of initial stroke points C. Both these contextualized feature representations from
Ēb and Ēc are then concatenated and passed through a linear layer to obtain ut.

The initial stroke points C is converted to its raster form IC and passed through
a convolutional encoder RE that outputs a spatial representation g = RE(IC). Con-
sequently, g and {ut}Pt=1 are provided as input to a convolutional decoder RD for
generating the final sketch image Īim,

Īim = RD

(
g, {ut}Pt=1

)
. (8)

The decoder network RD utilizes the ResNet [13] architecture as a backbone. To intro-
duce diversity in the generated images, a zero-mean unit-variance multivariate random
noise is added with g before passing it to the decoder network. For fine-grained shape
prediction, we utilize a mask regressor [30,31] having up-sampling convolutions, fol-
lowed by sigmoid transformation to generate an auxiliary mask for each bounding box.
The predicted masks are resized to the sizes of corresponding bounding boxes, which
are then used to compute the instance-specific and structure-aware affine transformation
parameters in the normalization layer of the decoder RD.

The training of PS-Net follows the standard GAN formulation where the PS-Net
generator G is followed by additional discriminator networks Dim, Dpart, and Dapp to
obtain image-level (Lim), part-level (Lpart), and appearance (Lapp) adversarial losses
[14,30], respectively. The loss function is then given by,

LPS =Lim + λpLpart + λaLapp, (9)

where λp and λa are the loss weight hyper-parameters.
The introduction of the GAT block in the PL-Net and PS-Net encoders contributes

towards the generation of realistic sketch images, whereas the effective utilization of
probabilistic modelling in the PL-Net decoder leads to improved diversity. In summary,
our two-stage DoodleFormer generates diverse, yet realistic sketch images (see Fig. 4).

4 Experiments

Datasets: We perform extensive experiments on the recently introduced Creative Birds
and Creative Creatures datasets [10]. The Creative Birds has 8067 sketches of birds,
whereas the Creative Creatures contains 9097 sketches of various creatures. In both
datasets, all sketches come with part annotations. Both datasets also contain free-form
natural language phrase as a text description for each sketch.
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Table 1: Comparison of DoodleFormer with DoodlerGAN [10], StyleGAN2 [17] and
SketchRNN [12] in terms of Frèchet inception distance (FID), generation diversity (GD), char-
acteristic score (CS) and semantic diversity score (SDS). Our DoodleFormer performs favorably
against existing methods on both datasets.

Creative Birds Creative Creatures
Methods

FID(↓) GD(↑) CS(↑) FID(↓) GD(↑) CS(↑) SDS(↑)

Training Data - 19.40 0.45 - 18.06 0.60 1.91

SketchRNN [12] 82.17 17.29 0.18 54.12 16.11 0.48 1.34
StyleGAN2 [17] 130.93 14.45 0.12 56.81 13.96 0.37 1.17
DoodlerGAN [10] 39.95 16.33 0.69 43.94 14.57 0.55 1.45

DoodleFormer (Ours) 16.45 18.33 0.55 18.71 16.89 0.56 1.78

Implementation Details: As discussed, both PL-Net and PS-Net utilize graph-aware
transformer (GAT) block-based encoders. In each GAT-block based encoder, we define
an adjacency matrix A based on the connectivity patterns of the adjacency graph. Every
pair of overlapping bounding boxes on a coarse structure is connected in the adjacency
graph. Similarly, for initial strokes, the corresponding adjacency graph connects adja-
cent points on each single stroke. Each of these encoders consist of L=6 graph-aware
transformer blocks. Here, each block comprises multi-headed attention having 8 heads.
In the probabilistic coarse sketch decoder, the location-predictor and size-predictor uti-
lize 3 self- and encoder-decoder attention layers. Further, we set the embedding size
d=512. We augment the vector sketch images by applying small affine transforma-
tions and these vector sketches are converted to raster images of size 128 × 128. Our
DoodleFormer is trained as follows. In the first stage, for training PL-Net, we initially
obtain the bounding boxes for all body parts in a sketch using the part annotations. The
bounding boxes are normalized to values between 0 and 1. In the second stage, we train
PS-Net using the raster sketch images and their corresponding ground-truth boxes. In
both stages, the initial stroke points are provided in a vector form as a conditional input.
In all experiments, we use a batch size of 32. The learning rate is set to 1e−4 and the
loss weights λKL, λp, λa are set to 1, 10 and 10.

