
18 P. Cervantes et al.

A Appendix

A.1 Training details

The optimization is done with an Adam optimizer with a learning rate of 1e-3
for the MLP-based models and 1e-4 for the Transformer-based models. We put
some effort in tuning the learning rate for both models and settle on such sim-
ple settings to preserve comparability. We train for 10000 epochs, but find that
strong performance is often already reached earlier. Unless otherwise stated we
report performance for the model after 10000 epochs. During training, we find
that frequent sampling of representations is important for motion generation
performance. Thus for each training iteration, we sample a sequence representa-
tion and an action representation per-sequence (as opposed to sampling a single
action representation per-batch). We set the weight for the Kullback-Leibler
divergence to 1e-5, following the findings in [31].

Since the sequence and action representations are persistent parameters, we
need to explicitly initialize them. We set a unit log-variance for all MLP-based
experiments and a log-variance to -10 for all Transformer-based experiments
according to our findings in Appendix B.1.

The full representation can be composed either through addition or concate-
nation of action-wise and sequence-wise representations. For additive composi-
tion we set the representation size of both action representation to α ∈ R256 and
sequence-wise representations to β ∈ R256 and the resulting sequence represen-
tation is given by α+ β. For concatenation we set both action representation to
α ∈ R128 and sequence-wise representations to β ∈ R128. We investigate the ef-
fect of both approaches in Appendix B.4 and find that the MLP-based decoder is
best trained with composition through concatenation and the Transformer-based
decoder is best trained with additive composition.

The optimization problems in Eqs. 6 - 8 require joint optimization with
sequence-wise, action-wise and dataset-wise parameters. We employ an alternat-
ing updating scheme where first all sequence-wise and action-wise parameters
are updated with respect to a fixed model and then the model parameters are
updated with respect to all other parameters.

Because our work produces persistent sequence representations, our decoder
is trained with temporal embeddings τ corresponding to an absolute position
within a groundtruth sample. In other words, during training τ0 always cor-
responds to the element at t = 0 of a real sample. This is different from the
previous work [31], which samples fixed-length subsequences during each train-
ing iteration. In their case, τ0 corresponds to the first element of the subsequence
that was input to the encoder. As a consequence of training with random sub-
sequences, the sequence representations of [31] are entangled with the starting
point of the sequence and randomly sampling a new sequence may produce a
representation at any starting point including the middle of an ongoing action.
In our work, on the other hand, τ0 always corresponds to the beginning of an
action.

Implicit Motion Modeling 19

Algorithm 1: Greedy interval fitting

Input: set of sequence representations C = {ci|i ∈Mz}; corresponding
sequence lengths T = {T i|i ∈Mz}; minimum interval size dmin;
minimum population pmin; overlap doverlap

Output: set of length intervals lt
tleft ← min(T)
while tright < max(T) do

tright ← tleft + dmin − doverlap
p = |{T i ∈ T |tleft ≤ T i ≤ tright}|
while p < pmin do

tright ← tright + 1
p = |{T i ∈ T |tleft ≤ T i ≤ tright}|

end
tleft ← tright
if p ≥ pmin then

lt ← lt ∪ {(tleft, tright)}
end

end
// last interval may not have the minimum population

while p < pmin & tleft > 0 do
tright ← tright + 1
p = |{T i ∈ T |tleft ≤ T i ≤ tright}|

end
lt ← lt ∪ {(tleft, tright)}

Finally, the loss proposed by [31] is memory-intensive due to the computation
of a human mesh, which makes training on UESTC time-intensive. Our experi-
ments suggest that replacing the vertices loss with a joint loss akin to [10] leads
to similar performance and we utilize this loss for our experiments on UESTC.

In the kinematic tree of the skeleton representation, only the root joint can’t
be represented as a rotation. We find that this can make it difficult to balance
the root loss with the other joints, since the magnitude of the root joint is
unconstrained. For some actions with significant root motion (running, jumping)
this may affect performance. This may be mitigated by carefully weighing the
root reconstruction loss against other losses or even using a distinct model just
for the root joint. However, for the sake of comparability to the previous work,
we don’t address this issue in our proposed method further.