4.1 Quantitative and Qualitative Comparisons

We first present a comparison (Tab. 1) of our DoodleFormer with state-of-the-art ap-
proaches [12,33,10] on both Creative Birds and Creative Creatures. For a fair compari-
son, we evaluate all methods using two widely used metrics, namely Frèchet inception
distance (FID) [15] and generation diversity (GD) [5], as in DoodlerGAN [10]. Here,
the FID and GD scores are computed using an Inception model trained on the Quick-
Draw3.8M dataset [34], that embeds the images onto a feature space [10]. Tab. 1 shows
that DoodleFormer outperforms existing methods in terms of both FID and GD scores,
on the two datasets. The higher GD score indicates the ability of DoodleFormer to gen-
erate diverse sketch images, whereas the lower FID score indicates the superior quality
of its generated creative sketches.

Furthermore, similar to DoodlerGAN [10], we use two additional metrics: charac-
teristic score (CS) and semantic diversity score (SDS). The CS metric evaluates how
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Fig. 6: Applications of DoodleFormer. (a) Creative sketch generation based on random input
strokes. (b) Creative sketch completion: Here, DoodleFormer accurately completes missing parts
(e.g., beak, head and body of bird is well connected in second row and column in (b)), com-
pared to DoodlerGAN (DG). (c) Text to creative sketch generation: We compare DoodleFormer
with AttnGAN [35] (AG), StackGAN [36] (SG). DoodleFormer produces sketches that are well
aligned with user provided input texts. Best viewed zoomed in.

often a generated sketch is classified to be a bird (for Creative Birds) or creature (for
Creative Creatures) by the Inception model trained on the QuickDraw3.8M dataset. The
SDS metric measures the diversity of the sketches in terms of the different creature cat-
egories they represent. While the CS score can give us a basic understanding of the
generation quality, it does not necessarily reflects the creative abilities of a model. For
instance, if a model generates only canonical and mundane sketches of birds, then the
generated sketches would more likely to be correctly classified by the trained Inception
model. In that case, the CS score will still be high. In contrast, the SDS score is more
reliable in measuring the diversity of the generated sketch images. Tab. 1 shows that
DoodleFormer performs favourably against existing methods, in terms of SDS score,
on both datasets. Fig. 6(a) shows a visual comparison of DoodleFormer with Doodler-
GAN for creative sketch generation1.

4.2 User Study

Here, we present our user study to evaluate the human plausibility of creative sketches
generated by our DoodleFormer. Specifically, we show 100 participants pairs of sketches
– one generated by DoodleFormer and the other by a competing approach. For each
pair of images, similar to DoodlerGAN [10], each participant is provided with 5 ques-
tions which are shown in the legend of Fig. 7 (a-e). DoodleFormer performs favor-
ably against DoodlerGAN for all five questions on both datasets. For instance, Doodle-
Former sketches were interpreted to be drawn by a human 86%, having better initial
strokes integration 85% and being more creative 82%, over DoodlerGAN on Creative
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Birds dataset. Further, for all the five questions, the DoodleFormer generated sketch im-
ages were found to be comparable with the human drawn sketches in Creative Datasets1.

4.3 Ablation Study

(a)

Looks  
Like Bird/ 
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Fig. 7: User study results on Creative Birds (left)
and Creative Creatures (right) based on the five
questions (a-e) mentioned in the legend. Higher
values indicate DoodleFormer is preferred more
often over the compared approaches (Doodler-
GAN and human drawn Creative datasets).

We perform multiple ablation studies to
validate the impact of proposed contri-
butions in our framework. Tab. 2 shows
the impact of two-stage framework, GAT
blocks and GMM-based modeling on
Creative Birds. Our single-stage base-
line (referred as baseline∗) is a stan-
dard transformer-based encoder-decoder
architecture, where initial strokes are
given as input to the transformer encoder.
The decoder sequentially generates all
body parts which are then integrated to
obtain final output sketch. The gener-
ated sketches using baseline∗ are unreal-
istic and suffer from body parts misplace-
ment. The introduction of two-stage framework leads to an absolute gain of 26.3 in
terms of FID score, highlighting the importance of a coarse-to-fine framework for real-
istic creative sketch generation. Our two-stage framework baseline neither uses the GAT
block in encoders nor employs the GMM-based modeling in decoder. Instead of GMM-
based modeling, we use a deterministic L1 loss in first stage (PL-Net) of two-stage
baseline. While this two-stage baseline improves realism of generated sketches, it stills
suffers from topological artifacts. The introduction of GAT block in encoders of two-
stage baseline improves realism of generated sketches by capturing the structural rela-
tionship between different parts. Although GAT blocks improve FID score by a margin
of 3.25, the generated sketches still lack diversity as indicated by only a marginal change
in GD score. The introduction of GMM-based modelling in decoder improves diversity
(e.g., appearance, size, orientation and posture) of generated sketches that leads to an
absolute gain of 1.17 in GD (see also Fig. 4). Our final DoodleFormer (two-stage base-
line + GAT blocks + GMM) achieves absolute gains of 30.0 and 3.7 in terms of FID
score over baseline∗ and two-stage baseline, respectively.

We also evaluate the design choices of our GAT blocks (see Tab. 3). First, we re-
place GAT blocks in encoders with simple GCN layers. The standard transformer-based
encoders outperforms this GCN-based baseline by a margin of 7.31. Further, we adapt
the Mesh Graphormer [22] by using their Graphormer in encoders of our framework.
Mesh Graphormer stacks transformer encoder layer and GCN block together in series.
In our experiments, we observe this design based on loosely connected components
performs slightly worse than standard transformer-based baseline. In contrast, an inte-
grated design like ours performs comparatively better.

1 Additional details and results are provided in supplementary material.
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Table 2: Impact of our two-stage frame-
work, GAT blocks and GMM-based prob-
abilistic modelling on Creative Birds.

Design Choices Methods FID(↓) GD(↑)

Single-stage baseline∗ 46.45 16.87

Two-stage
baseline 20.14 17.05
baseline + GAT 16.89 17.16
baseline + GAT + GMM 16.45 18.33

Table 3: Comparison of alternative design
choices for the proposed GAT blocks on
Creative Birds.

Methods FID(↓) GD(↑)

GCN layers 27.45 17.23
Transformer layers 20.14 17.05
Mesh Graphormer [22] 20.34 16.78

GAT layers (ours) 16.45 18.33

Table 4: House Layout Generation: We compare our approach with the existing methods in
terms of FID and Compatibility scores (obtained by the graph edit distance). The dataset samples
are split into five groups based on the room counts (1-3, 4-6, 7-9, 10-12, and 13+).

FID (↓) Compatibility (↓)
Methods

1-3 4-6 7-9 10-12 13+ 1-3 4-6 7-9 10-12 13+

Ashual et al. [12] 64.0 92.2 87.6 122.8 149.9 0.2 2.7 6.2 19.2 36.0
Johnson et al. [17] 69.8 86.9 80.1 117.5 123.2 0.2 2.6 5.2 17.5 29.3
House-GAN [10] 13.6 9.4 14.4 11.6 20.1 0.1 1.1 2.9 3.9 10.8