A.2 Generative Modeling

In the following we describe the details of Algorithm 1 as described in Section 3.3.
Identifying a suitable set of length intervals that cover all sequence lengths in the
set of sequences of an action class is a combinatorial optimization problem akin
to the Knapsack problem. The objective is to maximize the number of intervals
to allow fine-grained modeling of the sequence-length while also guaranteeing

20 P. Cervantes et al.

a minimum number of training samples within each interval and a minimum
amount of overlap between intervals.

The algorithm is action-conditional and so it is only applied to sequence
representations within an action class. The set of all representations with the
same action label is denotedMz. The population of a set (cardinality) is denoted
as | · |.

The ability of the GMM to fit to complex data is determined by the number
of components (mixtures) used and a larger number of components increases
the chance of Gaussian component collapse, in which one of the components
is identical to the distribution of a single sample. If this happens, the sampling
procedure just recreates training samples. This type of collapse would inflate our
performance under the realism metric, but is not desirable. To avoid this, we first
detect cases of collapsing by computing the distance between the mean of each
Gaussian component and the representations of all training samples. If we find a
distance below a threshold (10% of the average magnitude of all representation),
we consider the GMM contain collapsed components. Since the EM algorithm
is sensitive to the initial conditions we repeat the fitting with different initial
conditions until we find a non-collapsed distribution. Typically we start with
15 components and if we can’t find such a distribution after 100 attempts, we
reduce the number of components and repeat the fitting procedure.

A.3 Tools

Our model is implemented with pytorch [28]. For conversion between different
rotation representations we use pytorch3D [32] and for fitting GMMs to our
representations we use scikit-learn [30]. Also we use the python implementation
of smplify-x [29] during loss computation and for visualization.

A.4 Runtime

We measure the inference time for the generation of a single 60 time-step se-
quence with our small MLP-based model (7.53±0.22 ms), large MLP-based model
(7.66±0.21 ms) used on UESTC, and the Transformer-based model (16.65±0.18

ms) and find that the MLP-based models are generally faster than Transformer-
based models even with similar parameters counts.

Furthermore, we measure the time of a single training iteration with a batch
size of 32, a temporal mini-batch of 5 and the reconstruction loss proposed by
the Transformer baseline [31]. A single iteration takes 115.53±0.19 ms on our
small MLP-based model, 116.98±0.19 ms on our large MLP-based model and
138.49±0.78 ms on our Transformer-based model.

These time were measured on a single Nvidia Titan Xp under the same
conditions. During actual training the batch size and temporal mini-batch size
may differ and in particular training with larger datasets involves more sequence-
wise parameters. We find that the training with our proposed settings of our
MLP-based models takes 24 hours on HumanAct, 29 hours on NTU13 with a
single Nvidia A100 and 40 hours on UESTC with a node of 5 Nvidia A100. As

Implicit Motion Modeling 21

for our Transformer-based models, it takes 15 hours on HumanAct and 31 hours
on NTU13 with a node of 4 Nvidia A100.

Note that during training our method needs to update each INR frequently.
This can be scaled to large datasets by distributing the INRs across multiple
GPUs. While we were able to train our light-weight MLP model on a large
dataset such as UESTC, training a Transformer based model with the available
resources would have been excessively slow. So, due to resource constraints,
we didn’t perform full-scale experiments on UESTC with a Transformer-based
model. Given sufficient resources, training of a Transformer-based implicit model
should be straightforward.

A.5 Negative Societal Impacts

The goal of this work is to generate life-like motions for animation or down-
stream tasks such as data augmentation. Such life-like motions can contribute
to the development of deep-fakes, which could be used with malicious intend to
impersonate or deceive. With advances in monocular pose estimation, procuring
motion data of people (and thus potential training data) without their knowl-
edge or consent is becoming easier. The authors strongly encourage research into
systems that can detect augmented/fake and/or verify real media.