Ours 9.6 10.1 11.2 9.7 18.2 0.1 1.0 2.1 2.4 8.3

4.4 Related Applications

We also analyze DoodleFormer on three related tasks: user provided text to creative
sketch generation, creative sketch completion and house layout generation.
Text to Creative Sketch Generation: Here, the text description is given as conditional
input to encoder Ec in PL-Net, yielding a coarse structure of desired sketch which is
fed to PS-Net to generate final sketch. We remove RE from the PS-Net, and the cls
token output from the encoder Ēc is directly passed as input to RD. We use 80%-20%
train-test split. We compare DoodleFormer with two popular text-to-image methods:
StackGAN [36], AttnGAN [35] on Creative Birds and Creative Creatures. Doodle-
Former performs favorably against these methods in terms of FID and GD scores on
both datasets. On Creative Birds, StackGAN, AttnGAN and DoodleFormer achieve re-
spective FID scores of [53.1, 45.2, 18.5], and GD scores of [16.7, 16.5, 17.3]. Fig. 6 (c)
shows a qualitative comparison1.
Creative Sketch Completion: Given an incomplete sketch as input, DoodleFormer
attempts to creatively complete the rest of the sketch. First, PL-Net obtains the bound-
ing boxes for missing parts. Then, PS-Net generates an image containing the required
missing parts which is then integrated with the incomplete sketch input to obtain the
final output. On both Creative Birds and Creative Creatures, DoodleFormer achieves
favorable results compared to DoodlerGAN in terms of FID and GD scores. On Cre-
ative Birds, DoodlerGAN and DoodleFormer achieve respective FID scores of [44.2 and
18.3] and GD scores of [15.1 and 17.8]. Fig. 6 (b) shows the qualitative comparison1.
House Layout Generation: Finally, we use our proposed PL-Net architecture for the
house-plan generation [24] task. The goal is to take a bubble diagram as an input, and
generate a diverse set of realistic and compatible house layouts. A bubble diagram is
represented by a graph where each node contains information about rooms and edges



14 A. K. Bhunia et al.

Fig. 8: Qualitative results of House Layout Generation. Given the input bubble diagram, We com-
pare the house layout sample generated using our method with the House-GAN [24]. Our method
produces house layouts that are well aligned with input bubble diagram texts.

indicate their spatial adjacency. The output house layout is represented as axis-aligned
bounding boxes. The Encoder Ec takes the room type information as input and Prob-
abilistic Decoder subsequently outputs boundary boxes for each room. To transform
the obtained boundary box layout to a floor plan layout, we employ a floor-plan post-
processing strategy. In this process, we first extract boundary lines of the generated
boundary boxes. Next, we merge the adjacent line segments together and further align
them to obtain a closed polygon.

We perform the house-plan generation experiments on LIFULL HOME’s dataset
[1]. For fair comparison, we follow the same setting used by House-GAN [24]. We di-
vide the samples into five groups based on the number of rooms: 1-3, 4-6, 7-9, 10-12,
and 13+. To test the generalization ability in each group, we train a model while exclud-
ing samples in the same group. At test time, we randomly pick a bubble input diagram
from each group and generate 10 samples. Similar to House-GAN [24], we quantita-
tively measure the performance of our method in terms of FID and compatibility scores.
The compatibility score is the graph editing distance [2] between the input bubble di-
agram and the bubble diagram constructed from the output layout. Tab. 4 shows that
our method outperforms existing house-plan generation methods both in terms of FID
and compatibility scores. Fig. 8 shows the qualitative comparison of our house layout
generation approach with House-GAN [24].

5 Conclusion

We proposed a novel coarse-to-fine two-stage approach, DoodleFormer, for creative
sketch generation. We introduce graph-aware transformer encoders that effectively cap-
ture global dynamic as well as local static structural relations among different body
parts. To ensure diversity of generated creative sketches, we introduce a probabilis-
tic coarse sketch decoder that explicitly models variations of each sketch body part to
be drawn. We show the effectiveness of DoodleFormer on two datasets by perform-
ing extensive qualitative, quantitative and human-based evaluations. In addition, we
demonstrate promising results on related applications such as text to creative sketch
generation, sketch completion and house layout generation.
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