A.6 Personal Data of Human Subjects

The HumanAct12, NTU RGBD and UESTC datasets are all publicly available,
but no public statement about the consent of the human subjects is provided.
However, this work does not use personally identifiable information such as sub-
ject labels or appearance.

A.7 Evaluation Metrics

A difference between the evaluation of [10] and [31] is the frequency with which
samples of a given action class are generated. In [10] motions of all action classes
are generated equally often, irrespective of the frequency in the dataset. This
results in an inflated FID score, so we follow the protocol by [31], which generates
motions with the frequencies found in the dataset.

The Diversity is computed by sampling two subset Sd1 = {f1, ..., fS} and

Sd2 = {f̂1, ..., f̂S} of equal size Sd from the features fi of all generated motions.
We follow [10] and use Sd = 200.

Diversity =
1

Sd

Sd∑
i=1

∥∥∥fi − f̂i

∥∥∥
2

(12)

Similarly, the Multimodality is computed by sampling two subset Sl1 = {fz,1,
..., vf,Sl

} and Sl2 = {f̂z,1, ..., f̂z,Sl
} of equal size Sl from the features vz,i of the

22 P. Cervantes et al.

generated motions of action class z averaged over all action classes. Again, we
follow [10] and use Sl = 20.

Multimodality =
1

|Mz| · Sl

Mz∑
z=1

Sl∑
i=1

∥∥∥fz,i − f̂z,i

∥∥∥ (13)

B Additional Experiments

B.1 Initialization

We find that the initialization of the variational implicit representations can
effect the performance of our models. All representations are initialized with a
zero mean and we scale the diagonal variance matrix with a scalar. In particular,
our Transformer-based model fails to fit the training data accurately unless the
variational representations are initialized with relatively small variance. On the
other hand, our MLP-based model has reasonable performance independent of
the initialization of the variance, but greater variances clearly improve perfor-
mance.

HumanAct12

Method Log-variance FIDtrain ↓ Accuracy ↑ Diversity → Multimod. →

MLP 1 0.114±.001 0.970±.001 6.786±.057 2.507±.034

MLP 0 0.163±.002 0.955±.001 6.868±.063 2.706±.034

MLP -10 0.277±.004 0.881±.002 6.794±.059 3.340±.036

Transformer 1 4.355±.022 0.536±.002 6.195±.053 3.619±.049

Transformer 0 1.812±.016 0.709±.003 6.559±.054 3.540±.037

Transformer -10 0.088±.003 0.973±.001 6.881±.048 2.569±.040

Table 4. Ablation study for different initializations of the variational implicit neural
representations. (± indicates 95% confidence interval, → closer to real is better

B.2 Number of GMM components

By using a conditional Gaussian Mixture Model (GMM) as a generative model,
we can sample from a representation space that may be structured according
to semantic factors such as action-class and sequence-length. In the ablation
study in Table 5, we investigate how the complexity of the GMM (determined
by the number of components) affects the quality of our generated motions.
We find that our method is stable with respect to the number of components
and even with a single component the method reaches the performance of the

Implicit Motion Modeling 23

baseline Action2Motion[10]. By increasing the number of components of the
GMM we can improve the realism, while maintaining diversity. In particular,
with 15 components the model can reach SOTA performance while maintaining
a healthy Mean Maximum Similarity, which, as discussed in Section 3.4, indicates
that the model generates motions distinct from the training set.

HumanAct12

FID ↓ Accuracy ↑ Diversity → Multimod. → MMS

1 0.351±.004 0.915±.002 6.761±.048 2.985±.040 1.155±.005

3 0.209±.002 0.943±.001 6.755±.043 2.753±.044 1.015±.004

5 0.172±.003 0.965±.001 6.792±.041 2.625±.031 0.924±.005

10 0.125±.002 0.971±.001 6.792±.043 2.698±.033 0.902±.003

15 0.114±.001 0.970±.001 6.786±.057 2.507±.034 0.884±.004

Table 5. Ablation study of the number of components of each GMM for the MLP
model on HumanAct.

B.3 Temporal Mini-Batch

During training we sample fixed-length, temporal mini-batches. These can be
sampled with two strategies; (R) randomly or as (C) consecutive subsequences.
Since our MLP-based model predicts each time-step independently, consecutive
sampling isn’t meaningful for it. The Transformer-based model predicts multiple
time-steps simultaneously, so here consecutive sampling is a reasonable choice.
We investigate the effect of different mini-batch sizes and sampling strategies.
Note, that all models were evaluated with a fixed evaluation length of 60 time-
steps.

B.4 Representation Composition

Our representations consist of sequence-wise representations and action-wise rep-
resentations. These are composed to become a single sequence representation by
either addition or concatenation. To ensure a fixed latent dimension of 256, we
set the sequence-wise and action-wise representations to have 256 dimensions for
additive composition and 128 dimensions when composing through concatena-
tion. In Table 7 we investigate which composition performs best for which model
and find that the MLP-based model performs best with composition through
concatenation and the Transformer-based model performs best with additive
composition.

24 P. Cervantes et al.

HumanAct12

Method Batch size FIDtrain ↓ Accuracy ↑ Diversity → Multimod. →

MLP R5 0.114±.001 0.970±.001 6.786±.057 2.507±.034

MLP R10 0.141±.003 0.965±.065 6.856±.065 2.634±.040

Transformer R5 0.214±.004 0.938±.001 6.755±.061 2.877±.031

Transformer C5 0.498±.009 0.877±.002 6.674±.055 3.208±.041

Transformer C60 0.088±.003 0.973±.001 6.881±.048 2.569±.040

Table 6. Ablation study for size of the temporal mini-batch. The temporal mini-batch
is either constructed from random frames (R) or consecutive frames (C). (± indicates
95% confidence interval, → closer to real is better)

HumanAct12

Method Composition FIDtrain ↓ Accuracy ↑ Diversity → Multimod. →

MLP concat 0.114±.001 0.970±.001 6.786±.057 2.507±.034

MLP add 0.123±.003 0.960±.001 6.798±.058 2.642±.042

Transformer concat 0.090±.002 0.959±.001 6.861±.045 2.737±.026

Transformer add 0.088±.003 0.973±.001 6.881±.048 2.569±.040

Table 7. Ablation study for different representation compositions. The sequence and
action representations can be either added or concatenated. (± indicates 95% confi-
dence interval, → closer to real is better)

C Additional qualitative results

We present additional qualitative results in Fig. 4 as well as videos 5. In Fig. 4 we
show motions generated by our MLP-based model with different target sequence-
lengths. Generating short sequences in particular can be difficult, since the gen-
erated sequence should include the a full action, beginning to end. Our method is
able to reliable generate such short complete actions due to our sequence-length
conditional representation space.

The videos are organized into skeleton videos for the HumanAct12 dataset
and full 3D renderings for the UESTC dataset. For the HumanAct12 dataset
we provide a direct side-by-side comparison for Action2Motion[10], ACTOR[31]
and the proposed INR approach with a Transformer and MLP decoder. For the
UESTC dataset we provide a direct side-by-side comparison between ACTOR
and the proposed INR approach with an MLP decoder. To highlight the ability
of each model to handle variable-length sequences, we generate sequences with

5 Videos are included in the supplementary materials. Upon acceptance, they will be
released.

Implicit Motion Modeling 25

Boxing – 40 frames

Boxing – 60 frames

Boxing – 100 frames

Lift dumbbell – 40 frames

Lift dumbbell – 60 frames

Lift dumbbell – 100 frames

Warm up – 40 frames

Warm up – 60 frames

Warm up – 100 frames

Fig. 4. Examples of motions for the action classes boxing, lift dumbbell and warm up
generated with our MLP-based model with different target lengths. The generated
motions are complete (finish within the target sequence length) and are diverse.

sequences lengths of 40, 60 and 120 frames. The sequences for the baselines were
generated by the models provided by the authors without further fine-tuning.

